29.11.2014 Views

WATER & SOIL - These are not the droids you are looking for.

WATER & SOIL - These are not the droids you are looking for.

WATER & SOIL - These are not the droids you are looking for.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>WATER</strong> & <strong>SOIL</strong><br />

TECHNICAL PUBLICATION<br />

No. 20<br />

Regional Flood Estimation<br />

IN<br />

New Zealand<br />

Water & soil technical publication no. 20 (1982)<br />

,?,.t' :'; ISSN 0110-4144


<strong>WATER</strong> & <strong>SOIL</strong> TECHNICAL PUBLICATION NO. 20<br />

iï<br />

Regional Flood Estimation<br />

in New Zealand<br />

"$'<br />

M.E. BEABLE & A.l. McKERCHAR<br />

Head Office<br />

Water and Soil Science Centre<br />

wãiãtã"d Soil Division Water and Soil Division<br />

MWD<br />

MWD<br />

Christchurch<br />

Wellington<br />

WELLINGTON 1982<br />

Water & soil technical publication no. 20 (1982)


Regional flood est¡mat¡on in New Zealand<br />

M.E. BEABLE & A.l. McKERCHAR<br />

Head Office<br />

Water and Soil Science Centre<br />

Water and Soil Division Water and Soil Division<br />

MWD<br />

MWD<br />

Ìùr'ellington<br />

Christchurch<br />

Water & Soil Technical publication No. 20. t9g2. t32p. ISSN Olt}_4lu<br />

AbsÉract<br />

eastern and western parts of <strong>the</strong> British Isles.<br />

National Llbrary of New Zealed<br />

Cataloguing-in-E ublication data<br />

BEÀBLE, M. E. (Mlchael Eduard), I94Z-<br />

RegionêL flood estj-nation / M.E.<br />

Beabl€ r À-I. McKerchâr. - útellington,<br />

N.Z. : úùater ðd Soll Dlvision Ministry<br />

of Works ed DevoloE[ent <strong>for</strong> <strong>the</strong><br />

Nåtlonal Watêr md SoiI Conservâti,on<br />

oEganisatLon. f992. - I v. - (gtater E<br />

soil technical publícatlon, ISSN OIIO-<br />

4144 ; no. 20)<br />

5s1.4890993I<br />

1. Flæd <strong>for</strong>ecaating. I. McK€lchar, À. I.<br />

Allstalr lan), 1945- . Ir. Tltlê.<br />

III. Series.<br />

O Crown copyrighf 19t2<br />

Published <strong>for</strong> <strong>the</strong> National water and Soil conservation organisation<br />

by <strong>the</strong> vy'ater and soil Division, Ministry of works and Devãlop¡nent,<br />

P.O. Box lz-0/l, tr)Vellington, New Zealand<br />

Water & soil technical publication no. 20 (1982)


I<br />

1.1<br />

1.2<br />

1.3<br />

Contents<br />

¡ntroduct¡on<br />

PageT<br />

Introduction 7<br />

Return period, risk and design life 7<br />

Methods <strong>for</strong> estimating design floods 7<br />

1.3.1 Empirical methods 8<br />

1.3.2 Unit hydrograph methods 8<br />

1.3.3 Simulation methods 8<br />

1.3.4 Regional flood frequency methods 9<br />

2 Gollection of data<br />

2.1 Climate of New Zealand<br />

2.2 Selection of catchments<br />

' 2.3 Sources of data<br />

2.4 Qualityofdata<br />

2.5 Historicalin<strong>for</strong>mation<br />

poge ll ll<br />

ll<br />

ll<br />

ll<br />

ll<br />

3 Regionalflood frequency analysis page 13<br />

3.1 Flood frequency method 13<br />

3.1.1 General 13<br />

3.1.2 Terminology 13<br />

3.1.3 General extreme value distribution 15<br />

3.1.4 Sampling proPerties 16<br />

3.1.5 Types of samPle 17<br />

3.1.6 Plotting 17<br />

3.1.7 Computer Programs<br />

18<br />

3.2 Flood frequencY data l8<br />

3.2.1 Data collection 18<br />

3.2.2 Minimum record length and outliers 19<br />

3.2.3 Lake outflows 19<br />

3.3 Flood frequency regions 19<br />

3.3.1 Regional boundaries 19<br />

3.3.2 Development of regional flood<br />

frequencycurves 24<br />

3.3.3 Bay of PlentY region 37<br />

3.3.4 Final regional curves 39<br />

3.3.5 Consistent regions 39<br />

3.3.6 Sub-regions 39<br />

3.3.7 Generalised flood frequency curves 42<br />

3.4 Flood frequencyaccuracy 4<br />

3.4.1 Accuracy of flood frequency ratio<br />

Qr/Q<br />

M<br />

3.4.2 Datalimitations 48<br />

3.4.3 Definition of flood frequency regional<br />

boundaries 48<br />

3.4.4 HomogeneitYtest 49<br />

3.5 Flood frequencY discussion 49<br />

3.5.1 Regional differences 49<br />

3.5.2 Comparison with <strong>the</strong> British Isles 50<br />

3.5.3 Variation within a region 50<br />

3.5.4 Secular climatic variation 50<br />

3.5.5 Extension method 52<br />

3.5.6 Catchment size 52<br />

3.6 Summary 52<br />

4 Estimat¡on of mean annualflood puge 53<br />

4.1 Introduction 53<br />

4.2 Proposed method 53<br />

4.3 Recôrds used 53<br />

4.4 Collection of characteristics 53<br />

4.5 Analysis of South Island data<br />

4.5.1 Preliminary examination of data<br />

4.5.2 Development of trial<br />

regional estimators<br />

4.5.3 Examination of residuals<br />

4.5.4 Finarl equations <strong>for</strong> South Island<br />

4.6 Analysis of North Island data<br />

4.6.1 Preliminary analysis of data<br />

4.6.2 Development of trial<br />

regi,cnal estimators<br />

4.6.3 Final equations <strong>for</strong> North Island<br />

4.7 Discussion of results<br />

4.E Comparison with o<strong>the</strong>r results<br />

4.9 Estimation of coefficient of variation<br />

4.10 Accuracy crf equations<br />

4.11 Summary<br />

5 Application<br />

5.1 Introduction<br />

5.2 Applicability<br />

5.3 Design straJegy<br />

5.3.1 General<br />

5.3.3 Estimation of <strong>the</strong> flood peak <strong>for</strong> a return<br />

79<br />

79<br />

Nelson <strong>are</strong>a<br />

D Revised 1224 estimates<br />

E Comparison of method with TM61<br />

F Flood frequency analysis <strong>for</strong> Otago<br />

and Southland<br />

F.1 Introduction<br />

F.2 ' Data collection<br />

F.3 Analysis and results<br />

F.4 Conclusions<br />

ReferenceS<br />

58<br />

58<br />

58<br />

63<br />

& 66<br />

6<br />

69<br />

7t<br />

7t<br />

72<br />

72<br />

76<br />

poge77<br />

77<br />

77<br />

77<br />

77<br />

5.3.2 Estimation of <strong>the</strong> mean annual flood (Q)<br />

77<br />

period T (Qr)<br />

5.4 Examples<br />

6 Summary<br />

References<br />

page83<br />

Appendices<br />

A Tests w¡th frequency distdbutions poge87<br />

4.1 Introduction 87<br />

A.2 Gamma distribution 87<br />

4.3 Methods used 87<br />

4.4 Evaluation of <strong>the</strong> frequency<br />

analysis methods 88<br />

4.4.1 General 88<br />

4.4.2 Evaluation criteria and method 88<br />

4.4.3 First test 89<br />

4.4.4 Second test 90<br />

4.4.5 Conclusions 9l<br />

References 92<br />

B Summary of <strong>the</strong> flood peak data used in <strong>the</strong><br />

regionalflood frequency analysis 93<br />

C Summary of <strong>the</strong> new flood peak data in <strong>the</strong><br />

85<br />

r06<br />

107<br />

t22<br />

123<br />

t23<br />

t23<br />

126<br />

126<br />

t26<br />

Water & soil technical publication no. 20 (1982)


Tables<br />

1.1 Risk ofexceedence <strong>for</strong> specified L and T pageT characteristics<br />

ó4<br />

4.E Stepwise regressions <strong>for</strong> all <strong>the</strong> North Island data 67<br />

l6 4.9 Stepwise regressions <strong>for</strong> first trial North lsland<br />

22 regions 67<br />

4.10 Stepwise regressions <strong>for</strong> final North Island regions 69<br />

4.ll Comparable equations <strong>for</strong> o<strong>the</strong>r countries 72<br />

4.12 Prediction errors and equivalent lengths of record 75<br />

5.1 Ranges of catchment <strong>are</strong>as used to derive regional<br />

flood frequency curves and mean annual flood<br />

equations 77<br />

3.1 The relationship between y and T values <strong>for</strong> <strong>the</strong><br />

EVI distribution<br />

Flow stations used<br />

3.2<br />

3.3<br />

3.4<br />

3.5<br />

3.6<br />

3.7<br />

3.8<br />

Calculations <strong>for</strong> extending <strong>the</strong> set of average values<br />

<strong>for</strong> <strong>the</strong> Bay of Plenty region 37<br />

Summary of <strong>the</strong> regional curve characteristics 39<br />

Summary of flow stations in <strong>the</strong> Nelson <strong>are</strong>a 42<br />

Calculations <strong>for</strong> extending <strong>the</strong> sets of average values<br />

<strong>for</strong> <strong>the</strong> generalised curves 42<br />

Summary of <strong>the</strong> cha¡acteristics of <strong>the</strong><br />

generalised curves 44<br />

The regional regression equations <strong>for</strong><br />

estimating Cp 47<br />

3.9 The grouping and <strong>the</strong> group equations <strong>for</strong> estimating<br />

Cp 48<br />

3.10 The CF equations derived <strong>for</strong> <strong>the</strong><br />

generalised curves<br />

48<br />

4.1<br />

54<br />

4.2<br />

56<br />

4.3<br />

l+q<br />

¡1.5<br />

4.6<br />

4,7<br />

South Island catchment characteristics<br />

North Island catchment characteristics<br />

Correlation matrix <strong>for</strong> logs of <strong>the</strong> South Island<br />

characteristics<br />

Stepwise regressions <strong>for</strong> all <strong>the</strong> South Island data<br />

Stepwise regressions <strong>for</strong> <strong>the</strong> South Island regions<br />

Final equations <strong>for</strong> <strong>the</strong> South Island regionJ<br />

Correlation matrix <strong>for</strong> logs of <strong>the</strong> North Island<br />

58<br />

6l<br />

63<br />

g<br />

5.2 Summa¡y of example results using <strong>the</strong> Regional<br />

Flood Estimation method<br />

4.1 Details of <strong>the</strong> flow stations used in <strong>the</strong> first<br />

evaluation test<br />

^.2 Summary of <strong>the</strong> per<strong>for</strong>ma.nce of <strong>the</strong> methods<br />

in <strong>the</strong> first test<br />

4.3 Details of <strong>the</strong> flow stations used in <strong>the</strong> second<br />

evaluation test 90<br />

^.4 Summary of <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> methods in<br />

<strong>the</strong> second test 90<br />

E.1<br />

F.1<br />

F.2<br />

F.3<br />

Comparison of Q.¡ estimates with TM6l estimates<br />

(Qf) and regional flood estimation estimates 122<br />

List of catchments<br />

123<br />

New flood peak data<br />

lu<br />

Co-ordinates from regiona-l frequency curves 126<br />

gz<br />

g9<br />

g9<br />

2.1 Number of water level recorder stations in New<br />

Zealand and time distribution of water level data<br />

page 12<br />

3.1 pdf (part a) and <strong>the</strong> Of (part U)<br />

ution 13<br />

3.2 Fig. 3.1 as a function of its<br />

4<br />

Figures<br />

4.2<br />

4.3<br />

4.4<br />

4.5<br />

4.6<br />

4.7<br />

4.E<br />

4.9<br />

4.t0<br />

4.tl<br />

4.12<br />

5.1<br />

5.2<br />

F.1<br />

F.2<br />

F.3<br />

F.4<br />

F.5<br />

F.6<br />

F.7<br />

F.E<br />

F.9<br />

F.10<br />

!.ocation of <strong>the</strong> North Island catchments 57<br />

Q vs A$.EA, South Island catchments Sg<br />

Distribution of residuals from Equation 4.3 û<br />

Plot of errors (log Q - O.SZ log AREA) vs log<br />

MARAIN <strong>for</strong>Easr Coast Region<br />

Logarithmic residual errors <strong>for</strong> trial South lsland<br />

regional equations 62<br />

Logarithmic residual errors <strong>for</strong> fïnal South Island<br />

legional equations<br />

ó5<br />

Q vs AREA, North Island catchments 6<br />

Trial regions <strong>for</strong> <strong>the</strong> North Island<br />

6g<br />

Final regions <strong>for</strong> <strong>the</strong> North Island 70<br />

Distribution of Cy of annual maxima <strong>for</strong> <strong>the</strong><br />

South Island stations 73<br />

Distribution of Cy of annual maxima <strong>for</strong> <strong>the</strong><br />

North Island stations 74<br />

Flow chart of <strong>the</strong> design strategy using <strong>the</strong> Regional<br />

Flood Estimation method<br />

Water & soil technical publication no. 20 (1982)<br />

Location of <strong>the</strong> Motu catchment above Houpoto g0<br />

Location of catchments 127<br />

Plot of normalised flood frequency data <strong>for</strong> lake<br />

inflows and Shotover River superimposed on <strong>the</strong><br />

West Coast data given in Figure 3.13 l2g<br />

Plot of normalised flood frequency data <strong>for</strong> <strong>the</strong><br />

Pomahaka River and <strong>the</strong> Southland Rivers l}g<br />

Plot of normalised flood frequency data <strong>for</strong> East<br />

Otago rivers superimposed on <strong>the</strong> South Canterbury<br />

datagiven in Figure 3.15<br />

l2g<br />

Average points from Figures F.2, F.3 and F.4<br />

Regions inferred from plots of flood<br />

6l<br />

7g<br />

l2g<br />

frequencydata 130<br />

Frequency analysis of annual maxima derived <strong>for</strong><br />

Clutha river tributaries and <strong>the</strong> lakes, Manuherikia<br />

and Waiau river tributaries. Regional frequency<br />

curves ¿ìre also shown<br />

l3l<br />

Hydrographs of Shotover, Cleddau and Lake<br />

Wakatipu inflow, 197l-1979<br />

l3l<br />

Hydrographs of two stations in <strong>the</strong> Southland<br />

region, 197l-1980<br />

ßz<br />

Hydrographs of three Otago stations, l97l-19g0 132


a<br />

A<br />

â¡, âz<br />

b', bt<br />

c<br />

C¡<br />

Cp<br />

C¡<br />

Cy<br />

Cvj<br />

cs<br />

df<br />

EV<br />

EVI<br />

EV2<br />

EV3<br />

E()<br />

F()<br />

f()<br />

GEV<br />

i<br />

J<br />

K<br />

k<br />

k<br />

L<br />

LP3<br />

M<br />

m<br />

fn<br />

n¡<br />

N<br />

Nc<br />

NU<br />

P()<br />

pdf<br />

Pt<br />

a<br />

Qi<br />

Qr<br />

a<br />

Q..,<br />

Qrn"*<br />

Qmed<br />

Qous<br />

r<br />

R<br />

se<br />

S<br />

S¡<br />

t<br />

T<br />

u<br />

var( )<br />

x<br />

Xa<br />

i<br />

v<br />

YN<br />

a<br />

lL<br />

I<br />

02<br />

Notation<br />

Constant of regression equation<br />

Catchment <strong>are</strong>a (km':)<br />

Constants of regression<br />

Exponents of regression equation<br />

Constant in a standard error equation<br />

3::ü:i:Tl :ÎiiÏ"Ià" or estim<strong>are</strong> or er/Q rrom a curve ror given r<br />

