04.03.2015 Views

Serviceability limit state - Eurocodes

Serviceability limit state - Eurocodes

Serviceability limit state - Eurocodes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

<strong>Eurocodes</strong><br />

Background and Applications<br />

Dissemination of information for training<br />

18-20 February 2008, Brussels<br />

Eurocode 4<br />

<strong>Serviceability</strong> <strong>limit</strong> <strong>state</strong>s of<br />

composite beams<br />

Univ. - Prof. Dr.-Ing. Gerhard Hanswille<br />

Institute for Steel and Composite Structures<br />

University of Wuppertal<br />

Germany<br />

1


Contents<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Part 1:<br />

Part 2:<br />

Part 3:<br />

Part 4:<br />

Part 5:<br />

Part 6:<br />

Introduction<br />

Global analysis for serviceability <strong>limit</strong> <strong>state</strong>s<br />

Crack width control<br />

Deformations<br />

Limitation of stresses<br />

Vibrations<br />

2


<strong>Serviceability</strong> <strong>limit</strong> <strong>state</strong>s<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

<strong>Serviceability</strong> <strong>limit</strong> <strong>state</strong>s<br />

Limitation of stresses<br />

Limitation of deflections<br />

crack width control<br />

vibrations<br />

web breathing<br />

3


<strong>Serviceability</strong> <strong>limit</strong> <strong>state</strong>s<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

characteristic combination:<br />

E<br />

{ ∑ G + P + Q + ∑ ψ Q }<br />

d = E k,j k k,1 0,i k, i<br />

frequent combination: Ed<br />

= E { ∑ Gk,j<br />

+ Pk<br />

+ ψ1,1<br />

Qk,1<br />

+ ∑ ψ2,i<br />

Qk,<br />

i }<br />

quasi-permanent combination: Ed<br />

= E { ∑ Gk,j<br />

+ Pk<br />

+ ∑ ψ2,i<br />

Qk,<br />

i }<br />

serviceability <strong>limit</strong> <strong>state</strong>s<br />

E d<br />

≤ C d<br />

:<br />

C d =<br />

- deformation<br />

- crack width<br />

- excessive compressive stresses in concrete<br />

- excessive slip in the interface between steel<br />

and concrete<br />

- excessive creep deformation<br />

- web breathing<br />

- vibrations<br />

4


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Part 2:<br />

Global analysis for serviceability <strong>limit</strong> <strong>state</strong>s<br />

5


Global analysis - General<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Calculation of internal forces, deformations and stresses at<br />

serviceability <strong>limit</strong> <strong>state</strong> shall take into account the following<br />

effects:<br />

• shear lag;<br />

• creep and shrinkage of concrete;<br />

• cracking of concrete and tension stiffening of concrete;<br />

• sequence of construction;<br />

• increased flexibility resulting from significant incomplete<br />

interaction due to slip of shear connection;<br />

• inelastic behaviour of steel and reinforcement, if any;<br />

• torsional and distorsional warping, if any.<br />

6


Shear lag- effective width<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

real stress distribution<br />

σ max<br />

σ max<br />

b<br />

shear lag<br />

σ(y)<br />

b<br />

b<br />

ei <<br />

i<br />

0,2<br />

⎡ y ⎤<br />

σ ( y) =σ max ⎢1<br />

−<br />

b<br />

⎥<br />

⎣ i ⎦<br />

4<br />

stresses taking into<br />

account the effective<br />

width<br />

b ei<br />

b ei<br />

σ max<br />

5 b ei<br />

y<br />

b i<br />

b e<br />

The flexibility of steel or<br />

0, 2<br />

σ max<br />

bi<br />

concrete flanges affected by<br />

σ(y)<br />

shear in their plane (shear<br />

⎡b<br />

σ<br />

ei<br />

R = 1,25 ⎢<br />

lag) shall be used either by<br />

⎣ bi<br />

rigorous analysis, or by using<br />

an effective width b e<br />

y<br />

σ (y) =σ R + σ<br />

b i<br />

b<br />

ei ≥<br />

⎤<br />

− 0,2⎥<br />

σ<br />

⎦<br />

[ −σ ]<br />

σ R<br />

max<br />

R<br />

max<br />

⎡<br />

⎢1<br />

−<br />

⎣<br />

y<br />

b<br />

i<br />

⎤<br />

⎥<br />

⎦<br />

4<br />

7


Effective width of concrete flanges<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

L e =0,25 (L 1 + L 2 ) for b eff,2 b b<br />

L e =2L 3 for b e,1 o<br />

b e,2<br />

eff,2<br />

L e =0,85 L 1 for b eff,1<br />

L e =0,70 L 2 for b eff,1<br />

b 1<br />

b o<br />

b 2<br />

L 1 L 2<br />

L 3<br />

L 1 /4 L 1 /2 L 1 /4 L 2 /4 L 2 /2 L 2 /4<br />

b eff,0<br />

b eff,1<br />

b eff,1<br />

b eff,2<br />

end supports: b eff<br />

= b 0<br />

+ β 1<br />

b e,1<br />

+β 2<br />

b e,2<br />

β i<br />

= (0,55+0,025 L e<br />

/b i<br />

) ≤ 1,0<br />

b eff,2<br />

midspan regions and<br />

internal supports:<br />

b eff<br />

= b 0<br />

+ b e,1<br />

+b e,2<br />

b e,i<br />

= L e<br />

/8<br />

L e<br />

– equivalent length<br />

8


Effects of creep of concrete<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

primary effects<br />

Initial sectional<br />

forces<br />

redistribution of the sectional<br />

forces due to creep<br />

M c,o<br />

-M c,r<br />

-z i,c<br />

a st<br />

M L<br />

-N c,o<br />

N c,r<br />

z i,st<br />

M st,o<br />

M st,r<br />

N st,o<br />

-N st,r<br />

The effects of shrinkage and creep of concrete and non-uniform changes of<br />

temperature result in internal forces in cross sections, and curvatures and<br />

longitudinal strains in members; the effects that occur in statically determinate<br />

structures, and in statically indeterminate structures when compatibility of the<br />

deformations is not considered, shall be classified as primary effects.<br />

9


Effects of creep and shrinkage of concrete<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Types of loading and action effects:<br />

In the following the different types of loading and action effects are distinguished by a<br />

subscript L :<br />

L=P for permanent action effects not changing with time<br />

L=PT<br />

L=S<br />

L=D<br />

time-dependent action effects developing affine to the creep coefficient<br />

action effects caused by shrinkage of concrete<br />

action effects due to prestressing by imposed deformations (e.g. jacking of<br />

supports)<br />

M PT (t=∞)<br />

M PT (t)<br />

time dependent action<br />

effects M L =M PT :<br />

action effects caused by<br />

prestressing due to imposed<br />

deformation M L =M D :<br />

M D<br />

ϕ(t i ,t o )<br />

M PT<br />

(t i<br />

)<br />

ϕ(t ∞ ,t o )<br />

ϕ(t,t o )<br />

M L =M D<br />

+<br />

δ<br />

10


Modular ratios taking into account<br />

effects of creep<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

centroidal axis of the concrete section<br />

z is,L<br />

a st<br />

z st<br />

-z ic,L<br />

z ist,L<br />

z c<br />

z i,L<br />

centroidal axis of the transformed<br />

composite section<br />

centroidal axis of the steel section<br />

(structural steel and reinforcement)<br />

Modular ratios:<br />

E<br />

n L = no[ 1+ ψL<br />

ϕ(t,t<br />

o ) ] no<br />

=<br />

E<br />

a<br />

cm<br />

action<br />

creep multiplier<br />

short term loading Ψ=0<br />

permanent action not changing in time Ψ P<br />

=1,10<br />

shrinkage Ψ S<br />

=0,55<br />

prestressing by controlled imposed deformations Ψ D<br />

=1,50<br />

time-dependent action effects Ψ PT<br />

=0,55<br />

11


Elastic cross-section properties of the<br />

composite section taking into account creep<br />

effects<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

-z ic,L<br />

z ist,L<br />

z c<br />

z i,L<br />

z st<br />

centroidal axis of the<br />

concrete section<br />

centroidal axis of the<br />

composite section<br />

centroidal axis of the<br />

steel section<br />

Modular ratio taking into<br />

account creep effect:<br />

nL=<br />

n0<br />

(1+ ψL<br />

ϕ(t,t<br />

0))<br />

n<br />

o =<br />

Est<br />

E (t<br />

cm<br />

o<br />

)<br />

Transformed cross-section properties of<br />

the concrete section:<br />

Distance between the centroidal axes of<br />

the concrete and the composite section:<br />

A = A / n J = J<br />

c,L<br />

c<br />

L<br />

c,L<br />

c<br />

/ n<br />

L<br />

z = − A<br />

ic,L<br />

st<br />

a<br />

st<br />

/ A<br />

i,L<br />

Transformed cross-section area of the<br />

composite section:<br />

Second moment of area of the<br />

composite section:<br />

A = A + A<br />

i,L<br />

St<br />

c,L<br />

J = J + J +<br />

i,L<br />

st<br />

c,L<br />

A<br />

st<br />

A<br />

c,L<br />

a<br />

2<br />

st<br />

/<br />

A<br />

i,L<br />

12


Effects of cracking of concrete and tension<br />

stiffening of concrete between cracks<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

