\qquad

Homework Chapter 28: Magnetic Fields

28.03 An electron that has an instantaneous velocity of $\overrightarrow{\mathbf{v}}=\left(2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathbf{i}}+\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathbf{j}}$ is moving through the uniform magnetic field $\overrightarrow{\mathbf{B}}=(0.030 \mathrm{~T}) \hat{\mathbf{i}}-(0.15 \mathrm{~T}) \hat{\mathbf{j}}$ (a) Find the force on the electron due to the magnetic field. (b) Repeat your calculation for a proton having the same velocity.
3. (a) The force on the electron is

$$
\begin{aligned}
\vec{F}_{B} & =q \vec{v} \times \vec{B}=q\left(v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}\right) \times\left(B_{x} \hat{\mathrm{i}}+B_{y} \overrightarrow{\mathrm{j}}\right)=q\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathrm{k}} \\
& =\left(-1.6 \times 10^{-19} \mathrm{C}\right)\left[\left(2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)(-0.15 \mathrm{~T})-\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)(0.030 \mathrm{~T})\right] \\
& =\left(6.2 \times 10^{-14} \mathrm{~N}\right) \hat{\mathrm{k}} .
\end{aligned}
$$

should be $6.2 \times 10^{-14} \mathrm{~N}$
Thus, the magnitude of \vec{F}_{B} is $6.2 \times 10^{14} \mathrm{~N}$, and \vec{F}_{B} points in the positive z direction.
(b) This amounts to repeating the above computation with a change in the sign in the charge. Thus, \vec{F}_{B} has the same magnitude but points in the negative z direction, namely, $\vec{F}_{B}=-\left(6.2 \times 10^{-14} \mathrm{~N}\right) \hat{\mathrm{k}}$.
28.05 An electron moves through a uniform magnetic field given by $\overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+\left(3.0 B_{x}\right) \hat{\mathbf{j}}$. At a particular instant, the electron has velocity $\overrightarrow{\mathbf{v}}=(2.0 \hat{\mathbf{i}}+4.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$ and the magnetic force acting on it is $\left(6.4 \times 10^{-19} \mathrm{~N}\right) \hat{\mathbf{k}}$. Find B_{x}.
5. Using Eq. 28-2 and Eq. 3-30, we obtain

$$
\vec{F}=q\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathrm{k}}=q\left(v_{x}\left(3 B_{x}\right)-v_{y} B_{x}\right) \hat{\mathrm{k}}
$$

where we use the fact that $B_{y}=3 B_{x}$. Since the force (at the instant considered) is $F_{z} \hat{\mathrm{k}}$ where $F_{z}=6.4 \times 10^{-19} \mathrm{~N}$, then we are led to the condition

$$
q\left(3 v_{x}-v_{y}\right) B_{x}=F_{z} \Rightarrow B_{x}=\frac{F_{z}}{q\left(3 v_{x}-v_{y}\right)}
$$

Substituting $v_{x}=2.0 \mathrm{~m} / \mathrm{s}, v_{y}=4.0 \mathrm{~m} / \mathrm{s}$, and $q=-1.6 \times 10^{-19} \mathrm{C}$, we obtain

$$
B_{x}=\frac{F_{z}}{q\left(3 v_{x}-v_{y}\right)}=\frac{6.4 \times 10^{-19} \mathrm{~N}}{\left(-1.6 \times 10^{-19} \mathrm{C}\right)[3(2.0 \mathrm{~m} / \mathrm{s})-4.0 \mathrm{~m}]}=-2.0 \mathrm{~T} .
$$

28.09 In Fig. 28-32, an electron accelerated from rest through potential difference $V_{1}=1.00 \mathrm{kV}$ enters the gap between two parallel plates having separation $d=20.0 \mathrm{~mm}$ and potential difference $V_{2}=100 \mathrm{~V}$. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the
 electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?
9. Straight-line motion will result from zero net force acting on the system; we ignore gravity. Thus, $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})=0$. Note that $\vec{v} \perp \vec{B}$ so $|\vec{v} \times \vec{B}|=v B$. Thus, obtaining the speed from the formula for kinetic energy, we obtain

In unit-vector notation, $\vec{B}=-\left(2.67 \times 10^{-4} \mathrm{~T}\right) \hat{\mathrm{k}}$.
28.23 What uniform magnetic field, applied perpendicular to a beam of electrons moving at $1.30 \times 10^{6} \mathrm{~m} / \mathrm{s}$, is required to make the electrons travel in a circular arc of radius 0.350 m ?
23. From Eq. 28-16, we find

$$
B=\frac{m_{e} v}{e r}=\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.30 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.350 \mathrm{~m})}=2.11 \times 10^{-5} \mathrm{~T} .
$$

28.29 An electron follows a helical path in a uniform magnetic field of magnitude 0.300 T . The pitch of the path is $6.00 \mu \mathrm{~m}$, and the magnitude of the magnetic force on the electron is $2.00 \times 10^{-15} \mathrm{~N}$. What is the electron's speed?