Coefficient of variation of prediction of Q<br />

Coefficient of variation of regression estimate of Q<br />

Coefficient of variation of annual maxima flood series<br />

Coefficient of variation of annual maxima at jth station<br />

Sample coefficient of skew<br />

Distribution function<br />

Extreme value<br />

Extreme value tYPe I distribution<br />

Extreme value type 2 distribution<br />

Extreme value tYPe 3 distribution<br />

Expected value<br />

Distribution function<br />

Probability densitY function<br />

General extreme value distribution<br />

Rank of a flood peak<br />

The additional påriod of record, in years, outside <strong>the</strong> continuous rec¡rrd<br />

Frequency factor<br />

GEV shape parameter (ChaP. 3)<br />

Number of stations in a region (Chap. 4)<br />

Projected lifetime of a structure (Chap. l)<br />

Log-Pearson tYPe 3<br />

Toial length of station years spanned by <strong>the</strong> data in a group<br />

Constant in a standard error equation (Chap. 3)<br />

Number of independent variables in regression equation<br />

Length of record at jth station (years)<br />

Length of record (Years)<br />

Average length of record in a region (yearÐ<br />

Period of recording necessary to estimate Qo6. with <strong>the</strong> same accuracy as Qest $ears)<br />

Probability<br />

Probability density function<br />

iainfall ráte (mm7t¡r) rãi-¿esign storm of duration t equal to time of concentration <strong>for</strong> catchment, and return<br />

period T<br />

Flood peak variate<br />

An individual annual flood Peak<br />

The flood peak estimate <strong>for</strong> a return period T<br />

The mean annual flood<br />

Q estimated from regression equation (m3ls)<br />

Maximúm annual flood Peak<br />

Median of <strong>the</strong> annual flood Peaks<br />

Q estimated from flood record (m'/s)<br />

iltt of one or more floods exceeding Qr in L years<br />

Rainfall factor (Chap. l), Multiple córrelation coefficient (Chaps' 3" 4)<br />

Standard error<br />

Catchmentshapefactor-(Chap'l)Samplestandarddeviation(Chaps'3'4)<br />

Standard error of logroQest<br />

Student "t" statistics<br />

Return period (Years)<br />

GEV location Parameter<br />

Population variance<br />

Variate<br />

Quantile estimate of variate x<br />

Sample mean of variate x<br />

Redúced variate <strong>for</strong> <strong>the</strong> EVI distribution<br />

Reduced variate <strong>for</strong> <strong>the</strong> Normal distribution<br />

GEV scale Parameter<br />

Population mean<br />

Intärstation correlation between annual maxima<br />

Population Variance<br />

Water & soil technical publication no. 20 (1982)


Preface<br />

Water & soil technical publication no. 20 (1982)


1 lntroduction<br />

1 .1 lntroduction<br />

Many works and structures associated with natural<br />

waterways <strong>are</strong> subject to flooding. <strong>These</strong> range from small<br />

farm dams and culver'-s on minor roads, through flood<br />

protection works and. major bridges, to major dams. In<br />

designing <strong>the</strong>se works, engineers have to estimate <strong>the</strong><br />

magnitude of <strong>the</strong> flood which is to be withstood during <strong>the</strong><br />

projected life of <strong>the</strong> structure. An appropriate estimate of<br />

this "design flood" is fundamental to ensuring that<br />

economic engineering designs with adequate standards of<br />

safety <strong>are</strong> acheived.<br />

Flood estimation <strong>for</strong> design purposes can be carried out<br />

using ei<strong>the</strong>r <strong>the</strong> deterministic concept of a "maximum probable<br />

flood" <strong>for</strong> a particular catchment, or with <strong>the</strong><br />

statistical concept of a "flood magnitude with a probability<br />

of exceedence". The <strong>for</strong>mer (Dalrymple 1964) is used<br />

where exceedence of <strong>the</strong> design level could lead to<br />

catastrophic failure. The object is to estimate <strong>the</strong> flood that<br />

is unlikely to be exceeded. The method first estimates a<br />

maximum rainfall <strong>for</strong> <strong>the</strong> catchment and <strong>the</strong>n <strong>the</strong> corresponding<br />

flood peak assuming <strong>the</strong> catchment to be in a<br />

condition which would lead to maximum runoff. Since<br />

nei<strong>the</strong>r <strong>the</strong> maximum rainfall nor <strong>the</strong> maximum runoff <strong>for</strong><br />

known rainfall can be estimated with certainty, <strong>the</strong> word<br />

probable is used when no specific probability is given. In<br />

contrast, statistical methods attach specific probabilities to<br />

flood magnitudes.<br />

Recent decades have seen <strong>the</strong> widespread use of benefitcost<br />

analysis methods <strong>for</strong> assessing <strong>the</strong> relative merits of<br />

different projects competing <strong>for</strong> capital resources. For projects<br />

where flood magnitude is a design pararneter it is<br />

necessary to attach specific probabilities to this magnitude.<br />

Then <strong>the</strong> expected cost of flood damage can be balanced<br />

against <strong>the</strong> cost of providing enhanced protection.<br />

1.2 Return Period, Risk and<br />

Design Life<br />

In New Zealand <strong>the</strong> need to ensure <strong>the</strong> safety of major<br />

hydro-electric developments stimulated an early interest in<br />

flood estimation methods. Benham (1950) introduced a<br />

statistical flood estimation method that has been used ever<br />

since. In this method <strong>the</strong> design flood Q1 is defined as <strong>the</strong><br />

flood which is exceeded on average once in T years; T is<br />

termed <strong>the</strong> return period, and Q.¡ is termed <strong>the</strong> T-year<br />

flood which has a probability of exceedence in any one year<br />

of l/T. Il <strong>the</strong> projected life of <strong>the</strong> structure is L years and<br />

assuming independence of annual maxima, <strong>the</strong> risk r of at<br />

least one T-year flood occuring in L years is;<br />

r=l-(l-l/T)L<br />

This expression is evaluated <strong>for</strong> a range of L and T<br />

values in <strong>the</strong> Table l.l (it is presented graphically by<br />

Ministry of Works and Development (1979) ).<br />

10<br />

50<br />

100<br />

20,0<br />

Table 1.1 Risk of exceedence <strong>for</strong> specified L and T.<br />

T=10 T=50 T=10O<br />

0.651<br />

o.995<br />

1.OOO<br />

1.OO0<br />

0.1 83<br />

o.636<br />

o.867<br />

o.982<br />

o.096<br />

o.395<br />

o.634<br />

o.866<br />

T=<br />

1000<br />

o.o10<br />

o.o49<br />

0.095<br />

o.181<br />

Thus, <strong>for</strong> example, <strong>the</strong> probability of <strong>the</strong> lü) year flood<br />

being exceeded at least once in a ten year period is 0.096' in<br />

50 years 0.395, and in 100 years 0.634. This reasoning ap-<br />

plies to one river, and <strong>the</strong> probability ofexceedence during<br />

a specified time inl.erval at any one of a number of rivers is<br />

much greater. If say l0 independent river basins and a l0<br />

year period <strong>are</strong> considered, <strong>the</strong> probability of at least one<br />

100 year flood being exceeded in any one of <strong>the</strong> l0 basins is<br />

0.634 and <strong>the</strong> protrability of at least one 1000 year event is<br />

0.095. Thus large floods <strong>are</strong> <strong>not</strong> remote events <strong>for</strong> consideration<br />

by a feur specialists, but real possibilities of concern<br />

to <strong>the</strong> whole community. Risk is a difficult concept to<br />

convey to <strong>the</strong> wider community which is easily lulled into a<br />

false attitude of complete safety. The risk of flooding to a<br />

community is perhaps best conveyed by comparison with<br />

<strong>the</strong> risk of o<strong>the</strong>r hazards that <strong>are</strong> tacitly accepted. Examples<br />

include <strong>the</strong> risks of earthquake damage, traffic accidents<br />

and nuclear power plant accidents. Pilgrim and<br />

Cordery (1974) and Burns (1977) provide useful discussion<br />

and fur<strong>the</strong>r refere:nces on this subject.<br />

In practice, r and L <strong>are</strong> often unstated and a fixed value<br />

<strong>for</strong> T is used <strong>for</strong> a particular class of works. Thus in New<br />

Zealand hydro-electric earth and rockfill dams, and dams<br />

subject to <strong>the</strong> risk of progressive failure on overtopping,<br />

have been designed to pass <strong>the</strong> 1000 year flood, while concrete<br />

dams <strong>not</strong> sutrject to <strong>the</strong> risk of progressive failure on<br />

overtopping <strong>are</strong> dersigned <strong>for</strong> <strong>the</strong> 500 year flood. Similarly,<br />

state highway bridges <strong>are</strong> designed to pass <strong>the</strong> 100 year<br />

flood, while culverts <strong>for</strong> state highways <strong>are</strong> generally<br />

designed to pÍrss <strong>the</strong> l0 year flood without heading-up and<br />

<strong>the</strong> 100 year flood with heading-up to a maximum level of<br />

0.5m below <strong>the</strong> road surface. For some smaller structures<br />

no clear standards exist and in some cases <strong>the</strong>re is a lack of<br />

rationality. Situations exist where authorities with<br />

statutory responsiìoility <strong>for</strong> one part of a catchment adopt<br />

higher design stanclards than a second authority in <strong>the</strong> same<br />

catchment <strong>for</strong> <strong>the</strong> same class of work (Heiler 1975).<br />

Selection of a design recurrence interval is a subject<br />

deserving c<strong>are</strong>ful attention. For <strong>the</strong> credibility of designers,<br />

its interpretation as a socially tolerable risk is in<strong>for</strong>mation<br />

that should be c<strong>are</strong>fully explained.<br />

1.3 Methods <strong>for</strong> Estimating<br />

Desiç¡n Floods<br />

The engineer must estimate a design flood in a range of<br />

design situations. This design flood is a hypo<strong>the</strong>tical flood<br />

which results from a design rainfall over a catchment,<br />

usually assumed to be in an average state of wetness. It is a<br />

quantity with a probabilistic meaning defined in <strong>the</strong><br />

previous section and must be distinguished from <strong>for</strong>ecasts<br />

of actual floods which result from real rainstorms over a<br />

catchment and whose magnitudes will depend on <strong>the</strong> prior<br />

states of wetness of <strong>the</strong> catchment. This distinction is important<br />

because


annual flood Q (<strong>the</strong> mean of <strong>the</strong> annual peaks). Q<br />

may be estimated from measured catchment and<br />

climatic characteristics. This is <strong>the</strong> method used in<br />

this study. It is also known as <strong>the</strong> index flood<br />

method. A<strong>not</strong>her version of <strong>the</strong> method relates Q1<br />

directly to catchment and climatic characteristics.<br />

It is pertinent to review <strong>the</strong> development of all <strong>the</strong>se<br />

techniques in <strong>the</strong> New Zealand context.<br />

1.3.1 Empirical Methods<br />

Early flood estimation methods involved fitting an<br />

envelope curve to observed extremes <strong>for</strong> a region to give an<br />

empirical estimate of a maximum flood, usually with catchment<br />

<strong>are</strong>a as a parameter (Schnackenberg, 1949). Envelope<br />

curve methods have been largely replaced by empirical<br />

methods involving probability; of <strong>the</strong>se <strong>the</strong> best known <strong>are</strong><br />

<strong>the</strong> Rational Method and Technical Memorandum No. 6l<br />

(TM6l) (NWASCO l97s).<br />

Although <strong>the</strong> Rational Method is in wide use, it is <strong>not</strong> an<br />

accurate deterministic description of <strong>the</strong> way in which a<br />

catchment modifies rainfall to yield <strong>the</strong> peak runoff<br />

(French et al. 1974). An alternative and useful interpretation<br />

of <strong>the</strong> Rational Method is statistic¿l. Here <strong>the</strong> method<br />

links runoff rates of given frequencies with rainfall rates of<br />

<strong>the</strong> same frequencies as follows:<br />

Qr = C.Pt. A/3.6<br />

where<br />

qt: peak discharge rate of return period T (m¡,zs)<br />

Pt = <strong>the</strong> design rainfall rate (mm/hr) <strong>for</strong> a storm of return<br />

period T and duration t equal to <strong>the</strong> time of concentration<br />

<strong>for</strong> <strong>the</strong> catchment<br />

A = <strong>the</strong> catchment <strong>are</strong>a (km,)<br />

C = an empirical coeffìcient which provides <strong>the</strong> link between<br />

peak runoff and peak rainfall. It embodies <strong>the</strong><br />

net effect of catchment losses, storage effects, etc.<br />

French et al. (1974) showed that <strong>the</strong> coefficient C increases<br />

somewhat with <strong>the</strong> return period T, and gave<br />

typical values <strong>for</strong> central and south-east New South Wales.<br />

Aitken (1975) found this ratio <strong>for</strong> a catchment to be<br />

essentially constant <strong>for</strong> different return periods. For urban<br />

catchments Schaake et al. (1967) suggested C could be<br />

estimated as a function of <strong>the</strong> portion of impervious <strong>are</strong>a in<br />

<strong>the</strong> catchment and <strong>the</strong> slope of <strong>the</strong> main channel.<br />

The second quantity requiring estimation is <strong>the</strong> duration<br />

of <strong>the</strong> design rainstorm. The critical duration is closely approximated<br />

by <strong>the</strong> minimum tirne of rise <strong>for</strong> a number of<br />

hydrographs, <strong>These</strong> <strong>are</strong> <strong>not</strong> available <strong>for</strong> ungauged catchments<br />

and traditional time of concentration <strong>for</strong>mulae <strong>are</strong><br />

<strong>not</strong> reliable. Heiler (1974) developed an estimator <strong>for</strong> this<br />

time constant <strong>for</strong> catchments of peninsular Malaysia. Once<br />

a duration is established, storm rainfall can be estimated,<br />

and in Heiler's case C was estimated as a function of rainfall<br />

intensity; application of <strong>the</strong> method was restricted to<br />

catchments with <strong>are</strong>as in <strong>the</strong> range I km, to 100 kmr. Adaptation<br />

of this statistical interpretation of <strong>the</strong> Rational<br />

Method <strong>for</strong> New Zealand conditions would be a valuable<br />

contribution.<br />

A<strong>not</strong>her well-known empirical method in New Zealand<br />

is known by its publication number, TM6l (NWASCO<br />

1975) and is an adaptation of various American methods.<br />

It is recommended <strong>for</strong> catchment <strong>are</strong>as up to 1000 kmr.<br />

The method is;<br />

Qr = 0.0139 CRSA%<br />

where<br />

C = coefficient dependent on <strong>the</strong> physiography of <strong>the</strong><br />

catchment,<br />

R = rainfall factor dependent on <strong>the</strong> design storm,<br />

S = catchment shape factor,<br />

A : catchment <strong>are</strong>a (km'z),<br />

The factor C is determined as <strong>the</strong> product of two factors<br />

ìV¡s and Ws. Wlc is determined from a table which has soil<br />

type and surface cover as parameters, and W5 is obtained<br />

from a graph having channel length and slope as<br />

parameters. R is <strong>the</strong> ratio of <strong>the</strong> design rainfall <strong>for</strong> <strong>the</strong> catchment<br />

to <strong>the</strong> adjusted standard rainfall at Kelburn, Wellington.<br />

As with <strong>the</strong> Rational Method, <strong>the</strong> rainfall duration<br />

must be determined by an empirical time of concentration<br />

<strong>for</strong>mula. The shape factor is a function of <strong>the</strong> catchment<br />