N s<br />

N sy<br />

mean strain ε sm<br />

=ε s,2<br />

- βΔε s,r<br />

Δε<br />

s<br />

f<br />

= β<br />

ρ<br />

β =0,4<br />

ct,eff<br />

s<br />

E<br />

s<br />

σ c<br />

(x)<br />

σ s<br />

(x)<br />

σ c<br />

(x)<br />

τ v<br />

σ s,2<br />

Δεs = βΔε s,r<br />

ρ<br />

s<br />

= A<br />

s<br />

/ A<br />

c<br />

σ c<br />

(x)<br />

N sm<br />

Δε s,r<br />

fully<br />

cracked<br />

section<br />

ε sr,1<br />

ε sr,2<br />

ε sm,y<br />

ε sy<br />

N s<br />

ε<br />

ε<br />

s,2<br />

σ s<br />

(x)<br />

σ<br />

=<br />

E<br />

s2<br />

s<br />

N s<br />

N s,cr<br />

B C<br />

A<br />

stage A:<br />

stage B:<br />

stage C:<br />

uncracked section<br />

initial crack formation<br />

stabilised crack formation<br />

ε sm<br />

f<br />

E<br />

ct<br />

c<br />

ε s(x)<br />

ε c(x)<br />

βΔε s,r<br />

x<br />

13


Influence of tension stiffening of concrete on<br />

stresses in reinforcement<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

ε sm<br />

N s<br />

equilibrium:<br />

z s<br />

M s<br />

≈0<br />

M<br />

Ma<br />

= M−Ns<br />

a<br />

a<br />

M a ε a<br />

-κ<br />

N<br />

= −<br />

a N s<br />

z a<br />

N a<br />

compatibility:<br />

mean strain in the concrete slab:<br />

ε<br />

sm<br />

= ε<br />

a<br />

+ κa<br />

ε<br />

sm<br />

N<br />

+<br />

s<br />

E A<br />

a<br />

a<br />

N<br />

+<br />

E<br />

s<br />

a<br />

a<br />

A<br />

2<br />

a<br />

=<br />

M a<br />

E<br />

a<br />

J<br />

a<br />

ε s,2<br />

ε s,m<br />

Δε s<br />

=βΔε s,r<br />

mean strain in the concrete<br />

slab:<br />

ε c<br />

ε s<br />

ε<br />

sm<br />

= ε<br />

s2<br />

−βΔε<br />

sr<br />

N<br />

=<br />

s<br />

E A<br />

s<br />

s<br />

f<br />

−β<br />

ρ<br />

ct,eff<br />

s<br />

E<br />

s<br />

14


Redistribution of sectional forces due to tension<br />

stiffening<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

fully cracked section<br />

tension stiffening<br />

z 2 =z st<br />

-z st,s<br />

z st,a<br />

a<br />

N s,2<br />

-M s,2<br />

ΔN ts<br />

-M a,2<br />

+ =<br />

ΔN ts<br />

a<br />

-M s<br />

N s<br />

-M a<br />

-M Ed<br />

-N a,2 -ΔN ts<br />

-N a<br />

N s<br />

α<br />

N sε<br />

st<br />

A<br />

=<br />

A<br />

N s<br />

st<br />

a<br />

J<br />

J<br />

st<br />

a<br />

ΔN<br />

ts<br />

= β<br />

ΔN ts<br />

N s,2<br />

M Ed<br />

f<br />

ct,eff<br />

ρ<br />

M<br />

s<br />

α<br />

A<br />

st<br />

s<br />

N<br />

Sectional forces:<br />

N<br />

a<br />

s<br />

= N<br />

M = M<br />

M<br />

s<br />

= N<br />

a<br />

a2<br />

s2<br />

= M<br />

Ed<br />

+ ΔN<br />

− ΔN<br />

a2<br />

J<br />

J<br />

s<br />

st<br />

ts<br />

ts<br />

+ ΔN<br />

= M<br />

= M<br />

ts<br />

a<br />

Ed<br />

Ed<br />

A<br />

A<br />

a<br />

= M<br />

s<br />

J<br />

J<br />

z<br />

Ed<br />

st<br />

z<br />

st<br />

st,s<br />

st,a<br />

J st = J 2<br />

J<br />

J<br />

a<br />

st<br />

+ ΔN<br />

− ΔN<br />

ts<br />

+ ΔN<br />

ts<br />

ts<br />

a<br />

15


G. Hanswille<br />

Stresses taking into account tension stiffening of<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

concrete<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

fully cracked<br />

tension stiffening<br />

N s<br />

N s,2<br />

-M s,2<br />

ΔN ts<br />

-M s<br />

z st<br />

z st,a<br />

a<br />

-M a,2<br />

+ =<br />

ΔN ts<br />

a<br />

-M a<br />

-M Ed<br />

-z st,s<br />

st<br />

z a<br />

-N a,2 -ΔN ts<br />

-N a<br />

σ<br />

reinforcement:<br />

s<br />

=<br />

σ<br />

s,2<br />

+ β<br />

f<br />

ρ<br />

ctm<br />

s<br />

α<br />

st<br />

structural steel:<br />

σ<br />

a<br />

=<br />

σ<br />

a,2<br />

ΔN<br />

−<br />

A<br />

ts<br />

a<br />

+<br />

ΔN<br />

J<br />

ts<br />

a<br />

a<br />

z<br />

a<br />

α<br />

st<br />

=<br />

A<br />

A<br />

st<br />

a<br />

J<br />

J<br />

st<br />

a<br />

σ<br />

s<br />

=<br />

M<br />

J<br />

Ed<br />

st<br />

z<br />

st,s<br />

+<br />

β<br />

f<br />

ρ<br />

ctm<br />

s<br />

α<br />

st<br />

σ<br />

a<br />

=<br />

M<br />

J<br />

Ed<br />

st<br />

z<br />

st<br />

−<br />

ΔN<br />

A<br />

ts<br />

a<br />

+<br />

ΔN<br />

J<br />

ts<br />

a<br />

a<br />

z<br />

a<br />

ΔN<br />

ts<br />

=<br />

β<br />

f<br />

ρ<br />

ctm<br />

s<br />

A<br />

α<br />

s<br />

16


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Influence of tension stiffening on flexural stiffness<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

N s<br />

ε sm<br />

Curvature:<br />

z st<br />

a<br />

-M s<br />

-M a<br />

-M<br />

κ<br />

-N a<br />

ε a<br />

κ =<br />

E<br />

st<br />

M<br />

I<br />

2,ts<br />

M<br />

=<br />

a<br />

E J<br />

st<br />

a<br />

Effective flexural<br />

stiffness:<br />

M−<br />

N<br />

=<br />

E J<br />

st<br />

s<br />

a<br />

a<br />

M<br />

EJ<br />

E<br />

st<br />

J<br />

2,ts<br />

=<br />

Ea<br />

Ja<br />

(Ns<br />

− N<br />

1−<br />

M<br />

s, ε<br />

)<br />

a<br />

E st<br />

J 2<br />

E st<br />

J 2,ts<br />

E st<br />

J 1<br />

κ<br />

E st J 1<br />

E st J 2,ts<br />

E st J 2<br />

M R<br />

M Rn<br />

M<br />

E st J 1 uncracked section<br />

E st J 2 fully cracked section<br />

E st J 2,ts effective flexural<br />

stiffness taking into<br />

account tension<br />

stiffening of concrete<br />

17


Effects of cracking of concrete - General<br />

method according to EN 1994-1-1<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