29. Reference to Fig. 28-11 is very useful for interpreting this problem. The distance nomat moneme.: traveled parallel to \vec{B} is $d_{\|}=v_{\|} T=v_{\|}\left(2 \pi m_{e} /|q| B\right)$ using Eq. 28-17. Thus,

$$
v_{\|}=\frac{d_{\|} e B}{2 \pi m_{e}}=50.3 \mathrm{~km} / \mathrm{s}
$$

using the values given in this problem. Also, since the magnetic force is $|q| B v_{\perp}$, then we find $v_{\perp}=41.7 \mathrm{~km} / \mathrm{s}$. The speed is therefore $v=\sqrt{v_{\perp}^{2}+v_{\|}^{2}}=65.3 \mathrm{~km} / \mathrm{s}$.
28.39 A horizontal power line carries a current of 5000 A from south to north. Earth's magnetic field ($60.0 \mu \mathrm{~T}$) is directed toward the north and inclined downward at 70.0° to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 100 m of the line due to Earth's field.
39. THINK The magnetic force on a wire that carries a current i is given by $\vec{F}_{B}=i \vec{L} \times \vec{B}$, where \vec{L} is the length vector of the wire and \vec{B} is the magnetic field.

EXPRESS The magnitude of the magnetic force on the wire is given by $F_{B}=i L B \sin \phi$, where ϕ is the angle between the current and the field.

ANALYZE (a) With $\phi=70^{\circ}$, we have

$$
F_{B}=(5000 \mathrm{~A})(100 \mathrm{~m})\left(60.0 \times 10^{-6} \mathrm{~T}\right) \sin 70^{\circ}=28.2 \mathrm{~N}
$$

(b) We apply the right-hand rule to the vector product $\vec{F}_{B}=i \vec{L} \times \vec{B}$ to show that the force is to the west.

LEARN From the expression $\vec{F}_{B}=i \vec{L} \times \vec{B}$, we see that the magnetic force acting on a current-carrying wire is a maximum when \vec{L} is perpendicular to $\vec{B}\left(\phi=90^{\circ}\right)$, and is zero when \vec{L} is parallel to $\vec{B}\left(\phi=0^{\circ}\right)$.
28.49

Figure 28-45 shows a rectangular 20-turn coil of wire, of dimensions 10 cm by 5.0 cm . It carries a current of 0.10 A and is hinged along one long side. It is mounted in the $x y$ plane, at angle $\theta=30^{\circ}$ to the direction of a uniform magnetic field of magnitude 0.50 T . In unit-vector notation, what is the torque acting on the coil about the hinge line?
49. THINK Magnetic forces on the loop produce a torque that rotates it about the hinge line. Our applied field has two components: $B_{x}>0$ and $B_{z}>0$.

EXPRESS Considering each straight segment of the rectangular coil, we note that Eq. 28-26 produces a nonzero force only for the component of \vec{B} which is perpendicular to that segment; we also note that the equation is effectively multiplied by $N=20$ due to the
 fact that this is a 20 -turn coil. Since we wish to compute the torque about the hinge line, we can ignore the force acting on the straight segment of the coil that lies along the y axis (forces acting at the axis of rotation produce no torque about that axis). The top and bottom straight segments experience forces due to Eq. 28-26 (caused by the B_{z} component), but these forces are (by the right-hand rule) in the $\pm y$ directions and are thus unable to produce a torque about the y axis. Consequently, the torque derives completely from the force exerted on the straight segment located at $x=0.050 \mathrm{~m}$, which has length L $=0.10 \mathrm{~m}$ and is shown in Fig. 28-45 carrying current in the $-y$ direction.

Now, the B_{z} component will produce a force on this straight segment which points in the $-x$ direction (back toward the hinge) and thus will exert no torque about the hinge. However, the B_{x} component (which is equal to $B \cos \theta$ where $B=0.50 \mathrm{~T}$ and $\theta=30^{\circ}$) produces a force equal to $F=N i L B_{x}$ which points (by the right-hand rule) in the $+z$ direction.