<strong>are</strong>a and length. The development of <strong>the</strong> method is discussed<br />

by Campbetl (1959). When first introduced in 1953 this<br />

method met an urgent need <strong>for</strong> a standard procedure <strong>for</strong><br />

flood estimation <strong>for</strong> ungauged catchments. Its value was<br />

greatly enhanced by <strong>the</strong> publication of a probability<br />

analysis of high intensity rainfalls (Robertson 1963).<br />

1.3.2 Un¡t hydrograph methods<br />

The unit hydrograph method developed in <strong>the</strong> 1930's has<br />

become a widely used hydrological tool. The unit<br />

hydrograph (UH) is <strong>the</strong> flow record from a saturated catchment<br />

when a unit of rainfall falls uni<strong>for</strong>mly <strong>for</strong> unit time.<br />

As part of each storm is required to saturate <strong>the</strong> soil, <strong>the</strong><br />

UH represents only <strong>the</strong> "quickflow".<br />

The quickflow from a rainfall excess of various amounts<br />

over a succession of time units is calculated by superposition<br />

of <strong>the</strong> set of unit hydrographs that correspond to <strong>the</strong><br />

rainfall excess. Thus <strong>the</strong> catchment is assumed to respond<br />

linearly, in that runoff from a particular portion of storm<br />

rainfall is unaffected by concurrent runoff from o<strong>the</strong>r portions<br />

of <strong>the</strong> storm. <strong>These</strong> assumptions have been tested in<br />

numetous studies and <strong>for</strong> small and medium sized catchments<br />

have been found adequate <strong>for</strong> most engineering<br />

design purposes. With a UH determined from a number of<br />

storms and <strong>for</strong> average ratios of excess to total rainfall,<br />

design floods <strong>for</strong> a catchment can be estimated from design<br />

storms of <strong>the</strong> same probability. An important advantage of<br />

this versatile method over those described previously is that<br />

<strong>the</strong> shape of <strong>the</strong> flood hydrograph is calculated, and <strong>not</strong><br />

merely <strong>the</strong> peak rate of flow; this is of importance in<br />

routing studies, in drainage design and in o<strong>the</strong>r situations<br />

where it is necessary to know <strong>the</strong> length of time <strong>the</strong> water<br />

level is above a particular stage. Possibly <strong>the</strong> main limitation<br />

of <strong>the</strong> method is <strong>the</strong> subjectivity in determining <strong>the</strong><br />

volume and distribution of <strong>the</strong> rainfall excess. Where <strong>the</strong><br />

lack of flow records prevent <strong>the</strong> derivation of <strong>the</strong> UH, procedures<br />

have been developed <strong>for</strong> syn<strong>the</strong>sising typical UH<br />

curves by relating characteristics of <strong>the</strong> hydrograph shape<br />

to catchment characteristics. <strong>These</strong> procedures include <strong>the</strong><br />

well-known Snyder method and <strong>the</strong> US Soil Conservation<br />

Service dimensionless hydrograph (Linsley et al. 1975),<br />

<strong>These</strong> methods have been used successfully within two<br />

regions of similar hydrological characteristics (Hoffmeister<br />

1976). Also <strong>the</strong> Snyder method gave satisfactory results <strong>for</strong><br />

ungauged tributaries <strong>for</strong> <strong>the</strong> Waikato and Clutha Rivers<br />

(Jowett and Thompson 1977), although Coulter (1961)<br />

queries <strong>the</strong> wide applicability of <strong>the</strong> methods.<br />

A guide to <strong>the</strong> order of loss rates that should be used is<br />

given by Pilgrim (1966), who summarised published loss<br />

rate in<strong>for</strong>mation in New Zealand,. As most loss rates were<br />

low (5090 of loss rates were less than 2.5 mm/hr and 8090<br />

were less than 5.1 mm/hr), it was concluded that <strong>the</strong> inaccuracies<br />

in transferring <strong>the</strong>se values from one region to<br />

a<strong>not</strong>her should cause only very small errors in design<br />

floods. Never<strong>the</strong>less, more work is needed on loss rate<br />

estimation in New Zealand as loss rates <strong>are</strong> important in<br />

situations where flow <strong>for</strong>ecasts <strong>are</strong> required. For tributaries<br />

in <strong>the</strong> Motueka catchment Beable (1976) found loss rates to<br />

be related to antecedent wetness, storm intensity and <strong>the</strong><br />

portion of catchment in exotic <strong>for</strong>estry.<br />

1.3.3 Simulation methods<br />

Under this heading is grouped a variety of methods <strong>for</strong><br />

representing catchment response to precipitation. Cat-<br />

Water & soil technical publication no. 20 (1982)


chments <strong>are</strong> simulated with "models" that <strong>are</strong> simplified<br />

representations of complex real-world systems. Models can<br />

be (a) physical, (b) analogue, or (c) ma<strong>the</strong>matical.<br />

Ma<strong>the</strong>matical models represent <strong>the</strong> behaviour of a catchment<br />

by a set of equations and logical statements expressing<br />

relationships between hydrological variables and model<br />

parameters, with an input of precipitation and o<strong>the</strong>r<br />

climatic nneasurementq and an output of stream discharge.<br />

Such models can be classified as: "lumped" or<br />

"distributed" depending upon whe<strong>the</strong>r variations in processes<br />

over <strong>the</strong> catchment <strong>are</strong> considered; "time variant"<br />

or "time-invariant" depending upon whe<strong>the</strong>r variations in<br />

time of <strong>the</strong> model <strong>are</strong> considered; "stochastic" or "deterministic"<br />

depending on whe<strong>the</strong>r probabilistic <strong>not</strong>ions <strong>are</strong><br />

included; and "conceptual" or "empirical" depending on<br />

<strong>the</strong> structuring of <strong>the</strong> model.<br />

Extensive reviews of <strong>the</strong>se models <strong>are</strong> given by Clarke<br />

(1973) and Chapman and Dunin (1975). One use of such<br />

models is <strong>the</strong> extension of a record of streamflows given a<br />

record of precipitation. At present <strong>the</strong> model parameters<br />

<strong>are</strong> usually estimated by fitting a predicted output<br />

hydrograph to an observed output hydrograph over a<br />

period of concurrent rainfall and flow records. Future<br />

developments <strong>are</strong> aimed at enabling <strong>the</strong> estimation of<br />

model parameters from observed physical characteristics of<br />

<strong>the</strong> catchment without <strong>the</strong> need <strong>for</strong> a period of observed<br />

flow record <strong>for</strong> model calibration.<br />

1.3.4 Regional flood frequency methods<br />

Regional flood frequency methods have been applied<br />

widely, <strong>for</strong> example in North America (Thomas and Benson<br />

1970), in'<strong>the</strong> British Isles (NERC 1975), and in<br />

Malaysia (Heiler and Chew 1974). The index flood approach<br />

used in this study averages <strong>the</strong> chance sampling<br />

variation in flood frequency in a region, while preserving<br />

<strong>the</strong> variation due to differences in catchment<br />

characteristics. Development of <strong>the</strong> method involves:<br />

(Ð collecting annual maxima <strong>for</strong> a number of flow stations<br />

in <strong>the</strong> <strong>are</strong>a thought to be homogenous;<br />

(ü) drawing frequency-magnitude curves <strong>for</strong> each station<br />

(Qr/Qvs T);<br />

(iii¡ drawing a frequency-magnitude curve giving a<br />

general Q1/Qvs T relationship <strong>for</strong> use in <strong>the</strong> region;<br />

(iv) obtaining a regression relationship to estimate <strong>the</strong><br />

mean annua.l (or index) flood Qfrom measurable catchment<br />

and climatic Parameters.<br />

The regression relationship can- <strong>the</strong>n be applied at<br />

ungauged locations to estimate Q. Knowing Q<br />

' <strong>the</strong><br />

regional frequenc¡' curves (iii) can be applied to determine<br />

Q1 <strong>for</strong> a specified return period T. This method is one way<br />

of extending a data base from a number of sites to cover a<br />

region. Design flood estimates have to be made <strong>for</strong> many<br />

more sites than can ever be gauged. This is justification <strong>for</strong><br />

developing <strong>the</strong> method in New Zealand, where it should be<br />

<strong>not</strong>ed that no quantitative in<strong>for</strong>mation is available on <strong>the</strong><br />

accuracy of currently used empirical methods. It has <strong>not</strong><br />

previously been applied on a New Zealand-wide basis. It<br />

has <strong>the</strong> advantage that it is based directly on flood records<br />

whereas empirical and unit hydrograph methods rely on <strong>the</strong><br />

trans<strong>for</strong>mation of rainfall into runoff'<br />

With <strong>the</strong> quantity of new data available by <strong>the</strong> middle of<br />

<strong>the</strong> 1970's it was c,cnsidered feasible to develop <strong>the</strong> regional<br />

flood frequency method. Regional inferences about flood<br />

frequencies were made to provide a design flood estimation<br />

method <strong>for</strong> catchments having little or no recorded data.<br />

The frequency dirstribution which is most generally applicable<br />

to <strong>the</strong> annual maxima series has been determined.<br />

<strong>the</strong> first step was to assemble and check records of annual<br />

ma¡


Water & soil technical publication no. 20 (1982)


2 Gollection of Data<br />

2.1 Climate of New Zealand<br />

The climate and rainfall patterns <strong>are</strong> strongly influenced<br />

by <strong>the</strong> location and geography of <strong>the</strong> country.<br />

A useful summarv is given in <strong>the</strong> New Zealand Year<br />

Book (1978). In particular <strong>the</strong> chain of mountains extending<br />

from south-west to north-east through <strong>the</strong> length of<br />

<strong>the</strong> country is a barrier to prevailing moist westerly winds.<br />

The effect is to produce much sharper climatic contrasts<br />

from west to east than in <strong>the</strong> north-south direction. The<br />

summary also indicates typical wea<strong>the</strong>r patterns that lead<br />

to heavy rain.<br />

2.2 Selection of catchments<br />

Details of <strong>the</strong> criteria <strong>for</strong> choosing <strong>the</strong> catchments used<br />

in <strong>the</strong> two sections of <strong>the</strong> study <strong>are</strong> given in Chapters 3 and<br />

4 respectively. Initially all available annual maxima from<br />

rural catchments with four years record and with flows<br />

largely free from <strong>the</strong> effects of impoundments were considered.<br />

Catchment <strong>are</strong>as were required to be greater than<br />

0,1 km', but more restrictive ranges <strong>for</strong> <strong>are</strong>a were imposed<br />

later (See Chapters 3 and 4).<br />

Lake inflows <strong>are</strong> <strong>the</strong> sum of flows from a number of<br />

small catchments that contribute to <strong>the</strong> lake. Because of <strong>the</strong><br />

lesser channel routing effects in small catchments, <strong>the</strong> summed<br />

instantaneous peak inflow may differ from <strong>the</strong> peak<br />

flow from a single catchment of <strong>the</strong> same <strong>are</strong>a subject to<br />

<strong>the</strong> same storm. Although Gilbert (1978) describes a data<br />

processing technique that ensures that lake inflows<br />

calculated from level and outflow records have realistic<br />

values, his work was <strong>not</strong> available at <strong>the</strong> time that <strong>the</strong><br />

criteria <strong>for</strong> data selection were determined. Lake inflows<br />

were <strong>not</strong> used because <strong>the</strong> necessary calculation was believed<br />

prone to error. However, recent work on <strong>the</strong> data<br />

calculated by Gilbert's method shows that it con<strong>for</strong>ms to<br />

<strong>the</strong> same regional pattern as river flow data.<br />

2.3 Sources of data<br />

Although earlier developments were promising, <strong>the</strong> recent<br />

progress in New Zealand in revising and developing<br />

flood estimation methods outlined above has been disappointing<br />

in comparison with o<strong>the</strong>r countries. Some of <strong>the</strong><br />

iag can be attributed to a lack of suitable data. Recognition<br />

of <strong>the</strong> lack of data led to <strong>the</strong> implementation of <strong>the</strong><br />

Representative Basin programme under which more than<br />

70 flow gauging stations were established with digital<br />

recorders in <strong>the</strong> 1960's and'early 1970's. <strong>These</strong> stations,<br />

toge<strong>the</strong>r with improved instru<br />

rs,<br />

have recorded large quantities<br />

ata<br />

<strong>are</strong> available from files of <strong>the</strong><br />

ent<br />

Data) hydrological archiving system which has been<br />

developed by <strong>the</strong> Ministry of Works and Development<br />

(MWD).<br />

Inspection of <strong>the</strong> data held in this system (Figure 2'l)<br />

showi that relatively few records were available be<strong>for</strong>e<br />

1950, and that after 195ó an extremely rapid increase occured<br />

in numbers of records a four-fold increase occurred<br />

over <strong>the</strong> decade 1960-70. More than 400 records were<br />

-<br />

available from TIDEDA in 1978; many more were <strong>not</strong><br />

entered into<br />

of<br />

recorders ope<br />

an<br />

MWD report<br />

i9d<br />

ln-<br />

of recording,<br />

dicates whe<strong>the</strong>r <strong>the</strong> data <strong>are</strong> held in <strong>the</strong> TIDEDA system.<br />

With approximatel'y 700 water level recorders on lakes and<br />

rivers listed in this index, inadequate flow data should <strong>not</strong><br />

constrain regional hydrological analyses as it has in <strong>the</strong><br />

past.<br />

Annual series da:a were collected from MWD and catchment<br />

authority ftow stations. At <strong>the</strong> time of data collection,<br />

comments were obtained on <strong>the</strong> accuracy of <strong>the</strong> data<br />

and on <strong>the</strong> nature and conditions of <strong>the</strong> catchments from<br />

<strong>the</strong> people in chargr: of <strong>the</strong> streamflow data processing, and<br />

<strong>the</strong>ir advice was hr:eded in <strong>the</strong> acceptance or rejection of<br />

data.<br />

Where streamflow in<strong>for</strong>mation was stored on <strong>the</strong><br />

MWD's TIDEDA system, plots of <strong>the</strong> streamflow were obtained.<br />

Each plot vvas <strong>the</strong>n scrutinised <strong>for</strong> <strong>the</strong> reliability of<br />

<strong>the</strong> streamflow record be<strong>for</strong>e <strong>the</strong> annual flood peaks were<br />

extracted from <strong>the</strong> record.<br />

2.4 Oualfty of <strong>the</strong> data<br />

The standards o I accuracy of data will undoubtedly vary<br />

considerably front one catchment to a<strong>not</strong>her. Records<br />

from a number of smaller catchments monitored at fixed<br />

control structures may be expected to be of good standard<br />

of accuracy <strong>for</strong> all flow conditions. For larger catchments<br />

where <strong>the</strong> control lLs a natural river channel section, <strong>the</strong> accuracy<br />

of estimat() of annual maxima will depend on <strong>the</strong><br />

stability of <strong>the</strong> cross-section, <strong>the</strong> frequency of gauging, <strong>the</strong><br />

range of flows overr which gaugings have been carried out,<br />

and <strong>the</strong> general standards to which <strong>the</strong> recorder is<br />

operated. Even if a good record has been maintained, conversion<br />

of a recor,l of water levels into discharge requires<br />

maintenance of a rating curve. In cases where <strong>the</strong> river has<br />

large sediment loa.ds this is a difficult task. Judgement is<br />

needed to decide how to extrapolate a rating curve, often<br />

defined only <strong>for</strong> rredium or low flows, into a high flow<br />

regime. Although greater confidence can be placed in<br />

rating curves which include some flood gaugings, such<br />

gaugings <strong>are</strong> <strong>not</strong> zrlways available.<br />

Although Ibbitt (1979) describes a data processing<br />

technique that ensures extrapolation of ratings to flood<br />

stage is <strong>not</strong> upset by channel changes, this technique was<br />

<strong>not</strong> <strong>the</strong> general practice when <strong>the</strong> flood data were assembled.<br />