E a<br />

J 1<br />

E a<br />

J 2<br />

– un-cracked flexural stiffness<br />

– cracked flexural stiffness<br />

L 1 L 2<br />

L1,cr L 2,cr<br />

E a J 1 E a J E a J 1<br />

2<br />

ΔM<br />

• Determination of internal forces by uncracked<br />

analysis for the characteristic<br />

combination.<br />

• Determination of the cracked regions<br />

with the extreme fibre concrete tensile<br />

stress σ c,max = 2,0 f ct,m .<br />

• Reduction of flexural stiffness to E a J 2 in<br />

the cracked regions.<br />

• New structural analysis for the new<br />

distribution of flexural stiffness.<br />

cracked analysis<br />

un-cracked analysis<br />

ΔM Redistribution of<br />

bending moments due to<br />

cracking of concrete<br />

18


Effects of cracking of concrete –<br />

simplified method<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

L 1<br />

L 2<br />

0,15 L 1 0,15 L 2<br />

E a<br />

J 1<br />

L<br />

min<br />

E a<br />

J 2<br />

/L ≥0,<br />

6<br />

max<br />

ΔM II<br />

For continuous composite beams with<br />

the concrete flanges above the steel<br />

section and not pre-stressed, including<br />

beams in frames that resist horizontal<br />

forces by bracing, a simplified method<br />

may be used. Where all the ratios of<br />

the length of adjacent continuous<br />

spans (shorter/longer) between<br />

supports are at least 0,6, the effect of<br />

cracking may be taken into account by<br />

using the flexural stiffness E a J 2 over<br />

15% of the span on each side of each<br />

internal support, and as the uncracked<br />

values E a J 1 elsewhere.<br />

19


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Part 3:<br />

Limitation of crack width<br />

20


Control of cracking<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

General considerations<br />

minimum reinforcement<br />

If crack width control is required, a minimum amount of bonded<br />

reinforcement is required to control cracking in areas where tension due to<br />

restraint and or direct loading is expected. The amount may be estimated<br />

from equilibrium between the tensile force in concrete just before cracking<br />

and the tensile force in the reinforcement at yielding or at a lower stress if<br />

necessary to <strong>limit</strong> the crack width. According to Eurocode 4-1-1 the<br />

minimum reinforcement should be placed, where under the characteristic<br />

combination of actions, stresses in concrete are tensile.<br />

control of cracking due to direct loading<br />

Where at least the minimum reinforcement is provided, the <strong>limit</strong>ation of<br />

crack width for direct loading may generally be achieved by <strong>limit</strong>ing bar<br />

spacing or bar diameters. Maximum bar spacing and maximum bar<br />

diameter depend on the stress σ s<br />

in the reinforcement and the design<br />

crack width.<br />

21


Recommended values for w max<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Exposure<br />

class<br />

reinforced members, prestressed<br />

members with unbonded tendons<br />

and members prestressed by<br />

controlled imposed deformations<br />

quasi - permanent<br />

load combination<br />

prestressed members with<br />

bonded tendons<br />

frequent load combination<br />

XO, XC1 0,4 mm (1) 0,2 mm<br />

XC2, XC3,XC4 0,2 mm (2)<br />

0,3 mm<br />

XD1,XD2,XS1,<br />

XS2,XS3<br />

decompression<br />

(1) For XO and XC1 exposure classes, crack width has no influence on<br />

durability and this <strong>limit</strong> is set to guarantee acceptable appearance. In<br />

absence of appearance conditions this <strong>limit</strong> may be relaxed.<br />

(2) For these exposure classes, in addition, decompression should be<br />

checked under the quasi-permanent combination of loads.<br />

22


Exposure classes according to EN 1992-1-1<br />

(risk of corrosion of reinforcement)<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Class Description of environment Examples<br />

XO<br />

for concrete without reinforcement, for<br />

concrete with reinforcement : very dry<br />

no risk of corrosion or attack<br />

concrete inside buildings with very low air humidity<br />

Corrosion induced by carbonation<br />

XC1 dry or permanently wet concrete inside buildings with low air humidity<br />

XC2 wet, rarely dry concrete surfaces subjected to long term water contact, foundations<br />

XC3 moderate humidity external concrete sheltered from rain<br />

XC4 cyclic wet and dry concrete surfaces subject to water contact not within class XC2<br />

Corrosion induced by chlorides<br />

XD1 moderate humidity concrete surfaces exposed to airborne chlorides<br />

XD2 wet, rarely dry swimming pools, members exposed to industrial waters containing<br />

chlorides<br />

XD3 cyclic wet and dry car park slabs, pavements, parts of bridges exposed to spray containing<br />

Corrosion induced by chlorides from sea water<br />

XS1 exposed to airborne salt structures near to or on the coast<br />

XS2 permanently submerged parts of marine structures<br />

XS3 tidal, splash and spray zones parts of marine structures<br />

23


N s<br />

ε<br />

σ<br />

σ c,1<br />

Cracking of concrete (initial crack formation)<br />

L es<br />

σ c,1<br />

w<br />

ε s<br />

ε c<br />

L es<br />

σ s<br />

σ s,1<br />

L es<br />

L es<br />

σ s,1<br />

σ s,2<br />

L es<br />

ρ<br />

Δσ s<br />

s<br />

A<br />

=<br />

A<br />

s<br />

c<br />

N s<br />

Equilibrium in longitudinal direction:<br />

σ<br />

s<br />

A<br />

A s<br />

ρ s<br />

f ctm<br />

s<br />

=<br />

σ<br />

s,1<br />

A<br />

s<br />

+ σ<br />

c,1<br />

A<br />

c<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Compatibility at the end of the introduction<br />

length:<br />

σs,1<br />

σc,1<br />

εs,1<br />

=εc,1<br />

⇒ =<br />

E E<br />

σs,1<br />

=<br />

σs<br />

⎡<br />

⎢<br />

⎣<br />

s<br />

c<br />

ρs<br />

no<br />

⎤<br />

1+ ρ<br />

⎥<br />

s no<br />

⎦<br />

s<br />

o<br />

E<br />

n o =<br />

E<br />

Change of stresses in reinforcement<br />

due to cracking:<br />

σ<br />

Δσ<br />

s<br />

s = σs<br />

− σs,1<br />

=<br />

1+<br />

ρ n<br />

N<br />

s,r<br />

= f<br />

ctm<br />

A<br />

c<br />

( 1+<br />

ρ n )<br />

s<br />

o<br />

cross-section area of reinforcement<br />

reinforcement ratio<br />

mean value of tensile strength of concrete<br />

s<br />

c<br />

24


N s<br />

ε<br />

Cracking of concrete – introduction length<br />

w<br />

ε s<br />

N s<br />

Change of stresses in reinforcement<br />

due to cracking:<br />

σ<br />

Δσ<br />

s<br />

s = σs<br />

− σs,1<br />

=<br />

1+<br />

ρs<br />

no<br />

Equilibrium in longitudinal direction<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

σ<br />

L es<br />

ε c<br />

L es<br />

Δσ s<br />

L<br />

L<br />

es<br />

es<br />

U<br />

π<br />

s<br />

d<br />

τ<br />

s<br />

sm<br />

τ<br />

= Δσs<br />

As<br />

πd<br />

= Δσs<br />

4<br />

sm<br />

2<br />

s<br />

introduction length L Es<br />

ρ<br />

s<br />

A<br />

=<br />

A<br />

s<br />

c<br />

σ c,1<br />

σ s<br />

σ s,1<br />

L es<br />

L es<br />

L<br />

es<br />

=<br />

σs<br />

d<br />

4 τ<br />

s<br />

sm<br />

1<br />

1+<br />

n ρ<br />

o<br />

s<br />

E<br />

n o =<br />

E<br />

s<br />

c<br />

σ c,1<br />

σ s,1<br />

σ s,2<br />

L es<br />

τ sm<br />

U s<br />

A s<br />

ρ s<br />

τ sm<br />

-perimeter of the bar<br />

-cross-section area<br />

-reinforcement ratio<br />

-mean bond strength<br />

crack width<br />

w = 2L<br />

es<br />

( ε<br />

sm<br />

−<br />

ε<br />

cm<br />

)<br />

25


N s<br />

ε<br />

ε s,m<br />

ε c,m<br />

Determination of the mean strains of<br />

reinforcement and concrete in the stage of initial<br />

crack formation<br />

w<br />

ε s<br />

(x)<br />

ε c<br />

(x)<br />

Δε s,cr<br />

N s<br />

ε cr<br />

ε s<br />

Mean bond strength:<br />

τs,m<br />

=<br />

Les<br />

σ<br />

s,m<br />

=<br />

L<br />

∫<br />

o<br />

1 Es<br />

σ<br />

s<br />

−β<br />

τs<br />

(x)dx<br />

Δσ<br />

s<br />

⇒ β<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

≈ 1,8 fctm<br />

Mean stress in the reinforcement:<br />

=<br />

σ<br />

s<br />

− Δσ<br />

Δσ<br />

s<br />

sm<br />

σ<br />

σ s,m<br />

L es<br />

σ s (x)<br />

L es<br />

βΔσ s<br />

Δσ s<br />

σ s σ s,1<br />

σ c,1<br />

L es<br />

L es<br />

1<br />

Δσsm=<br />

Les<br />

L es<br />

∫<br />

0<br />

Δσs(x)<br />

dx<br />

4 x<br />

Δσs(x)<br />

= ∫ τ<br />

s 0 s (x) dx<br />

U<br />

Mean strains in reinforcement and concrete:<br />

ε<br />

s,m<br />

εc,m<br />

=<br />

=<br />

ε<br />

s,2<br />

β εcr<br />

−<br />

β<br />

Δε<br />

s,cr<br />

x<br />

26


N s<br />

Determination of initial crack width<br />

w<br />

N s<br />

crack width<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

ε<br />

ε s,m<br />

ε s<br />

(x)<br />

ε c<br />

(x)<br />

ε s,2<br />

Δε s,cr<br />

w = 2L<br />

es<br />

( ε<br />

sm<br />

− ε<br />

cm<br />

εs ,m − εcm<br />

= ( 1− β)<br />

εs,2<br />

)<br />

ε c,m<br />

ε cr<br />

L es<br />

L es<br />

L<br />

es<br />

=<br />

σs<br />

d<br />

4 τ<br />

s<br />

sm<br />

1<br />

1+<br />

n ρ<br />

o<br />

s<br />

σ s<br />

τsm<br />

≈ 1,8 f ctm<br />

σ s,m<br />

βΔσ s<br />

Δσ s<br />

L es<br />

L es<br />

σ s<br />

σ s,1<br />

σ c,1<br />

x<br />

2<br />

(1− β)<br />

σs<br />

d<br />

w =<br />

s<br />

2 τsm<br />

Es<br />

1<br />

1+<br />

no<br />

ρs<br />

with β= 0,6 for short term loading und<br />

β= 0,4 for long term loading<br />

27


Maximum bar diameters acc. to EC4<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