ANALYZE Since the action of the force F is perpendicular to the plane of the coil, and is located a distance x away from the hinge, then the torque has magnitude

$$
\begin{aligned}
\tau & =\left(N i L B_{x}\right)(x)=N i L x B \cos \theta=(20)(0.10 \mathrm{~A})(0.10 \mathrm{~m})(0.050 \mathrm{~m})(0.50 \mathrm{~T}) \cos 30^{\circ} \\
& =0.0043 \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

Since $\vec{\tau}=\vec{r} \times \vec{F}$, the direction of the torque is $-y$. In unit-vector notation, the torque is $\vec{\tau}=\left(-4.3 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}\right) \hat{\mathrm{j}}$

LEARN An alternative way to do this problem is through the use of Eq. 28-37:
$\vec{\tau}=\vec{\mu} \times \vec{B}$. The magnetic moment vector is

$$
\vec{\mu}=-(N i A) \hat{\mathrm{k}}=-(20)(0.10 \mathrm{~A})\left(0.0050 \mathrm{~m}^{2}\right) \hat{\mathrm{k}}=-\left(0.01 \mathrm{~A} \cdot \mathrm{~m}^{2}\right) \hat{\mathrm{k}}
$$

The torque on the loop is

$$
\begin{aligned}
\vec{\tau} & =\vec{\mu} \times \vec{B}=(-\mu \hat{\mathrm{k}}) \times(B \cos \theta \hat{\mathrm{i}}+B \sin \theta \hat{\mathrm{k}})=-(\mu B \cos \theta) \hat{\mathrm{j}} \\
& =-\left(0.01 \mathrm{~A} \cdot \mathrm{~m}^{2}\right)(0.50 \mathrm{~T}) \cos 30^{\circ} \hat{\mathrm{j}} \\
& =\left(-4.3 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}\right) \hat{\mathrm{j}} .
\end{aligned}
$$

28.58 The magnetic dipole moment of Earth has magnitude $8.00 \times 10^{22} \mathrm{~J} / \mathrm{T}$. Assume that this is produced by charges flowing in Earth's molten outer core. If the radius of their circular path is 3500 km , calculate the current they produce.
58. From $\mu=N i A=i \pi r^{2}$ we get

SKIP THIS QUESTION

$$
i=\frac{\mu}{\pi r^{2}}=\frac{8.00 \times 10^{22} \mathrm{~J} / \mathrm{T}}{\pi\left(3500 \times 10^{3} \mathrm{~m}\right)^{2}}=2.08 \times 10^{9} \mathrm{~A} .
$$

Homework Chapter 29: Magnetic Fields Due to Currents

29.37

In Fig. 29-57, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length $a=13.5 \mathrm{~cm}$. Each wire carries 7.50 A , and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3 . In unit-vector notation, what is the net magnetic force per meter of wire length on wire 4?

37. We use Eq. 29-13 and the superposition of forces: $\vec{F}_{4}=\vec{F}_{14}+\vec{F}_{24}+\vec{F}_{34}$. With $\theta=45^{\circ}$, the situation is as shown on the right.

The components of \vec{F}_{4} are given by

$$
F_{4 x}=-F_{43}-F_{42} \cos \theta=-\frac{\mu_{0} i^{2}}{2 \pi a}-\frac{\mu_{0} i^{2} \cos 45^{\circ}}{2 \sqrt{2} \pi a}=-\frac{3 \mu_{0} i^{2}}{4 \pi a}
$$

and

$$
F_{4 y}=F_{41}-F_{42} \sin \theta=\frac{\mu_{0} i^{2}}{2 \pi a}-\frac{\mu_{0} i^{2} \sin 45^{\circ}}{2 \sqrt{2} \pi a}=\frac{\mu_{0} i^{2}}{4 \pi a}
$$

Thus,

$$
\begin{aligned}
F_{4} & =\left(F_{4 x}^{2}+F_{4 y}^{2}\right)^{1 / 2}=\left[\left(-\frac{3 \mu_{0} i^{2}}{4 \pi a}\right)^{2}+\left(\frac{\mu_{0} i^{2}}{4 \pi a}\right)^{2}\right]^{1 / 2}=\frac{\sqrt{10} \mu_{0} i^{2}}{4 \pi a}=\frac{\sqrt{10}\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(7.50 \mathrm{~A})^{2}}{4 \pi(0.135 \mathrm{~m})} \\
& =1.32 \times 10^{-4} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

and \vec{F}_{4} makes an angle ϕ with the positive x axis, where

$$
\phi=\tan ^{-1}\left(\frac{F_{4 y}}{F_{4 x}}\right)=\tan ^{-1}\left(-\frac{1}{3}\right)=162^{\circ}
$$

In unit-vector notation, we have

$$
\vec{F}_{1}=\left(1.32 \times 10^{-4} \mathrm{~N} / \mathrm{m}\right)\left[\cos 162^{\circ} \hat{\mathrm{i}}+\sin 162^{\circ} \hat{\mathrm{j}}\right]=\left(-1.25 \times 10^{-4} \mathrm{~N} / \mathrm{m}\right) \hat{\mathrm{i}}+\left(4.17 \times 10^{-5} \mathrm{~N} / \mathrm{m}\right) \hat{\mathrm{j}}
$$