The inconsistency in flood flow ratings on <strong>the</strong> Rakaia<br />

River prior to lbbitt's work (and illustrated in Fig' 5 in his<br />

paper) <strong>are</strong> presumrably typical of <strong>the</strong> hydrometric practice<br />

used to derive all <strong>the</strong> flood estimates used.<br />

2.5 Historical in<strong>for</strong>mation<br />

Where possible. historical in<strong>for</strong>mation was collected <strong>for</strong><br />

those flow stations with annual series data. In<strong>for</strong>mation on<br />

historical floods, occurring both inside and outside <strong>the</strong><br />

period of continuous record, was obtained from: MWD,<br />

õatchment authorities; reports; and from <strong>the</strong> publication<br />

"Floods in New Zl,ealand l92O-53" (SCRCC 1957). The in<strong>for</strong>mation<br />

consisted of an estimate of <strong>the</strong> historical flood<br />

peak toge<strong>the</strong>r witlh <strong>the</strong> period of time over which <strong>the</strong> peak<br />

was known to be <strong>the</strong> largest, second largest, etc. Advice on<br />

<strong>the</strong> au<strong>the</strong>nticity o1i many of <strong>the</strong> earlier historical flood peak<br />

estimates was sought from <strong>the</strong> relevant data collection<br />

agencies. The methods by which this additional in<strong>for</strong>mati,on<br />

was used in <strong>the</strong> frequency analysis <strong>are</strong> described in<br />

Chapter 3.<br />

Water & soil technical publication no. 20 (1982)<br />

ll


Doto ovoiloble on<br />

TIDEDA<br />

Figure 2'1 Number of water level recorder stetions<br />

Water in & New soil technical Zealand and publication time d¡str¡bution no. 20 (1982) of water level data filed on TIDEDA.<br />

l2


3. Regional flood frequency analysis<br />

3.1 Flood frequencY method<br />

3.1.1 General<br />

Frequency analysis is a method of inferring <strong>the</strong> magnitude<br />

of a design event from a given sample of recorded<br />

events. The method is statistical and involves <strong>the</strong> fitting of a<br />

frequency distribution to a sample of recorded events. The<br />

resulting frequency curve is <strong>the</strong>n usually extrapolated in<br />

order to estimate <strong>the</strong> design event. In <strong>the</strong> case of a frequency<br />

analysis of floods, <strong>the</strong> sample consists of flood<br />

peaks taken from a streamflow record. The sample may<br />

also contain some historical flood peaks, if this type of in<strong>for</strong>mation<br />

is available. Provided <strong>the</strong> streamflow record<br />

from which <strong>the</strong> sample is taken is sufficiently long, flood<br />

frequency analysis is generally regarded as <strong>the</strong> most accurate<br />

method of estimating a design flood peak.<br />

A flood frequency curve may be used <strong>for</strong> a catchment<br />

where <strong>the</strong>re is little or no streamflow record by a regional<br />

flood frequency analysis procedure. Inherent in such a procedure<br />

is <strong>the</strong> concept of a flood frequency region, i.e., in a<br />

region which is reasonably homogeneous in terms of climate,<br />

topography and soil characteristics and within which<br />

catchments display similar flood frequency properties.<br />

The regional analysis method employed in this study is of<br />

<strong>the</strong> Index-Flood type, pioneered by <strong>the</strong> US Geological Survey<br />

(Dalrymple 1960) and used by NERC (1975); it averages<br />

<strong>the</strong> chance sampling variation in individual streamflow records<br />

<strong>for</strong> a region, while preserving <strong>the</strong> variation due to differences<br />

in catchment and climatic variables. An essential<br />

part of <strong>the</strong> method involves <strong>the</strong> combining of <strong>the</strong> flood<br />

peak data <strong>for</strong> a region to produce an average or regional<br />

flood frequency curve, This regional curve is assumed to be<br />

generally applicable to catchments in <strong>the</strong> region and may be<br />

applied to both gauged and ungauged catchments. Because<br />

<strong>the</strong> regional curve is based on a number of records from <strong>the</strong><br />

region, it provides a more reliable basis <strong>for</strong> extrapolation to<br />

estimate a design flood peak than an individual frequency<br />

curve fitted to a relatively short record.<br />

Several frequency distributions have been proposed <strong>for</strong><br />

flood frequency analysis, but no single distribution has<br />

been universally accepted. The fitting of a distribution may<br />

be done ei<strong>the</strong>r graphically, i.e., by fitting a curve by eye to<br />

<strong>the</strong> plotted data sample and <strong>the</strong>n extrapolating that curve to<br />

estimate <strong>the</strong> design flood, or analytically, i.e., by estimating<br />

<strong>the</strong> distribution's parameters from statistical characteristics<br />

of <strong>the</strong> data sample. The anal¡ical approach, involving <strong>the</strong><br />

General Extreme Value distribution, was used in this study.<br />

3.1.2 Terminology<br />

A fundamental concept in flood frequency analysis is<br />

that of a statistical population. The population is made up<br />

of flood peak items, where each occurs in a separate partition<br />

in time of <strong>the</strong> streamflolv at a site. <strong>These</strong> partitions <strong>are</strong><br />

Ù c.<br />

ô<br />

x<br />

\<br />

E<br />

ë<br />

l!<br />

or<br />

f(x)<br />

= dF(x)<br />

dx<br />

F(x) = ¡x-f(x)dx<br />

where, by definition<br />

F(-) : Il- f(x)dx = t<br />

Characteristics of <strong>the</strong> two functions, and <strong>the</strong> relationship<br />

between <strong>the</strong>m, <strong>are</strong> illustrated in Figure 3.1 using<br />

<strong>the</strong> well-known Normal distribution. As shown in<br />

Figure 3.1, F(x), <strong>the</strong> df, is <strong>the</strong> probability of a variate<br />

value (x, in Figure 3.1) <strong>not</strong> being equalled or exceeded'<br />

It may be expressed generally as<br />

F(x) : P(Xsx) 33<br />

P(xsxJ =/j'lt'lo-<br />

Vor¡ole x<br />

Port (o)<br />

partitions in <strong>the</strong> total population. The variable value of a<br />

hood peak in <strong>the</strong> flood record is called a random variable<br />

or variate x.<br />

The probability distribution of <strong>the</strong> variate x may be described<br />

by ei<strong>the</strong>r:<br />

(i) f(x), its probability density function (pdf), which gives<br />

<strong>the</strong> probability or relative frequency of occurrence of<br />

x; or<br />

(ii) F(x), <strong>the</strong> corresponding cumulative or distribution<br />

function (df).<br />

Vor¡ole r<br />

Port (bl<br />

P(xs xt)<br />

Flguro 3.1 Charaster¡st¡cs of <strong>the</strong> pdf (Part al and <strong>the</strong><br />

The two functions <strong>are</strong> related bY<br />

df (Part b) using a Normal distr¡bution.<br />

Water & soil technical publication no. 20 (1982)<br />

l3


P=45<br />

O= 15<br />

x4<br />

(l)<br />

'=<br />

o<br />

o<br />

t.25 2'.O ¡b zs sb loo rooo T<br />

-z.o -t'o 2.O 3.O<br />

o.f o.3 0.5 0.7 0.9 0.95 o.9986<br />

YH<br />

F(x)<br />

Figure 3.2 The plot of <strong>the</strong> df in Fig. 3.1 as a function of its ¡educed variate,<br />

F(x) =l-P(X>x)<br />

34<br />

where P(<br />

ote <strong>the</strong> probability of<br />

non-exce<br />

respectively.<br />

Allied with<br />

dence is <strong>the</strong> <strong>not</strong>ion of<br />

recurrence interval or return period, which is <strong>the</strong> reciprocal<br />

of <strong>the</strong> probability of exceedence in a time unit. For instance,<br />

if a flood peak is exceeded on average 20 times in<br />

every 100 years, it has a return period of 5 years, or a probability<br />

of exceedence in any one year of 0.20. Thus<br />

P(X>x) = I T<br />

which, from Equation<br />

F(x) = I<br />

3.4, gives<br />

_l<br />

T<br />

whereT = returnperiod.<br />

The curvatu<br />

35<br />

36<br />

and <strong>the</strong> reliability of <strong>the</strong> extrapolation when <strong>the</strong> fitted frequency<br />

line is straight ra<strong>the</strong>r than curved. A straight line<br />

<strong>for</strong> <strong>the</strong> df can be obtained by rescaling <strong>the</strong> F(x) axiJ with a<br />

on <strong>the</strong> F(x) axis, using <strong>the</strong> relationship between y and F(x)<br />

and Equations 3.3-3.6. In this way different probability<br />

papers, e.g., Normal and Gumbel, can be constructed to<br />

produce straight line plots of <strong>the</strong>ir corresponding distribution<br />

functions. Figure 3.2 illustrates <strong>the</strong> use of a reduced<br />

yariate (y¡) <strong>for</strong> <strong>the</strong> Normal distribution shown in Figure<br />

3.1. In accordance with convention, Figure 3.1 has been realigned<br />

in Figure 3.2, so that <strong>the</strong> variate scale is now on <strong>the</strong><br />

ordinate and <strong>the</strong> probability and reduced variate scales <strong>are</strong><br />

on <strong>the</strong> abscissa; future mention of frequency curves is with<br />

reference to this type of plot. The actual application of a reduced<br />

variate is explained fully in section 3.1.3 with reference<br />

to <strong>the</strong> Gumbel distribution.<br />

typical ofthat Despite <strong>the</strong> use of a reduced variate, a straight line will<br />

<strong>for</strong> a Normal<br />

<strong>are</strong> plotted to <strong>not</strong> give a good fit when <strong>the</strong> data sample does <strong>not</strong> con<strong>for</strong>m<br />

natural scales.<br />

curvature <strong>for</strong>, to <strong>the</strong> assumed distribution. However, it may still be possible<br />

to obtain a good fit with a straight line by first trans-<br />

when fitting ã<br />

sferred to as a<br />

relative frequency or simply a frequency distribution) to a <strong>for</strong>ming <strong>the</strong> data sample. The most common trans<strong>for</strong>mation<br />

is <strong>the</strong> changing of each sample item to its logarithm.<br />

data sample, it is easier to visually assess <strong>the</strong> goodness-of-fit<br />

Water & soil technical publication no. 20 (1982)<br />

l4


3.1.3 General extreme value distribution<br />

Of <strong>the</strong> frequency distributions used in flood hydrology,<br />

many belong to ei<strong>the</strong>r <strong>the</strong> Gamma distribution family or<br />

<strong>the</strong> General Extreme Value (GEV) distribution. In this<br />

study <strong>the</strong> GEV distribution is used <strong>for</strong> fitting <strong>the</strong> regional<br />

data. This choice was supported by tests in which several<br />

distributions were fitted to flood peak samples. The distributions,<br />

<strong>the</strong> tests, and <strong>the</strong> results <strong>are</strong> described in Appendix<br />

A.<br />

Although <strong>the</strong> GEV was found to give a good fit to <strong>the</strong> regional<br />

data, it appe<strong>are</strong>d from <strong>the</strong> tests that <strong>the</strong> log-Pearson<br />

Type 3 (LP3) distribution (also known as <strong>the</strong> three-parameter<br />

log-Gamma distribution) may well have given an<br />

equally good description of<strong>the</strong> regional trend. Aspects that<br />

influenced <strong>the</strong> choice in favour of <strong>the</strong> GEV distribution<br />

were <strong>the</strong> following:<br />

(i) In a comprehensive comparative examination of <strong>the</strong><br />

GEV and LP3 distributions, NERC (1975 pp. 135-60)<br />

found that <strong>the</strong> GEV per<strong>for</strong>med more consistently in<br />

<strong>the</strong> various goodness-of-fit tests.<br />

(ii) The GEV distribution had been found by NERC<br />

(1975) to describe <strong>the</strong>ir empirically derived regional<br />

curves "remarkably well".<br />

(lii) The fact that <strong>the</strong> GEV distribution had already been<br />

used by NERC (1975) enabled a direct comparison of<br />

jresults between that study and this one.<br />

(lv) The GEV distribution af<strong>for</strong>ded <strong>the</strong> more tractable<br />

solution e.g., <strong>the</strong>re was no equation available <strong>for</strong> <strong>the</strong><br />

LP3 that is analogous to Equation 3.14, wherein <strong>the</strong><br />

three-parameter distribution is expressed in terms of<br />

<strong>the</strong> reduced variate <strong>for</strong> its corresponding two-parameter<br />

(in this case log-Normal) distribution.<br />

The pdf <strong>for</strong> <strong>the</strong> GEV distribution may be written as<br />

f(x) = _t tl -k(x- u)/a|rk-ts-{l-k(x-u)/a}r/k .....3.7<br />

ct<br />

where u : alocationparameter,<br />

d: ascaleparameter,<br />

k = ashapeparameter,<br />

and <strong>the</strong> corresponding df is<br />

F(x): s-{r-k(x-u)/ø}k<br />

Like <strong>the</strong> Gamma distribution, <strong>the</strong> GEV distribution describes<br />

a family of distributions, each member of which is<br />

characterised by <strong>the</strong> value of <strong>the</strong> shape parameter, in this<br />

case k. The GEV distribution may be divided into three<br />

types of extreme value (EV) distribution depending on<br />

whe<strong>the</strong>r k is equal to, less than, or greater than zero. The<br />

three types, and <strong>the</strong> corresponding range <strong>for</strong> which <strong>the</strong> pdf<br />

(Equation 3.7) is non-zero, <strong>are</strong> defined as follows:<br />

(¡) if k = 0, <strong>the</strong> rlistribution is type I (EVl) and <strong>the</strong> pdf is<br />

non-zero <strong>for</strong> x>0;<br />

(¡i) if k < 0, <strong>the</strong> distribution is type 2 (Ev2) and <strong>the</strong> pdf is<br />

non-zero<strong>for</strong>u + S . * < *;<br />

K<br />

38<br />

and EV3 is also known as Weibull. The three types <strong>are</strong> also<br />

called Fisher-Tippett type I, type2, and type 3.<br />

Since k = 0 <strong>for</strong> <strong>the</strong> EVI distribution, <strong>the</strong> distribution is<br />

only a two-param€rter one and <strong>the</strong> pdf simplifies to<br />

(Ð=å<br />

exp [ - (x - u)/o - e-(x- u)/a¡ 39<br />

while <strong>the</strong> df reducr:s to<br />

F(x) : s¡t [-e-(t -u),za¡<br />

If a reduced varÍate y is now introduced <strong>for</strong> <strong>the</strong> EVI distribution<br />

such that<br />

or<br />

,, _ x-u<br />

a<br />

X:U+cry<br />

<strong>the</strong>n <strong>the</strong> df may be written as<br />

and<br />

F(x) = s-e-r<br />

x: u +f,tr-r-url<br />

Using Equation 3.14 it is possible to distinguish between<br />

<strong>the</strong> three types of EV distribution by plotting <strong>the</strong>m on an<br />

x- y probability plot (see Figure 3.3), o<strong>the</strong>rwise known as<br />

Gumbel probability paper.<br />

The EV2 has a lower bound but no upper bound; conversely<br />

<strong>the</strong> EV3 has an upper bound and no lower bound,<br />

while <strong>the</strong> EVI iS unbounded.<br />

If required, return periods and associated probabilities<br />

can be scaled on <strong>the</strong> abscissa axis in Figure 3.3 by recalling<br />

from Equation 3.ór that<br />

and by substituting <strong>for</strong> F(x) in Equation 3.13. This produces<br />

T- I<br />

l-<br />

l-e-e-Y<br />

Y: -rn ('- rn(t-å, )<br />

310<br />

3ll<br />

3t2<br />

313<br />

which gives rise to <strong>the</strong> name of double exponential distribution<br />