σ s<br />

[N/mm 2 ]<br />

maximum bar diameter<br />

d ∗ s<br />

for<br />

w k = 0,4 w k = 0,3 w k = 0,2<br />

160 40 32 25<br />

200 32 25 16<br />

240 20 16 12<br />

280 16 12 8<br />

320 12 10 6<br />

360 10 8 5<br />

400 8 6 4<br />

Crack width w:<br />

sm<br />

2<br />

s<br />

(1 − β)<br />

σ d<br />

w =<br />

2 τ E<br />

s<br />

s<br />

1<br />

1+<br />

n ρ<br />

Maximum bar diameter for a<br />

required crack width w:<br />

d<br />

s<br />

=<br />

w<br />

2 τ<br />

sm<br />

σ<br />

E<br />

s<br />

2<br />

s<br />

o<br />

s<br />

(1+<br />

n<br />

(1− β)<br />

o<br />

≈<br />

ρ<br />

s<br />

6<br />

)<br />

f<br />

σ<br />

2<br />

s<br />

ct,m<br />

With τ sm<br />

= 1,8 f ct,mo<br />

and the reference<br />

value for the mean tensile strength of<br />

concrete f ctm,o<br />

= 2,9 N/mm 2 follows:<br />

d<br />

s<br />

E<br />

s<br />

450 6 5 -<br />

β= 0,4 for long term loading and<br />

repeated loading<br />

d<br />

d<br />

*<br />

s<br />

*<br />

s<br />

=<br />

w<br />

k<br />

w<br />

≈ 6<br />

k<br />

3,6<br />

f<br />

f<br />

ctm,o<br />

2<br />

σs<br />

ctm,o<br />

2<br />

σs<br />

E<br />

s<br />

E<br />

s<br />

(1+<br />

n<br />

(1− β)<br />

o<br />

ρ<br />

s<br />

)<br />

28


Crack width for stabilised crack formation<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

f<br />

E<br />

N s<br />

ct<br />

c<br />

ε<br />

ε<br />

s,2<br />

ε s(x)<br />

ε c(x)<br />

σ<br />

=<br />

E<br />

s2<br />

s<br />

s r,max<br />

= 2 L es<br />

w<br />

β= 0,6 for short term loading<br />

β= 0,4 for long term loading and<br />

repeated loading<br />

Crack width for high bond bars<br />

w = sr,max<br />

( εsm<br />

− εcm)<br />

Mean strain of reinforcement and<br />

concrete:<br />

εs,m<br />

= εs,2<br />

− β Δ εs<br />

A<br />

ε s(x)<br />

- ε<br />

c fctm<br />

f<br />

c(x) εs,m<br />

= εs,2<br />

− β = εs,2<br />

− β<br />

Es<br />

As<br />

Es<br />

ρ<br />

f<br />

ε<br />

ctm<br />

cm =β<br />

Ec<br />

s r,min<br />

= L es<br />

ε<br />

sm<br />

− ε<br />

cm<br />

=<br />

σ<br />

E<br />

s<br />

s<br />

f<br />

− β<br />

E<br />

ctm<br />

s<br />

ρ<br />

s<br />

(1+<br />

n<br />

o<br />

ρ<br />

s<br />

ctm<br />

)<br />

s<br />

29


Crack width for stabilised crack formation<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

N s<br />

w<br />

The maximum crack spacing s r,max<br />

in the<br />

stage of stabilised crack formation is twice<br />

the introduction length L es<br />

.<br />

ε<br />

ε<br />

s,2<br />

=<br />

σ<br />

E<br />

s<br />

s<br />

w = s<br />

r,max<br />

( ε<br />

sm<br />

−<br />

ε<br />

cm<br />

)<br />

ε s(x)<br />

ε c(x)<br />

f<br />

E<br />

ct<br />

c<br />

ε s(x)<br />

- ε c(x)<br />

L<br />

es<br />

=<br />

f<br />

U<br />

ctm<br />

s<br />

A<br />

τ<br />

c<br />

sm<br />

f<br />

=<br />

ρ<br />

ctm<br />

s<br />

4<br />

τ<br />

d<br />

s<br />

sm<br />

maximum crack width for s r<br />

= s r,max<br />

s r,max<br />

= 2 L es<br />

s r,min<br />

= L es<br />

β= 0,6 for short term loading<br />

β= 0,4 for long term loading and<br />

repeated loading<br />

= f d ⎛ σ f<br />

⎞<br />

w<br />

ctm s<br />

⎜ s<br />

− β<br />

ctm<br />

(1+<br />

no<br />

ρs<br />

⎟<br />

2 τ ρ ⎝ E ρ E<br />

)<br />

sm s s s s ⎠<br />

30


Crack width and crack spacing according<br />

Eurocode 2<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Crack width<br />

w = s<br />

r,max<br />

( ε<br />

sm<br />

−<br />

ε<br />

cm<br />

)<br />

ε<br />

sm<br />

− ε<br />

cm<br />

=<br />

σ<br />

E<br />

s<br />

s<br />

−<br />

β<br />

f<br />

E<br />

ctm<br />

s<br />

ρ<br />

s<br />

(1+<br />

n<br />

o<br />

ρ<br />

s<br />

)<br />

≥<br />

0,6<br />

σ<br />

E<br />

s<br />

s<br />

β= 0,6 for short term loading<br />

β= 0,4 for long term loading and repeated loading<br />

Crack spacing<br />

In Eurocode 2 for the maximum crack spacing a semiempirical<br />

equation based on test results is given<br />

s<br />

s<br />

r,max = 3,4c + k1⋅<br />

k2<br />

⋅0,425<br />

d s<br />

-diameter of the bar<br />

ρs<br />

d<br />

c- concrete cover<br />

k 1<br />

k 2<br />

coefficient taking into account bond properties of<br />

the reinforcement with k 1<br />

=o,8 for high bond bars<br />

coefficient which takes into account the distribution<br />

of strains (1,0 for pur tension and 0,5 for bending)<br />

31


Determination of the cracking moment M cr and<br />

the normal force of the concrete slab in the<br />

stage of initial cracking<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

h c<br />

cracking moment M cr<br />

z o<br />

z i,st<br />

N c+s<br />

z io<br />

a st<br />

M<br />

M<br />

cr<br />

cr<br />

cracking moment M cr<br />

:<br />

σc<br />

+ σc,<br />

ε = ct,eff =<br />

M c+s<br />

σ c<br />

M cr<br />

=<br />

=<br />

[ f − σ ]<br />

ct,eff<br />

[ f − σ ]<br />

ct,eff<br />

f<br />

c, ε<br />

c, ε<br />

k<br />

z<br />

z<br />

1<br />

n<br />

o<br />

f<br />

ctm<br />

o<br />

J<br />

+ h<br />

ic,o<br />

c<br />

n<br />

io<br />

/ 2<br />

o<br />

(1+<br />

h<br />

J<br />

c<br />

io<br />

/(2<br />

z<br />

o<br />

)<br />

primary effects due to shrinkage<br />

M c,ε<br />

N c,ε<br />

σ cε<br />

sectional normal force of the concrete<br />

slab:<br />

N<br />

N<br />

cr<br />

cr<br />

= M<br />

=<br />

A<br />

cr<br />

c<br />

(f<br />

A<br />

co<br />

ct,eff<br />

zo<br />

+ A<br />

J<br />

1+<br />

h<br />

− σ<br />

c<br />

io<br />

s<br />

c, ε<br />

/(2<br />

)<br />

z<br />

is<br />

+ N<br />

c+<br />

s, ε<br />

( 1+ ρ n )<br />

z<br />

o<br />

)<br />

s<br />

o<br />

+ N<br />

c+<br />

s, ε<br />

N<br />

cr<br />

= A<br />

c<br />

f<br />

ct,eff<br />

(1+ ρ<br />

s<br />

n<br />

0<br />

)<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

1 +<br />

h<br />

c<br />

k c<br />

k c,ε<br />

≈ 0,3<br />

1<br />

/(2<br />

z<br />

o<br />

)<br />

+<br />

N<br />

c+<br />

s, ε<br />

A<br />

c<br />

−<br />

f<br />

A<br />

c<br />

ct,eff<br />

σ<br />

c, ε<br />

( 1+ ρ n )<br />

1+<br />

hc<br />

/(2 zo<br />

)<br />

(1 + ρ n )<br />

s<br />

s<br />

0<br />

o<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

32


Simplified solution for the cracking moment<br />

and the normal force in the concrete slab<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

cracking moment M cr<br />

M c+s<br />

σ c<br />

simplified solution for the normal<br />

force in the concrete slab:<br />

h c<br />

z o<br />

z i,st<br />

N c+s<br />

M cr<br />

N<br />

cr<br />

≈<br />

A<br />

c<br />

f<br />

ctm<br />

k<br />

s<br />

⋅k<br />

⋅k<br />

c<br />

primary effects due to shrinkage<br />

k = 0,8<br />

k s = 0,9<br />

coefficient taking into account the effect of<br />

non-uniform self-equilibrating stresses<br />

coefficient taking into account the slip<br />

effects of shear connection<br />

M c+s,ε<br />

N c+s,ε<br />

σ cε<br />

k<br />

c<br />

=<br />

1+<br />

1<br />

hc<br />

2 z<br />

o<br />

+<br />

0,3<br />

≤1,0<br />

cracking moment<br />

shrinkage<br />

33


Determination of minimum reinforcement<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