Figure 29-89 is an idealized schematic drawing of a rail gun. Projectile P sits between two wide rails of circular cross section; a source of current sends current through the rails and through the (conducting) projectile (a fuse is not used). (a) Let w be the distance between the rails, R the radius of each rail, and i the current. Show that the force on the projectile is directed to the right along the rails and is given approximately by

$$
F=\frac{i^{2} \mu_{0}}{2 \pi} \ln \frac{w+R}{R}
$$

(b) If the projectile starts from the left end of the rails at rest, find the speed v at which it is expelled at the right. Assume that $i=450 \mathrm{kA}, w=12 \mathrm{~mm}, R=6.7 \mathrm{~cm}, L=4.0 \mathrm{~m}$, and the projectile mass is 10 g ..
88. (a) Consider a segment of the projectile between y and $y+d y$. We use Eq. 29-12 to find the magnetic force on the segment, and Eq. 29-7 for the magnetic field of each semiinfinite wire (the top rail referred to as wire 1 and the bottom as wire 2). The current in rail 1 is in the $+\hat{\mathrm{i}}$ direction, and the current in rail 2 is in the $-\hat{\mathrm{i}}$ direction. The field (in the region between the wires) set up by wire 1 is into the paper (the $-\hat{k}$ direction) and that set up by wire 2 is also into the paper. The force element (a function of y) acting on the segment of the projectile (in which the current flows in the $-\hat{\mathrm{j}}$ direction) is given below. The coordinate origin is at the benter of bottom rail (wire 2).

$$
\begin{aligned}
d \vec{F} & =d \vec{F}_{1}+d \vec{F}_{2}=i d y(-\hat{\mathrm{j}}) \times \vec{B}_{1}+d y(-\hat{\mathrm{j}}) \times \vec{B}_{2}=i\left[B_{1}+B_{2}\right] \hat{\mathrm{i}} d y \\
& =i\left[\frac{\mu_{0} i}{4 \pi(2 R+w-y)}+\frac{\mu_{0} i}{4 \pi y}\right] \hat{\mathrm{i}} d y . \begin{array}{l}
\text { Skipped integration steps: } \\
=\frac{\mu_{0} i^{2}}{4 \pi}[-\ln (2 R+w-y)+\ln y]_{R}^{R+w}=\frac{\mu_{0} i^{2}}{4 \pi}\left[\ln \frac{y}{2 R+w-y}\right]_{R}^{R+w}
\end{array}
\end{aligned}
$$

Thus, the force on the projectile is

$$
=\frac{\mu_{0} i^{2}}{4 \pi}\left[\ln \frac{R+w}{2 R+w-(R+w)}-\ln \frac{R}{2 R+w-R}\right]
$$

$$
\vec{F}=\int d \vec{F}=\frac{\dot{i}^{2} \mu_{0}}{4 \pi} \int_{R}^{R+w}\left(\frac{1}{2 R+w-y}+\frac{1}{y}\right) d y \hat{\mathrm{i}}=\frac{\mu_{0} i^{2}}{2 \pi} \ln \left(1+\frac{w}{R}\right) \hat{\mathrm{i}} .
$$

(b) Using the work-energy theorem, we have

$$
=\frac{\mu_{0} i^{2}}{4 \pi}\left[\ln \frac{R+w}{R}-\ln \frac{R}{R+w}\right] \text { but } \ln x^{-1}=-\ln x \text { so }
$$

$$
\begin{aligned}
& \Delta K=\frac{1}{2} m v_{f}^{2}=W_{\text {ext }}=\int \vec{F} \cdot d \vec{s}=F L . \\
& \text { projectile is } \\
& \quad=\frac{\mu_{0} i^{2}}{4 \pi}\left[\ln \frac{R+w}{R}+\ln \frac{R+w}{R}\right]=\frac{\mu_{0} i^{2}}{2 \pi} \ln \frac{R+w}{R}
\end{aligned}
$$

Thus, the final speed of the projectile is

$$
\begin{aligned}
v_{f} & =\left(\frac{2 W_{\text {eat }}}{m}\right)^{1 / 2}=\left[\frac{2}{m} \frac{\mu_{0} i^{2}}{2 \pi} \ln \left(1+\frac{w}{R}\right) L\right]^{1 / 2} \\
& =\left[\frac{2\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(450 \times 10^{3} \mathrm{~A}\right)^{2} \ln (1+1.2 \mathrm{~cm} / 6.7 \mathrm{~cm})(4.0 \mathrm{~m})}{2 \pi\left(10 \times 10^{-3} \mathrm{~kg}\right)}\right]^{1 / 2} \\
& =2.3 \times 10^{3} \mathrm{~m} / \mathrm{s} . \quad=\text { MACH } 6.74!
\end{aligned}
$$