<strong>for</strong> EVl.<br />

Because Equations 3.ll and 3.12 describe a linear relationship<br />

between x and y, <strong>the</strong> df <strong>for</strong> <strong>the</strong> EVI distribution is<br />

given as a straight line on an x - y plot.<br />

The GEV distritrution may also be expressed in terms of<br />

<strong>the</strong> reduced variate y by <strong>the</strong> following equation derived by<br />

Jenkinson (1955)<br />

F(x):l-l<br />

T<br />

314<br />

315<br />

316<br />

(ili) if k > 0, <strong>the</strong> distribution is type 3 (EV3) and <strong>the</strong> pdf is<br />

non-zero<strong>for</strong>-æ


Êv2<br />

( ko)<br />

Reduced Voriote y<br />

I'O<br />

t1<br />

50 too<br />

ttl<br />

5to20<br />

, Return Period, yeors<br />

Figure 3.3 Differentiation of <strong>the</strong> three types of extreme value d¡stribution.<br />

I<br />

200<br />

Table 3.1 The relationship between y and T values <strong>for</strong> <strong>the</strong> EVI<br />

distribution.<br />

Equations similar to 3.15 and 3.16, but this time relating<br />

y and <strong>the</strong> probability of exceedence, may be obtained by<br />

substituting P(X > x), as given in Equation 3.5, into <strong>the</strong> two<br />

equations. This results in<br />

1.O1<br />

2.OO<br />

2.33<br />

5<br />

10<br />

20<br />

30<br />

50<br />

100<br />

200<br />

500<br />

1000<br />

- 1.53<br />

0.37<br />

o.58<br />

1.50<br />

2.25<br />

2.97<br />

3.38<br />

3.90<br />

4.60<br />

5.29<br />

6.21<br />

6.91<br />

-2.O<br />

- 1.5<br />

- 1.O<br />

-0.5<br />

o<br />

o.5<br />

1.O<br />

1.5<br />

2.O<br />

2.5<br />

3.0<br />

3.5<br />

4.O<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.O<br />

1.OO<br />

1.01<br />

1.O7<br />

1.24<br />

1.58<br />

2.20<br />

3.25<br />

5.OO<br />

7.90<br />

12.69<br />

20.59<br />

33.62<br />

55.1 0<br />

90.52<br />

148.9<br />

245.2<br />

403.9<br />

665.6<br />

1 097<br />

and<br />

P(X>x) = I -6-e-I<br />

y = -fn(- fn(l-P(x>x))) .....3.18<br />

3. I .4 Sampling properties<br />

317<br />

The data sample, from which a flood frequency analysis<br />

infers a design flood magnitude, must possess <strong>the</strong> following<br />

properties if <strong>the</strong> analysis is to make <strong>the</strong> proper inferences<br />

about <strong>the</strong> population's distribution.<br />

Sufftcient Length The data sample should be sufficiently<br />

long, i.e., it should contain a large number of items. Often<br />

l0 annual flood peak items <strong>are</strong> considered sufficient (Neill<br />

1973; Beard 1977), though even <strong>the</strong>n <strong>the</strong> sample is of limited<br />

use in design (Linsley et al, 1975) unless supplemented<br />

with additiongl hydrological in<strong>for</strong>mation, €.g., a correlation<br />

with a longer streamflow record from a nearby station.<br />

t6<br />

Water & soil technical publication no. 20 (1982)


Never<strong>the</strong>less, data samples of about l0 years in length <strong>are</strong><br />

common and <strong>are</strong> often <strong>the</strong> only data available.<br />

Completeness The data sample should be complete, i.e.,<br />

it should be taken from a continuous streamflow record.<br />

Gaps in <strong>the</strong> record do <strong>not</strong> matter provided it is certain that<br />

<strong>the</strong> maximum flood peak in <strong>the</strong> corresponding time unit<br />

was recorded. However, where flood peak sample items <strong>are</strong><br />

missing as a result of gaps in <strong>the</strong> record, <strong>the</strong> time units containing<br />

<strong>the</strong> gaps shortid be only a small proportion of <strong>the</strong><br />

total sample length. And ra<strong>the</strong>r than concatenating <strong>the</strong> various<br />

recorded sequences toge<strong>the</strong>r, it is preferable instead to<br />

omit altoge<strong>the</strong>r <strong>the</strong> streamflow record <strong>for</strong> <strong>the</strong> time units<br />

with <strong>the</strong> gaps (e.g., omit whole years <strong>for</strong> an annual flood<br />

peak sample) and to treat <strong>the</strong> sample as having a correspondingly<br />

shorter length.<br />

Homogeneity The sample should be homogeneous, i.e.,<br />

all <strong>the</strong> items should have occurred under <strong>the</strong> same conditions.<br />

Factors which.can affect <strong>the</strong> homogeneity of a sample<br />

include: man's activity (e.g., construction of reservoirs,<br />

land use changes, stopbanking, channel realignment, flow<br />

regulation, and diversions); faulty records; and changes in<br />

gauging control conditions that re-rating has <strong>not</strong> accounted<br />

<strong>for</strong>. Only samples which represent relatively stable catchment<br />

conditions should be used. The homogeneity of a<br />

large sample may be checked by splitting <strong>the</strong> sample into<br />

two parts and comparing <strong>the</strong> frequency curve fitted to each<br />

(Beard 1974, 1977).<br />

Rondomness The time unit must be long enough that each<br />

flood peak item in <strong>the</strong> sample is from a different flood<br />

event, so that it is reasonable to assume <strong>the</strong>re is no serial<br />

correlation between successive flood peak items.<br />

Reliability The sample items taken from <strong>the</strong> streamflow<br />

record should be reliable measurements or estimates' Measurement<br />

errors <strong>are</strong> generally small in relation to <strong>the</strong> year-toyear<br />

variance in <strong>the</strong> sample items and can <strong>the</strong>re<strong>for</strong>e usually<br />

be neglected. The errors that <strong>are</strong> of concern result from<br />

large extrapolations of <strong>the</strong> stage-discharge rating curve and<br />

from <strong>the</strong> existence of an unstable gauging control. <strong>These</strong> errors<br />

reduce <strong>the</strong> reliability of <strong>the</strong> data sample and, consequently,<br />

<strong>the</strong> reliability of <strong>the</strong> fitted frequency curve, and<br />

thus a record needs to be checked <strong>for</strong> <strong>the</strong>ir presence.<br />

Representativeness The data sample should be representative<br />

of <strong>the</strong> long-term or population distribution of items.<br />

Clearly this is difficult to assess because <strong>the</strong> population is<br />

unknown. However, <strong>the</strong> representativeness of <strong>the</strong> sample<br />

can be tested statistically if <strong>the</strong>re is a long-term streamflow<br />

record <strong>for</strong> a similar catchment nearby (McGuinness and<br />

Brakensiek 1964). Where tests show conclusively that <strong>the</strong><br />

sample is unrepresentative on a long-term basis, <strong>the</strong>re<br />

*ould be no point in applying frequency analysis methods;<br />

<strong>the</strong> resulting frequency curves would have little predictive<br />

value.<br />

3.1.5 Types of samp¡e<br />

In general three types of flood sample may be identified.<br />

Annual Series The most usual <strong>for</strong>m of a data sample is<br />

<strong>the</strong> annual series, which consists of <strong>the</strong> maximum flood<br />

peak <strong>for</strong> each year of<br />

Pling generally<br />

produces items<br />

However,<br />

it is claimed that a d<br />

sample is<br />

that it may ignore some large flood peaks and emphasise<br />

smaller ones.<br />

Peaks Over a Threshold Series An alternative type of<br />

sample is <strong>the</strong> partial duration series, which seeks to overcome<br />

<strong>the</strong> disadvantage of <strong>the</strong> annual series by containing all<br />

flood peaks above an arbitrarily chosen base level. Sample<br />

items chosen in this way need to be checked much more<br />

closely <strong>for</strong> serial correlation than an annual series, because<br />

large floods often contain more than one peak above <strong>the</strong><br />

base level.<br />

Historical Series l{istorical in<strong>for</strong>mation on flood events is<br />

often available. rùy'hen it is reliable it should be used in conjunction<br />

with <strong>the</strong> data sample taken from <strong>the</strong> continuous<br />

streamflow record. The resulting data sample is called a historical<br />

series. The inclusion of historical in<strong>for</strong>mation often<br />

significantly increases <strong>the</strong> length of a sample, <strong>the</strong>reby improving<br />

<strong>the</strong> reliabitity of <strong>the</strong> frequency analysis. Moreover,<br />

<strong>the</strong> in<strong>for</strong>mation herlps to fix <strong>the</strong> top end of <strong>the</strong> frequency<br />

curve, <strong>the</strong> end in u¡hich <strong>the</strong>re is generally most interest.<br />

In this study <strong>the</strong>: basic data sample used was an annual<br />

series, which consisted of <strong>the</strong> maximum instantaneous discharge<br />

<strong>for</strong> each year of record; historical in<strong>for</strong>mation was<br />

also included where possible. The partial duration series<br />

was <strong>not</strong> used, even though it contains more items than <strong>the</strong><br />

annual series <strong>for</strong> a given length of record. It was excluded<br />

because its advantage over <strong>the</strong> annual series is only when<br />

<strong>the</strong> design return period is less than l0 years (NERC 1975;<br />

Chow 1964, pp.8-i!.2,23). Fur<strong>the</strong>rmore, <strong>the</strong>re is no guarantee<br />

that it is better than <strong>the</strong> annual series simply because it<br />

contains more data. As has been pointed out by NERC<br />

(1975, section 2.2.4 and section 2.1\ and by Cunnane<br />

(1975), <strong>the</strong> dictum "more data, better estimates" is <strong>not</strong> universally<br />

true, and in certain circumstances estimates from<br />

an annual series can be more efficient statistically than<br />

those from a partiial duration series taken from <strong>the</strong> same<br />

record.<br />

3.1.6 Plotting<br />

The probability plot, i.e., <strong>the</strong> x-y plot of <strong>the</strong> sample<br />

data, is an integral part of hydrological practice. Despite<br />

<strong>the</strong> numerous statistical goodness-of-fit tests now available,<br />

few engineers who have to make decisions which <strong>are</strong> based<br />

on <strong>the</strong> analytical fitting of <strong>the</strong>oretical distributions to sample<br />

data would do so without first inspecting <strong>the</strong> fit of <strong>the</strong><br />

frequency curve on a probability plot.<br />

In order to construct a probability plot, it is necessary to<br />

know <strong>the</strong> return period or plotting position of each sample<br />

item. Various fonnulae <strong>are</strong> available <strong>for</strong> calculating plotting<br />

positions, witlh <strong>the</strong> following one <strong>the</strong> Weibull <strong>for</strong>m-<br />

-<br />

ula<br />

- being <strong>the</strong> nrost popular: 319<br />

T -N+l rP - __<br />

i<br />

where Tp<br />

and i<br />

Water & soil technical publication no. 20 (1982)<br />

N<br />

<strong>the</strong> return period plotting position of a<br />

fJood peak, in years;<br />

<strong>the</strong> length of record in years (e.9., <strong>the</strong><br />

number of annual peaks <strong>for</strong> an annual<br />

sr:ries);<br />

= <strong>the</strong> rank of <strong>the</strong> flood peak in <strong>the</strong> series<br />

(r:.g., I <strong>for</strong> <strong>the</strong> largest and N <strong>for</strong> <strong>the</strong> smal-<br />

Iest of an annual series).<br />

The <strong>for</strong>mula has gained wide acceptance, largely because<br />

of its simplicity and <strong>the</strong> fact that it gives results one would<br />

intuitively expect. For example, <strong>the</strong> largest peak in an annual<br />

series has a c,alculated plotting position only one year<br />

greater than <strong>the</strong> length of record. This is consistent with<br />

Gumbel's (1943) reasoning that <strong>the</strong> largest item in a sample<br />

of N items should <strong>not</strong> have a return period significantly<br />

greater than N, However, <strong>the</strong>re is statistical evidence<br />

against such an inl.uitive line of thought. For example, Cunnane<br />

(1978), in a comprehensive review of plotting positions,<br />

has shown statistically that <strong>for</strong> samples of size N belonging<br />

to <strong>the</strong> EVI distribution, <strong>the</strong> largest item in <strong>the</strong> sample<br />

has a return ¡reriod in <strong>the</strong> p<strong>are</strong>nt population of about<br />

1.8N. In fact NEIìC (1915, p.67) and Cunnane have made<br />

<strong>the</strong> point that <strong>the</strong> Weibull <strong>for</strong>mula gives biased plotting<br />

positions, which, on average, leads to an over-estimation of<br />

flood peaks <strong>for</strong> high return periods.<br />

Cunnane emphrasised <strong>the</strong> need to distinguish between <strong>the</strong><br />

plotting position of a sample item and that item's actual ret7


turn period. A plotting position <strong>for</strong>mula merely gives <strong>the</strong><br />

position at which <strong>the</strong> item should be plotted in order to<br />

assess <strong>the</strong> goodness-of-fit of <strong>the</strong> frequency distribution.<br />

The actual return period of <strong>the</strong> item should be inferred<br />

from <strong>the</strong> fitted distribution.<br />

TP N + 0.12<br />

i-0.4<br />

Equation 3.20 also gives a reasonable approximation of<br />

<strong>the</strong> unbiased plotting positions <strong>for</strong> a GEV distribution displaying<br />

small or moderate curvature. It was <strong>the</strong>re<strong>for</strong>e used<br />

in this study <strong>for</strong> <strong>the</strong> calculation of plotting positions <strong>for</strong> <strong>the</strong><br />

methods involving EV distributions. It is possible to calculate<br />

exact plotting positions <strong>for</strong> <strong>the</strong> EVI distribution <strong>for</strong><br />

small values of N but in practice, <strong>for</strong> N ) 35, <strong>the</strong> calculation<br />

is overwhelmed by ro<br />

a<br />

,N<br />

" a' iD=, 321<br />

320<br />

S).<br />

(section<br />

where Q¡ an individual annual flood peak, and<br />

N <strong>the</strong> length, in years, of <strong>the</strong> annual series.<br />

A dimensionless probability plot was <strong>the</strong>n obtained <strong>for</strong><br />

The annual flood<br />

3.2.1) <strong>for</strong> each flow s ¡sionless<br />

<strong>for</strong>m by dividing through by <strong>the</strong> corresponding mean annual<br />

flood Q, defined as <strong>the</strong> arithmetic mean of <strong>the</strong> annual<br />

series. Thus<br />

mean annual flood Q standardises <strong>the</strong> series, permitting a<br />

direct comparison of <strong>the</strong> plot of one series with a<strong>not</strong>hèr.<br />

Significant differences between plots <strong>are</strong> interpreted to<br />

mean that <strong>the</strong> corresponding ftow stations belong to different<br />

flood frequency regions.<br />

volved, namely whe<strong>the</strong>r<br />

(D <strong>the</strong> historical floods occurred outside <strong>the</strong> annual series;<br />

or<br />

(ii) tne historical floods occurred inside <strong>the</strong> annual series.<br />

Dealing first with <strong>the</strong> type (i) series, consider an annual<br />

period of J years,<br />

to have occurred,<br />

seri<br />

dur<br />

givi<br />

fN+Jyears.In<br />

this<br />

nnual seiies were<br />

based on a record length of N years, as be<strong>for</strong>e, while <strong>the</strong><br />

plotting positions of <strong>the</strong> historical floods were based on <strong>the</strong><br />

th of N + J years. Hence, <strong>for</strong> exorical<br />

flood had a return period plotby<br />

TP :(N + J) + 0.12 =<br />

i-o.4<br />

(N+J) + 0.t2 322<br />

0.56<br />

For <strong>the</strong> type (ii) series, consider <strong>the</strong> largest flood peak in<br />