M c<br />

M c,ε<br />

A<br />

s<br />

h c<br />

z o<br />

o<br />

N c<br />

M cr<br />

N c,ε<br />

z i,o<br />

cracking<br />

moment<br />

shrinkage<br />

M a,ε<br />

N a,ε<br />

Ac<br />

fct,eff<br />

1<br />

≥ k ks<br />

kc<br />

kc<br />

= + 0,3 ≤ 1, 0<br />

σ<br />

1+<br />

h z<br />

s<br />

c<br />

o<br />

d<br />

s<br />

= d<br />

∗<br />

s<br />

f<br />

ct,eff<br />

f<br />

ct,<br />

f cto = 2,9 N/mm 2<br />

k = 0,8<br />

k s = 0,9<br />

k c<br />

d ∗ s<br />

d s<br />

Influence of non linear residual stresses due to shrinkage and temperature effects<br />

flexibility of shear connection<br />

Influence of distribution of tensile stresses in concrete immediately prior to<br />

cracking<br />

maximum bar diameter<br />

modified bar diameter for other concrete strength classes<br />

σ s stress in reinforcement acc. to Table 1<br />

effective concrete tensile strength<br />

f ct,eff<br />

34


Control of cracking due to direct loading –<br />

Verification by <strong>limit</strong>ing bar spacing or bar diameter<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

A c<br />

fully cracked tension stiffening<br />

N s,2<br />

-z st,s<br />

-M s,2 -M s<br />

ΔN ts<br />

N s<br />

z st<br />

z st,a<br />

a<br />

-M a,2<br />

+ =<br />

ΔN ts<br />

a<br />

-M a<br />

-M Ed<br />

A s<br />

A a<br />

z a<br />

-N a,2 -ΔN ts<br />

-N a<br />

The calculation of stresses is<br />

based on the mean strain in the<br />

concrete slab. The factor β<br />

results from the mean value of<br />

crack spacing. With s rm ≈ 2/3<br />

s r,max results β ≈2/3 ·0,6 = 0,4<br />

stresses in reinforcement<br />

taking into account tension<br />

stiffening for the bending<br />

moment M Ed<br />

of the quasi<br />

permanent combination:<br />

A<br />

ρ<br />

s<br />

s = β =0,4<br />

A<br />

c<br />

σ<br />

σ<br />

s<br />

s<br />

= σ<br />

=<br />

M<br />

α<br />

s,2<br />

J<br />

st<br />

Ed<br />

2<br />

+<br />

z<br />

A<br />

=<br />

A<br />

2<br />

a<br />

Δσ<br />

st,s<br />

J<br />

J<br />

2<br />

a<br />

ts<br />

+<br />

β<br />

f<br />

ρ<br />

ct,eff<br />

s<br />

α<br />

st<br />

The bar diameter or the bar spacing has to be <strong>limit</strong>ed<br />

35


Maximum bar diameters and maximum bar<br />

spacing for high bond bars acc. to EC4<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Table 1: Maximum bar diameter<br />

Table 2: Maximum bar spacing<br />

σ s<br />

[N/mm 2 ]<br />

maximum bar diameter<br />

d ∗ s<br />

for<br />

w k = 0,4 w k = 0,3 w k = 0,2<br />

160 40 32 25<br />

200 32 25 16<br />

240 20 16 12<br />

280 16 12 8<br />

320 12 10 6<br />

360 10 8 5<br />

400 8 6 4<br />

450 6 5 -<br />

σ s<br />

[N/mm 2 ]<br />

160<br />

200<br />

240<br />

280<br />

320<br />

360<br />

maximum bar spacing in [mm]<br />

for<br />

w k = 0,4<br />

300<br />

300<br />

250<br />

200<br />

150<br />

100<br />

w k = 0,3<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

w k = 0,2<br />

200<br />

150<br />

100<br />

50<br />

-<br />

-<br />

36


Direct calculation of crack width w for<br />

composite sections based on EN 1992-2<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

A s<br />

-M s<br />

N s<br />

-M a<br />

σ s,<br />

M Ed<br />

-z st,s<br />

z st<br />

crack width for high bond bars:<br />

σ<br />

α<br />

s<br />

st<br />

=<br />

M<br />

J<br />

A<br />

=<br />

A<br />

Ed<br />

st<br />

st<br />

a<br />

J<br />

J<br />

a<br />

z<br />

st<br />

st,s<br />

+ β<br />

f<br />

ρ<br />

ct,eff<br />

s<br />

c<br />

α<br />

st<br />

A<br />

ρ<br />

s<br />

s = β = 0, 4<br />

A<br />

w = s<br />

ε<br />

s<br />

sm<br />

r,max<br />

− ε<br />

r,max<br />

cm<br />

-N a<br />

( εsm<br />

− εcm)<br />

σs<br />

f<br />

− β<br />

ctm<br />

E E ρ<br />

s<br />

=<br />

s<br />

= 3,4c + 0,34<br />

s<br />

d<br />

ρ<br />

s<br />

s<br />

s<br />

(1+<br />

n<br />

o<br />

ρ<br />

s<br />

)<br />

≥<br />

0,6<br />

σ<br />

E<br />

s<br />

c - concrete cover of reinforcement<br />

37


Stresses in reinforcement in case of bonded<br />

tendons – initial crack formation<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

σ s,1<br />

Δσ p1<br />

A p , d p<br />

A s , d s<br />

Equilibrium at the crack:<br />

σs<br />

As<br />

+ Δσp<br />

Ap<br />

= N=<br />

σ<br />

σ s =σ s1 +Δσ s As<br />

= π ds<br />

τsm<br />

L<br />

s<br />

σ p<br />

Δσp<br />

Ap<br />

= π dp<br />

τpm<br />

L<br />

N<br />

σs<br />

− σs1<br />

δs<br />

= δp<br />

⇒ Les<br />

=<br />

Es<br />

Δσ s<br />

Δσ p<br />

Stresses:<br />

N<br />

L es<br />

σs<br />

=<br />

Δσp<br />

As<br />

+ ξ1<br />

Ap<br />

L ep<br />

τ pm τ sm<br />

τ<br />

σ p =σ po +σ p1 +Δσ p<br />

f<br />

ct,eff<br />

Equilibrium in longitudinal direction:<br />

e,s<br />

ep<br />

Compatibility at the crack:<br />

ξ<br />

1<br />

=<br />

τ<br />

pm<br />

sm<br />

d<br />

d<br />

s<br />

v<br />

Δσ<br />

p<br />

=<br />

A<br />

E<br />

p<br />

A<br />

c<br />

− Δσ<br />

s<br />

ξ<br />

1<br />

+ ξ<br />

(1+<br />

n<br />

p1<br />

With E s ≈E p and σ s1 =Δσ p1 =0 results:<br />

N<br />

1<br />

L<br />

A<br />

ep<br />

p<br />

o<br />

ρ<br />

tot<br />

)<br />

38


Stresses in reinforcement for final crack<br />

formation<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Δσ p2<br />

σ s2<br />

Δσ p2<br />

Δσ p1<br />

σ s1<br />

σ s<br />

A s , d s<br />

A p , d p<br />

σ c<br />

σ c =f ct,eff<br />

x<br />

Equilibrium at the crack:<br />

N − P<br />

Maximum crack spacing:<br />

f<br />

s<br />

ct<br />

δ<br />

s<br />

A<br />

r,max<br />

σ<br />

c<br />

s2<br />

o<br />

= δ<br />

s<br />

=<br />

d<br />

=<br />

2τ<br />

− σ<br />

=σ<br />

p<br />

r,max<br />

=<br />

2<br />

s1<br />

s2<br />

sm<br />

σ<br />

s<br />

s<br />

=<br />

s2<br />

A<br />

[ τ n d π + τ n d π ]<br />

f<br />

(A<br />

sm<br />

ct,eff<br />

s<br />

r,max<br />

s<br />

A<br />

+ ξ<br />

c<br />

2<br />

U<br />

A<br />

− β( σs2<br />

− σs1)<br />

Δσp,2<br />

− β(<br />

Δσp2<br />

− Δσ<br />

=<br />

E<br />

E<br />

s<br />

s<br />

A<br />

Compatibility at the crack:<br />

s<br />

2<br />

+ Δ σ<br />

s<br />

s<br />

p2<br />

p<br />

τ<br />

)<br />

sm<br />

pm<br />

Equilibrium in longitudinal direction:<br />

A<br />

p<br />

σ<br />

p2<br />

p<br />

p<br />

− σ<br />

p1<br />

s<br />

=<br />

r,max<br />

2<br />

p<br />

U<br />

A<br />

p<br />

p<br />

τ<br />

pm<br />

p1<br />

)<br />

s r,max<br />

mean crack spacing: s r,m ≈2/3 s r,max<br />

39


Determination of stresses in composite<br />

sections with bonded tendons<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