<strong>the</strong> annual series, of length N years, which also is known to<br />

be <strong>the</strong> largest over a longer period of N + J years. Here <strong>the</strong><br />

t8<br />

plotting position of <strong>the</strong> largest peak was based on <strong>the</strong> length<br />

of <strong>the</strong> historical series N + J years, giving a return period<br />

as indicated by Equation 3.22. The o<strong>the</strong>r flood peaks in <strong>the</strong><br />

annual series were <strong>the</strong>n treated as <strong>the</strong> 2nd, 3rd largest etc. in<br />

N years.<br />

In <strong>the</strong> special case where <strong>the</strong>re were two historical floods,<br />

one outside and one inside <strong>the</strong> annual series of length N<br />

years, <strong>the</strong> plotting positions of <strong>the</strong>se two floods were based<br />

on N + J years. Again <strong>the</strong> ordinary annual flood peaks<br />

were considered as <strong>the</strong> 2nd, 3rd largest etc. in N years.<br />

3. 1.7 Computer programs<br />

In this study flood frequency analyses were per<strong>for</strong>med<br />

analytically using a computer program called FRAN<br />

(Maguiness et al. in prep.). The methods included in <strong>the</strong><br />

program <strong>are</strong> outlined in Appendix A. A<strong>not</strong>her program<br />

called FRANCES (Appendix A) was developed ro analyse<br />

<strong>the</strong> historical series data, which typically comprised an annual<br />

series and an additional period of unknown record in<br />

which one or more large, <strong>not</strong>able, and hence historical<br />

floods, occurred. The program FRANCES per<strong>for</strong>ms a frequency<br />

analysis of a censored sample, which may be defined<br />

as a sample which contains unknown flood peaks that<br />

all lie on one side of a given threshold value or censoring<br />

point. An historical series may often be regarded as a censored<br />

sample, where <strong>the</strong> unknown peaks <strong>are</strong> those which<br />

occurred outside <strong>the</strong> annual series and which were less than<br />

<strong>the</strong> known historical flood peaks. In using <strong>the</strong> program, it<br />

is necessary to specify <strong>the</strong> historical flood peaks and to<br />

assume that none of <strong>the</strong> unknown peaks exceeded <strong>the</strong> censoring<br />

point, which must be set at a value less than <strong>the</strong> historical<br />

peaks.<br />

same method.<br />

3.2 Flood frequency data<br />

3.2.1 Data collect¡on<br />

The collection of annual series data was restricted to<br />

thosè flow stations which satisfied <strong>the</strong> following conditions:<br />

(i) <strong>the</strong> catchment land use had <strong>not</strong> changed significantly<br />

over <strong>the</strong> period of record;<br />

(ii) <strong>the</strong> annual flood peaks were <strong>not</strong> substantially regulated<br />

or affected by impoundments, swamps or diversions<br />

within <strong>the</strong> catchment;<br />

(iii) <strong>the</strong>re were eight or more annual flood peaks available;<br />

(iv) when historicat flood peak in<strong>for</strong>mation was available,<br />

<strong>the</strong>re were also at least five annual flood peaks;<br />

(v) <strong>the</strong> catchment was rural, or predominantly so;<br />

(vl) <strong>the</strong> catchment <strong>are</strong>a was greater than 20 kmr.<br />

The first two conditions <strong>are</strong> consistent with <strong>the</strong> normal<br />

requirements <strong>for</strong> data samples (section 3.1.4). The third<br />

condition of only 8 or more years of record is slightly less<br />

than <strong>the</strong> l0 years that is generally recommended as <strong>the</strong><br />

minimum sample length required <strong>for</strong> a typical flood frequency<br />

analysis. However, this study was concerned, <strong>not</strong> so<br />

much with flood frequency analyses <strong>for</strong> individual stations,<br />

as with <strong>the</strong> derivation of regional curves from mass plots of<br />

all <strong>the</strong> data <strong>for</strong> <strong>the</strong> regions (section 3.1.5). The reduction in<br />

this study of <strong>the</strong> minimum sample length to 8 years allowed<br />

<strong>the</strong> data <strong>for</strong> an extra 25 ftow stations to be used. It appe<strong>are</strong>d<br />

that <strong>the</strong>se extra data would rein<strong>for</strong>ce <strong>the</strong> definition<br />

of <strong>the</strong> lower end of <strong>the</strong> regional curves.<br />

The fourth condition, specifying five or more annual<br />

flood peaks, was needed so that <strong>the</strong> mean annual flood Q<br />

could be calculated, thus permitting <strong>the</strong> station,s historical<br />

peaks Q to be expressed in <strong>the</strong> <strong>for</strong>m of Q/Q and included<br />

in <strong>the</strong> mass data plot <strong>for</strong> <strong>the</strong> region. Unless <strong>the</strong>re were eight<br />

Water & soil technical publication no. 20 (1982)


or more annual peaks, however, <strong>the</strong> annual peaks <strong>the</strong>mselves<br />

were <strong>not</strong> considered <strong>for</strong> <strong>the</strong> mass plot.<br />

Condition (v) was necessary because <strong>the</strong> flood estimation<br />

method sought was intended <strong>for</strong> rural catchments, <strong>not</strong> urban<br />

ones.<br />

Condition (vi) was imposed in <strong>the</strong> belief that flood frequency<br />

characteristics of <strong>the</strong> very small and <strong>the</strong> larger<br />

catchments would be markedly different. It was anticipated<br />

that <strong>the</strong> effect of catchment storage in dampening <strong>the</strong> flood<br />

hydrograph would be less in <strong>the</strong> very small catchments,<br />

producing a steeper frequency curve of Q/Q than that <strong>for</strong> a<br />

laiger catchment with <strong>the</strong> same rainfall excess. An <strong>are</strong>a of<br />

20 kmt was chosen as <strong>the</strong> lower limit on <strong>the</strong> size of a catchment.<br />

It was later found, however, that catchments of<br />

smaller size could have been included in some of <strong>the</strong> regions<br />

(section 3.5.6).<br />

An exception to <strong>the</strong> lower limit of 20 km'z was made <strong>for</strong><br />

<strong>the</strong> Northland-Auckland <strong>are</strong>a. In this part of <strong>the</strong> country<br />

<strong>the</strong>re <strong>are</strong> relatively few large catchments, and without a relaxation<br />

on <strong>the</strong> minimum catchment size any flood estimation<br />

method would have only limited application. Moreover,<br />

<strong>the</strong> presence of swamps had caused <strong>the</strong> rejection of a<br />

number of annual series samples <strong>for</strong> flow stations in <strong>the</strong><br />

<strong>are</strong>a. There<strong>for</strong>e, to ensure that a reasonable amount of<br />

flood peak data was obtained <strong>for</strong> <strong>the</strong> <strong>are</strong>a and to enhance<br />

<strong>the</strong> practicability of <strong>the</strong> resultant flood estimation method,<br />

<strong>the</strong> lower limit on catchment size was reduced in <strong>the</strong> Northland-Auckland<br />

<strong>are</strong>a to 2 km'.<br />

The data samples collected were plotted on Gumbel<br />

probability paper and, after checks were made of <strong>the</strong>ir repiesentativeness<br />

(section 3.2.2), samples <strong>for</strong> 152 stations<br />

were finally accepted <strong>for</strong> use. For 148 of <strong>the</strong>se stations<br />

-<br />

96 in <strong>the</strong> North Island and 52 in <strong>the</strong> South Island<br />

-<br />

<strong>the</strong> annual<br />

series was eight years or longer; <strong>the</strong> remaining four stations<br />

had historical in<strong>for</strong>mation and an annual series of between<br />

fltve and seven years in length. Five of <strong>the</strong> stations<br />

were later omitted <strong>for</strong> <strong>the</strong> derivation of <strong>the</strong> regional curves<br />

(see Table 3.2 and Appendix B). The location of all <strong>the</strong> staiions,<br />

and <strong>the</strong>ir associated catchments, <strong>are</strong> shown <strong>for</strong> <strong>the</strong><br />

North and <strong>the</strong> South Islands in Figures 3.4 and 3.5, respectively.<br />

In<strong>for</strong>mation on <strong>the</strong> stations is listed in Table 3.2'<br />

grouped according to <strong>the</strong> regions into which <strong>the</strong> stations<br />

were initially classified (section 3.3.1). The annual flood<br />

peak data <strong>for</strong> <strong>the</strong> stations, statistics of <strong>the</strong> data, and comments<br />

on <strong>the</strong> data and <strong>the</strong> catchments <strong>are</strong> summarised in<br />

Appendix B, again according to <strong>the</strong> initial regional classification.<br />

Attempts to extend short records by correlation<br />

with adjacent longer records <strong>for</strong> a sample of stations in <strong>the</strong><br />

nor<strong>the</strong>rn half of <strong>the</strong> South Island were unsuccessful and <strong>the</strong><br />

approach was <strong>not</strong> Pursued.<br />

3.2.2 Minimum record length and outliers<br />

ferent distribution'<br />

on <strong>the</strong> use of an outlier <strong>are</strong> given by Irish and Ashkanasy<br />

<strong>are</strong> as follows:<br />

Water & soil technical publication no. 20 (1982)<br />

(i) lf 5


'o ,l\,<br />

I<br />

zl<br />

l-<br />

I<br />

Water & soil technical publication no. 20 (1982)


l'<br />

cooxi:<br />

i-<br />

i - --l- ii<br />

'___-T---<br />

ô¡<br />

sì<br />

c<br />

o<br />

6<br />

ø<br />

ì<br />

-9<br />

It c66<br />

E 5o<br />

al,<br />

ro<br />

Gt<br />

a¡<br />

-É ¡t<br />

I<br />

I<br />

---<br />

ri<br />

| _,+ --<br />

\<br />

\<br />

t<br />

Water & soil technical publication no. 20 (1982)


Table 3.2 Flow stat¡ons used.<br />

SITE NO.<br />

FLOW STÀTION<br />

CÀTCHME{T ÀREÀ (KN2)<br />

NO. ANNUÀI, (ÀND<br />

HISTORICÀI) FI¡OD PEÀI(S<br />

NORTHERN NORTH<br />

REGTOIV<br />

3506 Maungap<strong>are</strong>rua Rl-ver at Tyrees Ford<br />

3819 Waiharakeke River at will@ Bank<br />

49OI Ngunguru River at Dugmorers Rock<br />

5809 Waiarohia River at RusselL Road<br />

8501 wairoa River at !{eir<br />

9101 waitoa River at [ihakahoro Bridge<br />

9108 Piako Rj-ver at whalahoro Road<br />

9203 waihou River at Puke Brjdge<br />

9204 ohinemuri River at criærion Bridge<br />

9213 Ohinenui River at KarangahåÌe<br />

9223 Waihou River at Shaftesbuly<br />

930I Kauaeræga River at Snithrs<br />

14627 Waiari River at Muttons<br />

43803 Papakura River at S.H. Bridge<br />

45702 waiwhiu River at Done shadow<br />

4661I Kaihu River at corge<br />

46618 Megal(ahia River at corge<br />

46625 Hikurangi River at Kæ-Hikurangi Bridge<br />

46632 Whakapara River at S.H. Bridge<br />

46660 Puketurua River at PuketiÈoi<br />

47527 Opahi River at Pond<br />

Ib.<br />

NORTH ISLAND WEST' COAST REGTON<br />

33IOl Whangaehu River at Kauangaroa<br />

33103 llhangaehu River at S.H. 3 Bridge<br />

33107 Whangaehu River at Karioi<br />

33111 Mangawhero River at Ore Ore<br />

33114 Waitangi River at Tangiwai<br />

33U5 l.,langaetoroa River at School<br />

33II7 ¡{akotuku River at s.H. 49À Bridge<br />

33301 fdanganui River at paetawa<br />

33302 Wanganui River at Te Maire<br />

33309 f.,fanganui-o-te-ao at Àshworth<br />

33313 Ohura River at Tokori.m<br />

33316 Ongarue River at Taringmutu<br />

33320 WhakaIEIÉ River at Foot¡ridge<br />

33338 l.langanui River at Matapuna<br />

3600I Punehu River at pihila *<br />

39501 Waitara River at Tarata<br />

39504 ¡,tanganui River at Tariki F.oad<br />

43433 WaiIÞ River at VthaÈawhata<br />

43435 WaipalÞ River at Ngarona Road<br />

LO43427 Mangakino River at Dillonrs Road<br />

1043461 longariro River at Upper Dan<br />

1043466 Vlaihohonu River at Desert Road<br />

Lc.<br />

MANAI,/A1I.'-RANîITIKEI RE1ION<br />

31903 Otaki River at hlapaka<br />

32502 Manawatu River at Fitzherbert Bridge<br />

32503 Manawatu River at Weber Road<br />

32514 Oroua River at Almadale<br />

32526 Mangahao River at Ballance<br />

32529 lirawea Rive! at Ngaturi<br />

3253I t4angatainoka River at Suspension Bridge<br />

32563 Oroua River at Kawa Idool<br />

32576 pohangina River at Mais Reach<br />

3270L Rangitikei River at Kåkariki<br />

32702 Rangitikei River at Manqaweka<br />

32708 Rangitikei River at Springvale<br />

32723 Maungaraupi River at porewa Road *<br />

32732 Moawhango River at Waiouru<br />

32735 Rangitawa River at Halcombe<br />

32739 Tutaenui River at Hmond Street<br />

Id.<br />

SOUTHERN NQRTE ISLAND REGION<br />

292OL Ru4ahanga River at wardells<br />

29202 Ruanahanga River at Waihenga<br />

29224 Waj-ohine River aÈ Gorge<br />

29231 Taueru River at Te Weraiti<br />

29242 Atíw}lakatu River at Mt Holdsworth Road<br />

29244 Whangaehu River at waihi<br />

29808 Hutt River at Kaitoke<br />

29818 HuÈt River at BirchviLLe<br />

2. BAY OF P¡NNTY REGTON<br />

11. I<br />

229<br />

L2.5<br />

L6.2<br />

L2.7<br />

433<br />

528<br />

1606<br />

308<br />

287<br />

984<br />

L22<br />

69.9<br />

57<br />

s.03<br />

tt6<br />

246<br />

I89<br />

L62<br />

2.4e<br />

r0.6<br />

t9t7<br />

I968<br />

492<br />

539<br />

63.5<br />

33.2<br />

20. I<br />

6643<br />

22I2<br />

332<br />

668<br />

1075<br />

184<br />

97L<br />

29.5<br />

725<br />

80<br />

2926<br />

r37<br />

373<br />

L74<br />

88<br />

301<br />

3916<br />

713<br />

3L2<br />

266<br />

734<br />

452<br />

570<br />

4'11<br />

3595<br />

27A7<br />

583<br />

25.6<br />

245<br />

62.4<br />

47 -7<br />

637<br />

2340<br />

ts3<br />

373<br />

38. B<br />

36 .3<br />

88. g<br />

427<br />

49<br />

10<br />

10<br />

I<br />

LO plus I hlstorical<br />

I5<br />

17 (includes I histolical)<br />

L7(<br />

19(<br />

13 plus<br />

L7<br />

L2<br />

18<br />

historl.cal<br />

t0<br />

I<br />

10<br />

I plus I hlstorícal<br />

17 (includes I hlstorical)<br />

I<br />

L7<br />

L2<br />

L2<br />

I plus I historical<br />

l0<br />

13<br />

9<br />

ó<br />

19<br />

L4 plus I hÍstoricaL<br />

t5<br />

I5<br />

14 plus I historical<br />

L7<br />

I plus I historical<br />

I<br />

I (includes I historica¡-)<br />

L2<br />

I3<br />

T4<br />

L7<br />

L4<br />

18 plus I historical<br />

(includes !. historicaL plus l)<br />

22<br />

24<br />

24<br />

24<br />

24 plus I historical<br />

lo<br />

I<br />

5 plus 3 historical<br />

(includes I historical pLus t)<br />

l0<br />

7 plus I historical<br />

L7<br />

I2<br />

22<br />

2L<br />

22<br />

I<br />

9<br />

9<br />

9<br />

6 plus I historical<br />

L4610 Utuhina River at S.H. 5 Bridge<br />

14614 KaiÈuna River at Te lltatai<br />

14628 ¡,tangorewa River at Saunderrs Fam<br />

15408 RangitaÍki Rjver at ¡turupara<br />

33307 l,llanganui River at Headwaters<br />

33324 Mangatepopo River at Ketetahi<br />

33347 Wanganui River at Te porere<br />

43472 Waiotapu River at Reporoa<br />

1043419 Pokaiwhenua River at puketurua<br />

1043428 Tahunaatara River at OhakurL Road<br />

:043459 Tongariro River at TurÐgi<br />

!043460 Tongariro River at puketarata<br />

),<br />

57<br />

958<br />

L79<br />

II84<br />

8I .3<br />

3t<br />

24.2<br />

22A<br />

448<br />

2LO<br />

772<br />

495<br />

Water & soil technical publication no. 20 (1982)<br />

I6<br />

20<br />

L7<br />

9<br />

2l<br />

9<br />

(includes I historlcal)<br />

II<br />

I<br />

IO<br />

(includes I historíctl)<br />

13<br />

L2<br />

(includea 2 historicat)<br />

('