A p<br />

A s<br />

-z st,s<br />

σ s,<br />

σ p<br />

M Ed<br />

Stresses σ * s in reinforcement<br />

at the crack location<br />

neglecting different bond<br />

behaviour of reinforcement<br />

and tendons:<br />

z st<br />

Stresses in reinforcement taking into account the<br />

different bond behaviour:<br />

σ<br />

*<br />

s<br />

M<br />

=<br />

J<br />

Ed<br />

st<br />

z<br />

st,s<br />

f<br />

+ β<br />

ρ<br />

ctm<br />

tot<br />

α<br />

st<br />

Ast<br />

Jst<br />

αst<br />

=<br />

β =0, 4<br />

A J<br />

a<br />

a<br />

σ<br />

s<br />

Δσ<br />

= σ<br />

p<br />

*<br />

s<br />

= σ<br />

+ 0,4 f<br />

*<br />

s<br />

ct,eff<br />

− 0,4 f<br />

⎡<br />

⎢<br />

⎢<br />

⎣<br />

A<br />

ct,eff<br />

s<br />

A<br />

+ ξ<br />

c<br />

2<br />

1<br />

A<br />

p<br />

⎡<br />

A<br />

⎢ c<br />

⎢ A +<br />

⎣<br />

s A<br />

p<br />

−<br />

Ac<br />

A + A<br />

−<br />

A<br />

s<br />

s<br />

ξ<br />

2<br />

1<br />

A<br />

+ ξ<br />

p<br />

c<br />

2<br />

1<br />

A<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

p<br />

= σ<br />

*<br />

s<br />

⎤<br />

⎥ = σ<br />

⎥<br />

⎦<br />

+ 0,4 f<br />

*<br />

s<br />

− 0,4 f<br />

ct,eff<br />

ct,eff<br />

⎡ 1<br />

⎢<br />

⎣ρ<br />

eff<br />

⎡ 1<br />

⎢<br />

⎢⎣<br />

ρ<br />

tot<br />

1<br />

−<br />

ρ<br />

tot<br />

ξ<br />

−<br />

ρ<br />

2<br />

1<br />

eff<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎥⎦<br />

ρ<br />

ρ<br />

tot<br />

eff<br />

=<br />

=<br />

A<br />

A<br />

s<br />

A<br />

s<br />

+ A<br />

c<br />

+ ξ<br />

A<br />

2<br />

1<br />

c<br />

p<br />

A<br />

p<br />

40


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Part 4:<br />

Deformations<br />

41


Deflections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Effects of cracking of concrete<br />

L 1<br />

L 2<br />

0,15 L 1 0,15 L 2<br />

E a<br />

J 2<br />

E a<br />

J 1<br />

ΔM<br />

Deflections due to loading applied to the<br />

composite member should be calculated<br />

using elastic analysis taking into account<br />

effects from<br />

- cracking of concrete,<br />

- creep and shrinkage,<br />

- sequence of construction,<br />

Sequence of construction<br />

g c<br />

F steel member<br />

- influence of local yielding of<br />

structural steel at internal supports,<br />

- influence of incomplete interaction.<br />

F<br />

composite member<br />

42


Deformations and pre-cambering<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

δ 1<br />

δ 2<br />

δ 3<br />

δ 4<br />

combination<br />

general quasi -<br />

permanent<br />

risk of damage of adjacent<br />

parts of the structure (e.g.<br />

finish or service work)<br />

quasi –<br />

permanent<br />

(better frequent)<br />

<strong>limit</strong>ation<br />

δ max ≤ L /<br />

δ 1 deflection of the steel girder<br />

250<br />

δ c deflection of the composite<br />

girder<br />

δ w ≤ L / 500 Pre-cambering of the steel<br />

girder:<br />

δ δ<br />

1<br />

p = δ 1 + δ 2 + δ 3 +ψ 2 δ 4<br />

δ p<br />

δ max maximum deflection<br />

δ c δ w<br />

δ w<br />

δ max<br />

effective deflection for finish<br />

and service work<br />

δ 1 – self weight of the structure<br />

δ 2 – loads from finish and service work<br />

δ 3 – creep and shrinkage<br />

δ 4 – variable loads and temperature effects<br />

43


Effects of local yielding on deflections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

For the calculation of deflection of un-propped beams, account may<br />

be taken of the influence of local yielding of structural steel over a<br />

support.<br />

For beams with critical sections in Classes 1 and 2 the effect may be<br />

taken into account by multiplying the bending moment at the support<br />

with an additional reduction factor f 2 and corresponding increases are<br />

made to the bending moments in adjacent spans.<br />

f 2 = 0,5 if f y is reached before the concrete slab has<br />

hardened;<br />

f 2 = 0,7 if f y is reached after concrete has hardened.<br />

This applies for the determination of the maximum deflection but not<br />

for pre-camber.<br />

44


More accurate method for the determination of<br />

the effects of local yielding on deflections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

L 1 L 2<br />

l cr l cr<br />

+<br />

E a J 1<br />

z 2 -<br />

- M el,Rk<br />

σ a =f yk f yk<br />

E a J 2<br />

(EJ) eff<br />

E a J eff<br />

ΔM<br />

E a J eff<br />

M pl,Rk<br />

E a J 2<br />

M el,Rk<br />

M pl,Rk<br />

M Ed<br />

45


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Effects of incomplete interaction on deformations Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

P Rd<br />

P<br />

The effects of incomplete interaction may be ignored<br />

provided that:<br />

• The design of the shear connection is in accordance<br />

with clause 6.6 of Eurocode 4,<br />

• either not less shear connectors are used than half<br />

the number for full shear connection, or the forces<br />

resulting from an elastic behaviour and which act on<br />

the shear connectors in the serviceability <strong>limit</strong> <strong>state</strong><br />