SITE NO.<br />

FI¡W STÀîION<br />

CÀTCHT.{ENT ÀNEÀ (KN2)<br />

t¡o. ÀÀ¡NuÀf, (À¡¡D<br />

HISTORICÀT,) FI¡OD PEÀKS<br />

3. NORTH TST'AìID EAST COAST REGION<br />

15410 Whirinaki River at Galatea<br />

15432 Rangitaiki River at Kopuriki<br />

I55II waima River at vlaimÐa Gorge<br />

I55I4 Í¡hakatane River at whakatane<br />

15536 wainana River at Ogilvies Bridge<br />

15901 Waioeka River at Gorge cablesay<br />

I97ol waipaoa Rive' at Kanakanaia Bridge<br />

19?09 wh<strong>are</strong>kopae River at Killarney<br />

I97tI waingaronia River at Terrace<br />

2I80I Mohaka River at RauPunga<br />

21803 Moha](a River at Glenfalls<br />

22802 E,sk River at WaiPunga Bridge<br />

4. CEI\¡?RÀ¿ HAWKES BAY REG¡ON<br />

23OOl lutaekuri River at PuketaPu<br />

23002 Tutaekuri.River at Redclyffe<br />

23102 Ngaruroro Rive! at Fernhill<br />

23104 Ngaruroro River at KuriPaPango<br />

23106 Taruarau River at TaihaPe Road<br />

2320f Tukitui


e process of examining <strong>the</strong> simtrend<br />

was repeated. Adjoining<br />

d a similar trend were combined<br />

toge<strong>the</strong>r to <strong>for</strong>m a flood frequency region. In this way ll<br />

regions were built up.<br />

In constructing <strong>the</strong> regions due recognition was taken of<br />

<strong>the</strong> many factors that would influence <strong>the</strong> floods in <strong>the</strong> different<br />

catchments. Attention was given to <strong>the</strong> climat€, topography<br />

and soils of <strong>the</strong> catcr,ments, and <strong>the</strong> aim was to<br />

have catchments with similar flood-producing characteristics<br />

located in <strong>the</strong> same region. The construction was<br />

guided by maps that showed countrywide climatic and physiographical<br />

patterns, e.g., a Meteorological Service ãvei-<br />

Survey topographical maps.<br />

The ll flood frequency regions that were fîrst decided<br />

upon <strong>are</strong> shown in Figures 3.6 and 3.7. Four of <strong>the</strong>se regions,<br />

Regions la-ld, were later combined into one (section<br />

3.3.2). The list of stations within each region is given in<br />

Table 3.2.<br />

3.3.2 Development of reglonat flood frequency<br />

cutves<br />

The y values that were used in <strong>the</strong> regional plots were ob_<br />

tained in <strong>the</strong> following ma¡ner:<br />

(i) For flood records less than or equal to 35 years in<br />

length, <strong>the</strong> y values were <strong>the</strong> exact ones <strong>for</strong> <strong>the</strong> unbiased<br />

plotting positions <strong>for</strong> <strong>the</strong> EVI distribution and<br />

<strong>the</strong>y were taken from a table in NERC (1975, pp.g2_<br />

3).<br />

(¡i)<br />

0.5 class intervals, and an average e/Q and y value was calculated<br />

from <strong>the</strong> data points falling within each class. This<br />

averaging process was <strong>the</strong> same procedure as that used by<br />

NERC (1975) and it produced a smooth trend in <strong>the</strong> regional<br />

data.<br />

The GEV distribution, namely<br />

In <strong>the</strong> second case no constraint was placed on <strong>the</strong> value <strong>for</strong><br />

k, so that in general a GEV fit was obtained. However, because<br />

of <strong>the</strong> relatively small size of many of <strong>the</strong> data samples<br />

used, and in view of <strong>the</strong> findings in <strong>the</strong> evaluation tests<br />

(Appendix A) relating to small samples, <strong>the</strong> EVI fit was regarded<br />

as <strong>the</strong> regional curve unless <strong>the</strong> GEV fit produced a<br />

significant reduction (10 percent or more) in <strong>the</strong> sum of<br />

squ<strong>are</strong>s.<br />

It was <strong>not</strong> always practical, however, to fit Equation 3.14<br />

to a regional set of average values. Because of <strong>the</strong> limited<br />

amount of flood peak data available <strong>for</strong> some of <strong>the</strong> regions,<br />

<strong>the</strong> averaging process sometimes produced an unrepresentative<br />

or biased set of average values <strong>for</strong> a region,<br />

where <strong>the</strong> average values <strong>for</strong> low class intervals of y were<br />

based on many data points while <strong>for</strong> higher class intervals<br />

<strong>the</strong>y represented only one or two points. To reduce <strong>the</strong> possibility<br />

of obtaining unrepresentative regional curves,<br />

Equation 3.14 was only fitted to a s€t of average values<br />

when:<br />

(l) <strong>the</strong> total number of flood peaks <strong>for</strong> a region was<br />

greater than lü); and<br />

(ll) <strong>the</strong>re was no more than one average value <strong>for</strong> <strong>the</strong> region<br />

that was based on one data point.<br />

When <strong>the</strong>se criteria were <strong>not</strong> satisfied, <strong>the</strong> regional curve<br />

was defined instead by fitting Equation 3.14 in <strong>the</strong> manner<br />

described ea¡lier to all <strong>the</strong> plotted data <strong>for</strong> a region.<br />

Except <strong>for</strong> <strong>the</strong> Bay of Plenty (see section 3.3.3), <strong>the</strong> regional<br />

curves were obtained from <strong>the</strong> procedures outlined<br />

above and <strong>are</strong> given in Figures 3.8-3.16. tilhere a regional<br />

curve wÍrs dehned from a set of average values, <strong>the</strong> plot of<br />

<strong>the</strong> curve fitted to <strong>the</strong>se values is shown along with <strong>the</strong> corresponding<br />

regional probability plot, which contains all <strong>the</strong><br />

flood peak data <strong>for</strong> <strong>the</strong> region. (The historical peaks in a regional<br />

plot <strong>are</strong> indicated with circles and <strong>the</strong> corresponding<br />

site numbers <strong>are</strong> given alongside). Where average valuei<br />

were <strong>not</strong> used, only <strong>the</strong> regional plot with <strong>the</strong> regional curve<br />

superimposed is shown.<br />

The regional curves derived <strong>for</strong> <strong>the</strong> North Island West<br />

Coast regions, i.e., Regions la-ld, <strong>are</strong> plotted toge<strong>the</strong>r in<br />

Figure 3.17. Although <strong>the</strong>re <strong>are</strong> differences in <strong>the</strong> trends of<br />

<strong>the</strong> data in <strong>the</strong> corresponding regional plots, it can be seen<br />

from Figure 3.17 that <strong>the</strong> flrtting of <strong>the</strong> straight-line EVI<br />

distribution to <strong>the</strong> data of each region masked <strong>the</strong>se differences<br />

in close agree_<br />

ment.<br />

seeme<br />

<strong>the</strong> curveS, it<br />

ction between<br />

four regions<br />

<strong>for</strong> <strong>the</strong> com-<br />

. Vy'est Coast<br />

region. Averages of<strong>the</strong> pooled data were calculated <strong>for</strong> <strong>the</strong><br />

x=Q/Q<br />

= u*9(l-e-tv¡<br />

k<br />

3t4<br />

24<br />

a :a<br />

=U*oy 323<br />

Support <strong>for</strong> pooling <strong>the</strong> data from several regions toge<strong>the</strong>r<br />

is given by Stevens and Lynn (lg8) who used three<br />

statistical tests to analyse <strong>the</strong> variation amongst <strong>the</strong> regional<br />

curves derived by NERC (1975). They concluded that <strong>the</strong><br />

curves <strong>for</strong> some regiôns of Great Britain, while <strong>not</strong> necessarily<br />

identical, were certainly very similar. On <strong>the</strong>se<br />

grounds <strong>the</strong>y pooled <strong>the</strong> data <strong>for</strong> <strong>the</strong> regions with similar<br />

curves to obtain more stable estimates of floods at high return<br />

periods. The data were pooled into two groups, one<br />

<strong>for</strong> <strong>the</strong> fïve south-east regions of Great Britain and one <strong>for</strong><br />

<strong>the</strong> five north-west regions. A frequency curve was <strong>the</strong>n fitted<br />

to <strong>the</strong> data of each group and extended to <strong>the</strong> lüXÞyear<br />

return period.<br />

Water & soil technical publication no. 20 (1982)


I<br />

Fþuru 3.6 North lsland flood frequency regions.<br />

Water & soil technical publication no. 20 (1982)<br />

25


Iì_<br />

t_<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

t-.<br />

I<br />

I<br />

tñ<br />

I<br />

LÓ.<br />

I<br />

t¡l<br />

l\-'<br />

LØC'<br />

I<br />

South lslând west Coast<br />

l<br />

_l<br />

I<br />

T.-<br />

t-l-l<br />

\<br />

\<br />

i<br />

l<br />

\-<br />

\<br />

\<br />

\<br />

\<br />

Flguro 3.7 South lsland flood frequencV regions.<br />

Water & soil technical publication no. 20 (1982)<br />

26


NORTHERN<br />

to<br />

o<br />

o<br />

ñ'<br />

Þ<br />

o<br />

.,¡'<br />

c<br />

e. !:r<br />

NORTHERN<br />

NEIUNN FERIOD ÍYEFRS)<br />

N.I. BEGIONßL CUBVE<br />

.50 2.25 3.00<br />

REOUCEO Y VRFIRTE<br />

¿. t! É rb zb rb so z's roo<br />

RETUNN PEßIOO fYEÊNS)<br />

, Fþure 3.8 Region la: <strong>the</strong> regional plot and curve.<br />

27<br />

Water & soil technical publication no. 20 (1982)


Þ<br />

I"IEST COFST<br />

0<br />

o<br />

I<br />

E<br />

6o<br />

o<br />

o<br />

25 3,00<br />

NEOUCEO Y VFñIRÎE<br />

r.btl 23t Ë tô 20 30 so ?5 loo<br />

REÍUNN PENIOO fIERñSI<br />

NEST COFST N. I . BEG I ONÊL CUBVE<br />

o<br />

o<br />

o<br />

lo<br />

g<br />

o<br />

6<br />

o<br />

i.so ¿."s i.oo<br />

NEOUCEO Y VFNIßTE<br />

É r'o zi s'o Eo ?-6 lôo<br />

RETUNN FEN¡OO (TEFFSI<br />

28<br />

Figun 3.9 Region lb: <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)


MßNRI,.¡RTU-RßNGITIKEI BEGIONIRL CURVE<br />

o<br />

a<br />

";<br />

o<br />

";<br />

o<br />

Ð<br />

"i<br />

l@<br />

G oo<br />

";<br />

o<br />

I<br />

BEOUCED 'I VRH I ßTE<br />

5102030<br />

RETUBN PEBIOD (YEHFs)<br />

Flgurc 3.1O Region lc: <strong>the</strong> regional plot with <strong>the</strong> curvo superimposed.<br />

Water & soil technical publication no. 20 (1982)<br />

29


SOUTHEBN<br />

REDUCEO Y VRBIßTE<br />

NETURN PEBIOD (YEHNSI<br />

o<br />

SOUTHEBN N. I. BEGISNRL CUBVE<br />

Þ<br />

o<br />

Þ<br />

o<br />

Þ<br />

o<br />

lø<br />

@<br />

o<br />

è<br />

o<br />

t,50 2.?s i.oo<br />

BEOUCED Y VFRIFTE<br />

s rò ao 3b sb ;'s röo ãõo<br />

RETUBN PEBIOO (YEFBS)<br />

30<br />

Fþuru 3.11 Region ld: <strong>the</strong> reg¡onal plot and curve.<br />

Water & soil technical publication no. 20 (1982)


CORST<br />

BEG I ONÊL<br />

CUBVE<br />

REOUCEO I VRBIRTE<br />

l.ort 2.33 5 l0 20 30 50 .75 t00 200<br />

BETUNN PEFIOD (IERHS)<br />

Fþure 3.12a Region 3: <strong>the</strong> regional plot w¡th <strong>the</strong> curvo superimposed.<br />

CENTBFL HRhIKES BßY BEGIONFL CUBVE<br />

l.so 2.2s 00<br />

FEOUCEO Y VRBIRTE<br />

r.ótt 2'33 s to zo 30 so ?s lo0 ¿00<br />

BETUBN PENIOO (YEFNS)<br />

Fþur 3.12b Region 4: <strong>the</strong> regional plot with th€ curve superimposed.<br />

Water & soil technical publication no. 20 (1982)<br />

3l


SOUTH ISLFND HEST COFST I]ÊTR<br />

èo<br />

d'<br />

o<br />

I<br />

.ü'<br />

lct<br />

o oè<br />

o<br />

b<br />

.50 ¿.25 3.OO<br />

NEDUCEO Y VFNIâTE<br />

NETUNN FEBIOB (YERBs¡<br />

Þ<br />

SOUTH<br />

ISLÊND 1,,IEST COÊST BEGIONRL CUBVE<br />

Þ<br />

o<br />

è<br />

o<br />

IG<br />

oo o<br />

o<br />

Þ<br />

0<br />

REOUCEO Y VFNIFTE<br />

NETUNil PEN¡OO fYERBS¡<br />

32<br />

Fþurc 3.13 Region 5: <strong>the</strong> rog¡onal plot and curve.<br />

Water & soil technical publication no. 20 (1982)


SOUTH<br />

I SLRNT]<br />

o<br />

ê<br />

Þ<br />

Þ<br />

Þ<br />

lo<br />

Go o<br />

Þ<br />

o<br />

00 3.75 {,50 5.25<br />

FEOUCEO Y VRNIFTE<br />

l.otl ?,9t s ¡0 20 lo s0 75 100 200<br />

BETUßN PEBIOO (IERFS¡<br />

SOUTH ISLÊND EÊ5T COÊST REGIONßL CUßVE<br />

.so 2.2s 3.00<br />

REOUCEO I VßNIRTE<br />

Ë l'o io !'o so ?3 róo<br />

RE'TURN PEBIOO (YERNSI<br />

F¡gur.3.14 Regbn 6: <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

33


SOUTH CÊNTERBURY DRTÊ<br />

NEOUCEO Y VßFIFTE<br />

l.ott 2,33 s ¡0 20 30 s0 7s 100 200<br />

RETURN PEßIOO (YEÊNS}<br />

o<br />

SOUTH CÊNTERBI-JRY BEG I ONF]L CURVE<br />

t<br />

o<br />

o<br />

Þ<br />

G'<br />

oo<br />

o<br />

o<br />

t<br />

r.so 2.2s 3.00 3.75 q.so<br />

NEDUCED Y VÊNIRTE<br />

2.93 5 ¡0 20 30 50 7s 100<br />

RETUBN PER¡OD (IEß85)<br />

34<br />

Flgure 3.15 Region 7: <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)