do not exceed P Rd<br />

and<br />

• in case of a ribbed slab with ribs transverse to the<br />

beam, the height of the ribs does not exceed 80 mm.<br />

c D<br />

P<br />

s<br />

P<br />

s<br />

s u<br />

46


Differential equations in case of incomplete<br />

interaction<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

a<br />

z a<br />

(w)<br />

E c<br />

, A c<br />

, J c<br />

v L<br />

a c N c<br />

z c<br />

v L<br />

a a<br />

E a<br />

, A a<br />

, J a<br />

M c<br />

M a<br />

N a<br />

V a<br />

V c<br />

V c<br />

+dV c<br />

M c<br />

+ dM c<br />

N c<br />

+dN c<br />

M a<br />

+ dM a<br />

N a<br />

+dN a<br />

u<br />

u<br />

,<br />

′<br />

c u c<br />

,<br />

′<br />

a u a<br />

= ε<br />

= ε<br />

a<br />

c<br />

Slip:<br />

sv = ua<br />

−uc<br />

+ w′<br />

a<br />

x<br />

Ec<br />

Ac<br />

Ea<br />

Aa<br />

(Ec<br />

Jc<br />

c<br />

V a<br />

+dV a<br />

dx<br />

u′′<br />

c + cs<br />

(ua<br />

−uc<br />

+ w′<br />

a) = 0<br />

u′′<br />

c − cs<br />

(ua<br />

−uc<br />

+ w′<br />

a) = 0<br />

+ Ea<br />

Ja<br />

) w′′′′<br />

− cs<br />

a(u′<br />

a − u′<br />

c + w′′<br />

a) = q<br />

N = E A u′<br />

a<br />

c<br />

a<br />

c<br />

N = E A u′<br />

a<br />

a<br />

c<br />

Mc = − Ec<br />

Jc<br />

w ′′<br />

Ma = −Ea<br />

Ja<br />

w ′′<br />

V<br />

c<br />

= −E<br />

c<br />

J<br />

c<br />

Va = −EaJa<br />

w′′<br />

′<br />

w′′′<br />

≈ 0<br />

47


Deflection in case of incomplete interaction for<br />

single span beams<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

F<br />

concrete section<br />

composite section<br />

A co<br />

=A c<br />

/n o<br />

, J co<br />

= J c<br />

/n o<br />

n o<br />

=E a<br />

/E c<br />

w<br />

L<br />

w<br />

=<br />

3<br />

F L<br />

48 Ea<br />

Ii,o<br />

⎡<br />

⎢<br />

⎢1<br />

+<br />

⎢<br />

⎣<br />

12<br />

α λ<br />

2<br />

−<br />

48<br />

α λ<br />

3<br />

q<br />

λ ⎤<br />

sinh<br />

2<br />

( )<br />

2 ⎥<br />

sinh( λ)<br />

⎥<br />

⎥<br />

⎦<br />

steel section<br />

Aa , J a<br />

A io<br />

, J io<br />

2<br />

λ<br />

=<br />

1+ α<br />

α β<br />

L<br />

β<br />

=<br />

Ea<br />

Ac,o<br />

Ai,o<br />

c<br />

s<br />

Aa<br />

L²<br />

w<br />

=<br />

5<br />

384<br />

q<br />

E<br />

a<br />

L<br />

J<br />

4<br />

i,o<br />

⎡<br />

⎢<br />

⎢1<br />

+<br />

⎢<br />

⎣<br />

48<br />

5<br />

α<br />

1<br />

λ<br />

2<br />

−<br />

384<br />

5<br />

α<br />

1<br />

λ<br />

4<br />

λ ⎤<br />

cosh( ) − 1<br />

2 ⎥<br />

λ<br />

⎥<br />

cosh( ) ⎥<br />

2 ⎦<br />

α<br />

=<br />

Ja<br />

1<br />

Ji,o<br />

+ Jc,o<br />

− 1<br />

48


Mean values of stiffness of headed studs<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

c s<br />

spring constant per stud:<br />

spring constant of the shear<br />

connection:<br />

s<br />

C u<br />

D = P<br />

Rd<br />

CD<br />

n<br />

c s =<br />

e<br />

L<br />

t<br />

P<br />

type of shear connection<br />

C D<br />

[kN/ cm]<br />

P Rd<br />

e L<br />

n t<br />

=2<br />

P<br />

P<br />

headed stud ∅ 19mm<br />

in solid slabs<br />

headed stud ∅ 22mm<br />

in solid slabs<br />

2500<br />

3000<br />

s u<br />

c D<br />

s<br />

s<br />

headed studs ∅ 25mm<br />

in solid slab<br />

headed stud ∅ 19mm<br />

with Holorib-sheeting and<br />

one stud per rib<br />

3500<br />

1250<br />

headed stud ∅ 22mm<br />

with Holorib-sheeting and<br />

one stud per rib<br />

1500<br />

49


Simplified solution for the calculation of<br />

deflections in case of incomplete interaction<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

q<br />

( ξ) = q sinπξ<br />

The influence of the flexibility of the shear connection is<br />

taken into account by a reduced value for the modular<br />

ratio.<br />

x<br />

ξ =<br />

L<br />

L<br />

w<br />

o<br />

L<br />

= q<br />

π<br />

4<br />

4<br />

E<br />

cm<br />

J<br />

c<br />

+ E<br />

a<br />

J<br />

a<br />

+<br />

1<br />

β E<br />

E<br />

o<br />

a<br />

A<br />

cm<br />

a<br />

A<br />

+β<br />

c<br />

o<br />

E<br />

E<br />

a<br />

A<br />

cm<br />

a<br />

A<br />

c<br />

a<br />

2<br />

L<br />

= q<br />

π<br />

4<br />

4<br />

E<br />

a<br />

1<br />

J<br />

io,eff<br />

z c<br />

E c<br />

, A c<br />

, J c<br />

E a<br />

, A a<br />

, J a<br />

a<br />

z a<br />

ε c<br />

ε a<br />

M c<br />

Ac,eff<br />

Aa<br />

2<br />

Jio,eff<br />

= Jc,o<br />

+ Ja<br />

+<br />

a<br />

N c Ac,eff<br />

+ Aa<br />

Ac<br />

A c,eff =<br />

M a<br />

no,eff<br />

N a<br />

effective modular ratio for the<br />

concrete slab<br />

n<br />

o,eff<br />

= n<br />

o<br />

(1+<br />

β<br />

s<br />

)<br />

β<br />

s<br />

π<br />

=<br />

2<br />

E<br />

L<br />

cm<br />

2<br />

cs<br />

A<br />

c<br />

50


Comparison of the exact method with the<br />

simplified method<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

L<br />

q<br />

1,5<br />

1,4<br />

1,3<br />

w/w c<br />

η=0,4<br />

c D = 1000 KN/cm<br />

99<br />

51<br />

450 mm<br />

w o -<br />

η<br />

w<br />

b eff<br />

E cm<br />

= 3350 KN/cm²<br />

deflection in case of<br />

neglecting effects from slip<br />

of shear connection<br />

degree of shear connection<br />

1,2<br />

1,1<br />

L [m]<br />

1,0<br />

5,0 10,0 15,0 20,0<br />

1,25<br />

1,2<br />

1,15<br />

1,1<br />

w/w c<br />

η=0,8<br />

η=0,4<br />

1,05 η=0,8<br />

exact solution<br />

simplified solution with n o,eff<br />

c D = 2000 KN/cm<br />

L [m]<br />

1,0<br />

5,0 10,0 15,0 20,0<br />

51


Deflection in case of incomplete interactioncomparison<br />

with test results<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

1875 1875<br />

F<br />

load case 1<br />

load case 2<br />

F<br />

F/2 F/2<br />

200<br />

F [kN]<br />

Deflection at<br />

midspan<br />

1875 3750<br />

1875<br />

7500<br />

150<br />

load case 2<br />

1500<br />

50<br />

100<br />

IPE 270<br />

270 175<br />

445<br />

50<br />

0<br />

load case 1<br />

20 40 60<br />

δ<br />

[mm]<br />

52


Deflection in case of incomplete interaction-<br />

Comparison with test results<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

F<br />

F<br />

160 push-out test<br />

s<br />

780<br />

120<br />

80<br />

125<br />

50<br />

second moment<br />

of area<br />

cm 4<br />

40<br />

s[mm]<br />

10 20 30 40<br />

Load case 1<br />

F= 60 kN<br />

Load case 2<br />

F=145 kN<br />

Deflection at midspan in mm<br />

Test - 11,0 (100%) 20,0 (100 %)<br />

Theoretical value, neglecting flexibility<br />

of shear connection<br />

Theoretical value, taking into account<br />

flexibility of shear connection<br />

J io = 32.387,0 7,8 (71%) 12,9 (65%)<br />

J io,eff = 21.486,0 11,7 (106%) 19,4 (97%)<br />

53


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Part 5:<br />

Limitation of stresses<br />

54


Limitation of Stresses<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

σ c<br />

- +<br />

σ a<br />

+<br />

σ s<br />

M Ed<br />

M Ed<br />

Stress <strong>limit</strong>ation is not required for beams if<br />

in the ultimate <strong>limit</strong> <strong>state</strong>,<br />

- no + verification of fatigue is required and<br />

- no prestressing by tendons and /or<br />

- - no prestressing by controlled imposed<br />

deformations is provided.<br />

σ a<br />

-<br />

combination stress <strong>limit</strong> recommended<br />

values k i<br />

structural steel characteristic σ Ed<br />

≤ k a<br />

f yk<br />

k a<br />

=1,00<br />

headed studs characteristic P Ed<br />

≤ k s<br />

P Rd<br />

k s<br />

=0,75<br />

reinforcement characteristic σ Ed<br />

≤ k s<br />

f sk<br />

k s<br />

=0,80<br />

concrete characteristic σ Ed<br />

≤ k c<br />

f ck<br />

k c<br />

= 0,60<br />

55


Local effects of concentrated longitudinal<br />

shear forces<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

composite section<br />

steel section<br />

g c<br />

b c<br />

b eff<br />

x<br />

y<br />

z io<br />

z<br />

A c,eff<br />

M Ed<br />

(x)<br />

V Ed<br />

(x)<br />

+<br />

M Ed<br />

V Ed<br />

+<br />

-<br />

Concentrated longitudinal shear force at<br />

sudden change of cross-section<br />

L v =b eff<br />

2 MEd<br />

A<br />

v L,Ed,max =<br />

E / E J<br />

a<br />

c<br />

c,eff<br />

io<br />

b<br />

z<br />

eff<br />

io<br />

longitudinal shear forces<br />

N c<br />

v L,Ed,max<br />

+<br />

-<br />

56


Local effects of concentrated longitudinal<br />

shear forces<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

system<br />

g c,d<br />

FE-Model<br />

L = 40 m<br />

cross-section<br />

b c<br />

=10 m<br />

14x2000<br />

z<br />

500x20<br />

800x60<br />

300<br />

y<br />

P<br />

shear connectors<br />

C D<br />

= 3000 kN/cm<br />

per stud<br />

δ<br />

57


Ultimate <strong>limit</strong> <strong>state</strong> - longitudinal shear forces<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

x<br />

L = 40 m<br />

ULS<br />

P<br />

FE-Model:<br />

c D<br />

s<br />

FE-Model<br />

P<br />

s<br />

c D<br />

EN 1994-2<br />

x [cm]<br />

58


<strong>Serviceability</strong> <strong>limit</strong> <strong>state</strong> - longitudinal<br />

shear forces<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

v L,Ed<br />

[kN/m]<br />

500<br />

SLS<br />

EN 1994-2<br />

0<br />

x [cm]<br />

200 400 600 800 1000 1200 1400 1600 1800 2000<br />

-500<br />

-1000<br />

P FE-Model:<br />

-1500<br />

c D<br />

s<br />

-2000<br />

-2500<br />

FE-Model<br />

-3000<br />

-3500<br />

-4000<br />

x<br />

L = 40 m<br />

P<br />

c D<br />

s<br />

59


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Part 6:<br />

Vibrations<br />

60


Vibration- General<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

EN 1994-1-1:<br />

EN 1990, A1.4.4:<br />

The dynamic properties of floor beams should satisfy<br />

the criteria in EN 1990,A.1.4.4<br />

To achieve satisfactory vibration behaviour of<br />

buildings and their structural members under<br />

serviceability conditions, the following aspects,<br />

among others, should be considered:<br />

the comfort of the user<br />

the functioning of the structure or its structural<br />

members<br />

Other aspects should be considered for each project<br />

and agreed with the client<br />

61


Vibration - General<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

EN 1990-A1.4.4:<br />

For serviceability <strong>limit</strong> <strong>state</strong> of a structure or a structural member not to<br />

be exceeded when subjected to vibrations, the natural frequency of<br />

vibrations of the structure or structural member should be kept<br />

above appropriate values which depend upon the function of the<br />

building and the source of the vibration, and agreed with the client<br />

and/or the relevant authority.<br />

Possible sources of vibration that should be considered include walking,<br />

synchronised movements of people, machinery, ground borne vibrations<br />

from traffic and wind actions. These, and other sources, should be<br />

specified for each project and agreed with the client.<br />

Note in EN 1990-A.1.4.4: Further information is given in ISO 10137.<br />

62


Vibration – Example vertical vibration due<br />

to walking persons<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Span length<br />

F(x,t)<br />

The pacing rate f s<br />

dominates the dynamic<br />

effects and the resulting dynamic loads. The<br />

speed of pedestrian propagation v s<br />

is a<br />

function of the pacing rate f s<br />

and the stride<br />

length l s<br />

.<br />

F(x,t)<br />

time t<br />

l s<br />

x k<br />

pacing<br />

rate<br />

f s<br />

[Hz]<br />

forward<br />

speed<br />

v s<br />

= f s<br />

l s<br />

[m/s]<br />

stride<br />

length<br />

l s<br />

[m]<br />

slow walk ∼1,7 1,1 0,6<br />

t k<br />

normal walk ∼2,0 1,5 0,75<br />

fast walk ∼2,3 2,2 1,00<br />

l s<br />

x k<br />

t s<br />

x<br />

slow running<br />

(jog)<br />

fast running<br />

(sprint)<br />

∼2,5 3,3 1,30<br />

> 3,2 5,5 1,75<br />

63


Vibration –vertical vibrations due to<br />

walking of one person<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

F i<br />

(t)<br />

right foot<br />

left foot<br />

During walking, one of the feet is always in<br />

contact with the ground. The load-time function<br />

can be described by a Fourier series taking into<br />

account the 1st, 2nd and 3rd harmonic.<br />

F(t)<br />

time t<br />

⎡ 3<br />

⎤<br />

F(t) = Go<br />

⎢1<br />

+ ∑ αn<br />

sin ( 2 n π fs<br />

t − Φn<br />

) ⎥<br />

⎢⎣<br />

n=<br />

1<br />

⎥ ⎦<br />

both feet<br />

Fouriercoefficients<br />

and α 2<br />

α 1<br />

=0,4-0,5 Φ 1<br />

=0<br />

=0,1-0,25 Φ 2<br />

=π/2<br />

phase angles:<br />

α 3<br />

=0,1-0,15 Φ 3<br />

=π/2<br />

t s<br />

=1/f s<br />

G o<br />

weight of the person (800 N)<br />

1. step 2. step 3. step α n<br />

coefficient for the load component of n-th harmonic<br />

n number of the n-th harmonic<br />

f s<br />

pacing rate<br />

Φ n<br />

phase angle oh the n-th harmonic<br />

64


Vibration – vertical vibrations due to walking<br />

of persons<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

c<br />

F(t)<br />

M gen<br />

w(t)<br />

δ<br />

F n<br />

(t)<br />

m<br />

w(x k<br />

,t)<br />

L/2<br />

k a<br />

F n<br />

(t)<br />

x k<br />

w(t)<br />

L<br />

acceleration<br />

F<br />

w(t) = ka<br />

M<br />

maximum acceleration a, vertical deflection w and<br />

maximum velocity v<br />

a<br />

w<br />

F<br />

(<br />

f L / )<br />

n π<br />

max =<br />

−<br />

E<br />

δ v<br />

a<br />

s<br />

max = ka<br />

1−<br />

e<br />

(2 π f<br />

Mgen<br />

δ<br />

a<br />

vmax<br />

=<br />

2 π f<br />

f E<br />

F n<br />

δ<br />

v s<br />

k a<br />

M gen<br />

n<br />

gen<br />

π<br />

δ<br />

sin (2 π f<br />

E<br />

t)<br />

(<br />

−δ f t<br />

)<br />

1−<br />

e<br />

natural frequency<br />

load component of n-th harmonic<br />

logarithmic damping decrement<br />

forward speed of the person<br />

factor taking into account the different<br />

positions x k<br />

during walking along the beam<br />

generated mass of the system<br />

(single span beam: M gen<br />

=0,5 m L)<br />

E<br />

t =<br />

L<br />

v s<br />

E<br />

E<br />

)<br />

2<br />

65


Logarithmic damping decrement<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

results of measurements in buildings<br />

Damping<br />

ratioξ [%]<br />

δ = 2<br />

π<br />

ξ<br />

with finishes<br />

without finishes<br />

3 6 9 12<br />

f E<br />

[Hz]<br />

For the determination of the maximum<br />

acceleration the damping coefficient ζ or<br />

the logarithmic damping decrement δ<br />

must be determined. Values for composite<br />

beams are given in the literature. The<br />

logarithmic damping decrement is a<br />

function of the used materials, the<br />

damping of joints and bearings or support<br />

conditions and the natural frequency.<br />

For typical composite floor beams in<br />

buildings with natural frequencies<br />

between 3 and 6 Hz the following values<br />

for the logarithmic damping decrement<br />

can be assumed:<br />

δ=0,10<br />

floor beams without not loadbearing<br />

inner walls<br />

δ=0,15 floor beams with not loadbearing<br />

inner walls<br />

66


Vibration –vertical vibrations due to walking of<br />

persons<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

3<br />

∑<br />

F(t) = Go<br />

+ Fn<br />

sin ( 2 n π fs<br />

t − Φn<br />

)<br />

n=<br />

1<br />

F(t)/G o<br />

0,4<br />

0,2<br />

0,1<br />

f s<br />

=1,5-2,5 Hz<br />

2f s<br />

=3,0-5,0 Hz<br />

3f s<br />

=4,5-7,5 Hz<br />

2,0 4,0 6,0 8,0<br />

People in office buildings sitting or standing many<br />

hours are very sensitive to building vibrations.<br />

Therefore the effects of the second and third<br />

harmonic of dynamic load-time function should be<br />

considered, especially for structure with small<br />

mass and damping. In case of walking the pacing<br />

rate is in the rage of 1.7 to 2.4 Hz. The verification<br />

can be performed by frequency tuning or by<br />

<strong>limit</strong>ing the maximum acceleration.<br />

In case of frequency tuning for composite<br />

structures in office buildings the natural frequency<br />

normally should exceed 7,5 Hz if the first, second<br />

and third harmonic of the dynamic load-time<br />

function can cause significant acceleration.<br />

Otherwise the maximum acceleration or<br />

velocity should be determined and <strong>limit</strong>ed to<br />

acceptable values in accordance with<br />

ISO 10137<br />

67


Limitation of acceleration-recommended<br />

values acc. to ISO 10137<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

acceleration [m/s 2 ]<br />

0,1<br />

0,05<br />

0,01<br />

0,005<br />

natural frequency of<br />

typical composite<br />

beams<br />

basic curve a o<br />

Multiplying factors K a<br />

for the basic curve<br />

Residential (flats, hospitals) K a<br />

=1,0<br />

Quiet office K a<br />

=2-4<br />

General office (e. g. schools) K a<br />

=4<br />

a ≤<br />

a o K a<br />

1 5 10 50 100<br />

frequency [Hz]<br />

68


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Thank you very<br />

much for your kind<br />

attention<br />

69


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

Composite Structures<br />

University of Wuppertal-Germany<br />

Thank you very<br />

much for your kind<br />

attention<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!