OTFGO_SOUTHLÊND BEG I ONFL CUßVE<br />

s0 -75 00<br />

BEDUCEO Y VßBJßTE<br />

00 q.50 s.zs<br />

l.0ll 2.33 5 lo 20 30 s0 ?s<br />

RETURN PEBIOO {YEßBSI<br />

Flgure 3.16 Region 8: <strong>the</strong> regional plot with <strong>the</strong> curve superimposed.<br />

N. I . I,'IE5T CORST BEG I ONRL CUBVES<br />

r00 200<br />

2.31<br />

00 3.75 r¡.50<br />

REOUCEO Y VFRINTE<br />

10 20 J0<br />

NETURN PENTOO --- (YERRS)<br />

50 7ri 100 200<br />

Flgure 3.17 Summary of <strong>the</strong> regional curves <strong>for</strong> Regions 1a-1d.<br />

Water & soil technical publication no. 20 (1982)<br />

35


COMB I NED<br />

,,IE5T CORST DRTR<br />

o<br />

rt<br />

€o<br />

o<br />

o<br />

NEOUCEO Y VFBIRTE<br />

?5 r¡.50 5.25<br />

t-0¡¡ 2.93 s t0 zo 30 so ?'5 róo eú¡<br />

BETIJñN PEBTOO (YEßñS¡<br />

j<br />

COMB I NED N. I . I^IEST COÊST ßEG I8NÊL CURVE<br />

o<br />

Þ<br />

a;<br />

o<br />

ê<br />

Þ<br />

ø<br />

rct<br />

o<br />

o<br />

o<br />

D<br />

o<br />

50 -'.75 1.50 2.25 3.00 3.75 r¡.50 5.25<br />

SEDUCED Y VßNIRTE<br />

t.oll 2.1! 5 t0 ¿0 !o 50 75 r00 200<br />

NETUNN FEBIOO (IEflNsI<br />

Figure 3.18 Region 1 <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

36


3.3.3 Bay of Plenty region<br />

Missing from Figures 3.8 to 3.16 is <strong>the</strong> plot of <strong>the</strong> regional<br />

curve <strong>for</strong> <strong>the</strong> Bay of Plenty region (Region 2). In defining<br />

<strong>the</strong> average curve <strong>for</strong> this region it was found that<br />

four large historical floods appe<strong>are</strong>d to produce an unrealistically<br />

high degree of upwards curvature at <strong>the</strong> top end of<br />

<strong>the</strong> fitted curve. Fitting a curve to all <strong>the</strong> plotted data instead<br />

of just <strong>the</strong> average values made very little difference.<br />

There<strong>for</strong>e in an ef<strong>for</strong>t to obtain a more realistic regional<br />

curve, an extension method was employed (NERC 1975,<br />

pp.l7t-2).<br />

The method involved splitting <strong>the</strong> dimensionless flood<br />

peak data <strong>for</strong> <strong>the</strong> region into three groups (Table 3.3a).<br />

Each group contained <strong>the</strong> data <strong>for</strong> stations whose catchments<br />

were <strong>not</strong> close neighbours, so that it could be assumed<br />

that a group's sample items were statistically independent.<br />

The largest four Q/Q values in each group, irrespective<br />

of station, were <strong>the</strong>n treated as <strong>the</strong> four largest<br />

values in a random sample of size M, where M was <strong>the</strong> total<br />

number of station years spanned by <strong>the</strong> data in a group,<br />

and <strong>not</strong> simply <strong>the</strong> total number of flood peaks <strong>for</strong> <strong>the</strong> stations<br />

in a group. Hence, where <strong>the</strong>re was an historical series<br />

containing a flood peak known to be <strong>the</strong> largest in N + J<br />

years, <strong>the</strong> number of station years <strong>for</strong> this particular station .<br />

was N * J years, <strong>the</strong> historical record length. In <strong>the</strong> special<br />

case where <strong>the</strong> historical series did <strong>not</strong> contain <strong>the</strong> largest<br />

historical peak in N + J years but, say, only <strong>the</strong> second or<br />

third largest in that period, <strong>the</strong> number of station years was<br />

<strong>not</strong> so straight<strong>for</strong>ward and an equivalent length in years<br />

had to be determined. The return period of <strong>the</strong> second or<br />

third largest historical peak was calculated using <strong>the</strong> Gringorten<br />

<strong>for</strong>mula (Equation 3.20) and substituted back into<br />

<strong>the</strong> <strong>for</strong>mula, this time using a rank of one instead of two or<br />

three as be<strong>for</strong>e. The value of N resulting from this back<br />

substitution was taken as <strong>the</strong> equivalent length of station<br />

years.<br />

The number M varied from group to group, but an attempt<br />

was made to keep it reasonably constant. Values <strong>for</strong><br />

y were calculated <strong>for</strong> <strong>the</strong> four largest Q/Q values in each<br />

group by taking M as <strong>the</strong> record length and using <strong>the</strong> Gringorten<br />

<strong>for</strong>mula and Equation 3.16 (Table 3.3b). The 12<br />

pairs of Q,zQ values and <strong>the</strong>ir corresponding y values, i.e.,<br />

<strong>the</strong> four pairs from each of<strong>the</strong> three groups, were averaged<br />

over <strong>the</strong> 0.5 class intervals of y (Table 3.3c), and <strong>the</strong> three<br />

largest averages were plotted along with those obtained<br />

from <strong>the</strong> original flood peak data. There is some statistical<br />

dependence between <strong>the</strong> two types of average values, but it<br />

was thought that, with M being fairly large <strong>for</strong> each group,<br />

<strong>the</strong> dependence would be small. Finally <strong>the</strong> regional curve<br />

was defined by fitting Equation 3.14 to <strong>the</strong> combined set of<br />

original and new average values.<br />

The probability plot of <strong>the</strong> regional data is shown in Figure<br />

3.19 (<strong>the</strong> four historical flood peaks <strong>are</strong> indicated with<br />

circles and <strong>the</strong> corresponding site numbers <strong>are</strong> given alongside).<br />

Also shown is <strong>the</strong> regional curve that resulted from<br />

fitting Equation 3.14 to <strong>the</strong> original and new average<br />

values. The latter values <strong>are</strong> indicated with squ<strong>are</strong>s.<br />

It was difficult to finalise <strong>the</strong> Bay of Plenty's sou<strong>the</strong>rn<br />

boundary line which, from <strong>the</strong> probability plots, appe<strong>are</strong>d<br />

to lie somewhere near <strong>the</strong> mountains in <strong>the</strong> volcanic plateau<br />

<strong>are</strong>a of <strong>the</strong> North Island. Besides <strong>the</strong> problems caused by<br />

<strong>the</strong> geology and <strong>the</strong> uncertain Ìvea<strong>the</strong>r pattern in this <strong>are</strong>a,<br />

<strong>the</strong>re were also complicatións arising from <strong>the</strong> Tongariro<br />

Power Development Scheme which had altered <strong>the</strong> natural<br />

flow of some of <strong>the</strong> rivers. While <strong>the</strong> chosen sou<strong>the</strong>rn<br />

boundary is reasonably consistent with <strong>the</strong> geology of <strong>the</strong><br />

<strong>are</strong>a and with <strong>the</strong> trend in <strong>the</strong> probability plots <strong>for</strong> <strong>the</strong> stations<br />

concerned, some fur<strong>the</strong>r definition of <strong>the</strong> boundary<br />

line may be necessary at some later stage.<br />

The definition of <strong>the</strong> Bay of Plenty on its eastern boundary<br />

posed a problem of a quite different nature. The probability<br />

plots clearly indicated that <strong>the</strong> eastern boundary line<br />

TaHe 3.3 Calculatk¡ns <strong>for</strong> extending <strong>the</strong> set of average values<br />

<strong>for</strong> <strong>the</strong> Bay of Plenty region.<br />

(a) Grouping of statio,ns<br />

Group 1 Group 2 Group 3<br />

Mangatepopo @<br />

Ketetahi<br />

t=8<br />

Utuhina @<br />

S.H. 5 Bridge<br />

r=9<br />

Tongariro @<br />

Turangi<br />

t=26<br />

Waiotapu @<br />

Reporoa<br />

f=38<br />

Wanganui @<br />

Te Porere<br />

l=10<br />

Kaituna @<br />

Te Matai<br />

r=21<br />

Tongariro @<br />

Puketarata<br />

t--26<br />

Tahunaatara @<br />

Ohakuri<br />

t=12<br />

Wanganui @<br />

Headwaters<br />

( = 11<br />

Mangorewa @<br />

Saunders Farm<br />

f=9<br />

Rangitaiki @<br />

Murupara<br />

t-_38<br />

Pokaiwhenua @<br />

Puketurua<br />

¿ = 13<br />

M=81 M=69 M=71<br />

/ = <strong>the</strong> length in ye,ars spanned by <strong>the</strong> data <strong>for</strong> a station.<br />

M = <strong>the</strong> total length of station years spanned by <strong>the</strong> data ¡n a<br />

group.<br />

(bl The maximum O/O and y values<br />

Group 1 Group 2 Group 3<br />

o/o o/o O/o y<br />

2.870 4.972<br />

2.464 3.941<br />

2.044 3.440<br />

1.746 3.104<br />

2.649 4.811 2.994 4.840<br />

2.462 3.780 2.261 3.809<br />

2.008 3.277 1.993 3.306<br />

1.944 2.940 1.960 2.969<br />

(c) Classification and averages of <strong>the</strong> maximum O/O and y values.<br />

y interval<br />

4.5 - 5.O<br />

4.O - 4.5<br />

3.5 - 4.O<br />

3.O - 3.5<br />

2.5 - 3.O<br />

Water & soil technical publication no. 20 (1982)<br />

No. of values Average O/O Average y<br />

3<br />

3<br />

4<br />

2<br />

2.84<br />

2.40<br />

1.95<br />

1.95<br />

4.87<br />

3.84<br />

2.28<br />

2.96<br />

should be near th€ Rangitaiki River, with <strong>the</strong> catchments<br />

ei<strong>the</strong>r side of <strong>the</strong> river displaying a <strong>not</strong>iceably different<br />

flood frequency trend. Support <strong>for</strong> this difference in trend<br />

can be found in <strong>the</strong> geology of <strong>the</strong> <strong>are</strong>a. The <strong>are</strong>a west of<br />

<strong>the</strong> river is a pumice and rhyolite zone, whereas <strong>the</strong> <strong>are</strong>a to<br />

<strong>the</strong> east comprises sedimentary rocks, e.g., sandstones and<br />

greywackes. The dividing line between <strong>the</strong> two geological<br />

<strong>are</strong>as is abrupt and coincides almost exactly with <strong>the</strong> line of<br />

<strong>the</strong> Rangitaiki River: The problem <strong>the</strong>n was <strong>not</strong> so much<br />

where to locate <strong>the</strong> boundary line, but in which region to<br />

put <strong>the</strong> flow stations <strong>for</strong> <strong>the</strong> Rangitaiki River itself, since<br />

<strong>the</strong> flow in <strong>the</strong> riverr represents <strong>the</strong> integral effect of <strong>the</strong> two<br />

geological <strong>are</strong>as on <strong>the</strong> runoff process. However, <strong>the</strong> trends<br />

in <strong>the</strong> probability plots <strong>for</strong> three stations on <strong>the</strong> river (i.e.,<br />

sites 15408, 15410 and 15432) were consistent with <strong>the</strong> flood<br />

frequency trend of one of <strong>the</strong> regions ei<strong>the</strong>r side of <strong>the</strong><br />

river, and <strong>the</strong> bourrdary line was drawn such that each station<br />

was included in <strong>the</strong> most appropriate region.<br />

The same approach could <strong>not</strong> be applied to a fourth flow<br />

station on <strong>the</strong> river at Te Teko (site 15412), which is downstream<br />

of <strong>the</strong> o<strong>the</strong>¡ three stations. The trend of <strong>the</strong> Q/Q<br />

probability plot <strong>for</strong> this station lay in between <strong>the</strong> trends exhibited<br />

in <strong>the</strong> Bay of Plenty and North Island East Coast regional<br />

plots. This was presumably because <strong>the</strong> peak flow at<br />

<strong>the</strong> station contains very significant contributions from<br />

37


BÊY OF PLENTY DRTF<br />

o<br />

o<br />

o<br />

NEOUCEO Y VRBIßTE<br />

s r0 ¿0 30 50 7s r00<br />

FETUFN PEHIOO (YEßRS)<br />

BÊY ÚF PLENTY BEGIONÊL CUBVE<br />

o<br />

o<br />

lo<br />

o<br />

Þ<br />

Þ<br />

è<br />

t.so 2.25 3.00 3.75<br />

NEOUCEO Y VRNIßTE<br />

r.ô¡r 2.3! s ro ¿o !o 50 75 ¡oo 2oo<br />

nETUBq FEnI00 tYERnS)<br />

Flgure 3.19 Region 2: regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

38


Tablo 3.4 Summary of <strong>the</strong> regional curve characteristics.<br />

Region Regional Curve Ordinates Regnl. Parameter Values<br />

<strong>for</strong> Eq. 3.14 or 3.23<br />

O, sglO O¡/O O,o/õ Oro/O O.o/õ O,oo/O OrooiO<br />

Regional Cuwe<br />

Equation,OO =<br />

NORTH ISI.AND<br />

1. Combined N.l. West Coast 1.OO<br />

2. Bay of Plenty 0.96<br />

3. N.l. East Coast 1.OO<br />

4. Central Hawke's Bay 1.OO<br />

SOUTH ISI.AND<br />

5. S.l. West Coast O.99<br />

6. S.l. East Coast 1.OO<br />

7. South Canterbury 1.OO<br />

8. Otago-Southland O'98<br />

1.30 1.55<br />

1.31 1.62<br />

1.43 1.78<br />

1.49 1.89<br />

1.22 1.41<br />

1.31 1.56<br />

1.52 1.95<br />

1.33 1.62<br />

1.78 2.09<br />

1.96 2.46<br />

2.12 2.56<br />

2.27 2.77<br />

1.59 1.82<br />

1.80 2.12<br />

2.39 2.94<br />

1.89 2.25<br />

2.32 2.55<br />

2.87 3.33<br />

2.89 3.21<br />

3.14 3.51<br />

1.99 2.16<br />

2.35 2.58<br />

3.44 3.91<br />

2.51<br />

0.804 0.330<br />

0.762 0.325<br />

0.726 0.469<br />

0.696 0.s32<br />

0.846 0.249<br />

0.809 0.335<br />

o.689 0.529<br />

o.762 0.380<br />

O.8O4 +O.33Oy<br />

-O.142 1.53O+2.292exp<br />

lO'142Y1<br />

O.726 +0.469y<br />

0.696 +O.532y<br />

O.846 +0.249y<br />

0.8O9 +o.335y<br />

-O.O52 -9.545+10.234<br />

exp (O.O52y)<br />

0.762 +O.38Oy<br />

both regions, and to have included it in ei<strong>the</strong>r regional plot<br />

\r/ould bias <strong>the</strong> resulting regional curve; down\ryards in <strong>the</strong><br />

case of <strong>the</strong> Bay of Plenty curve and upwards <strong>for</strong> <strong>the</strong> North<br />

Island East Coast curve. The Te Teko station was <strong>the</strong>re<strong>for</strong>e<br />

omitted from <strong>the</strong> derivation of <strong>the</strong> regional curve <strong>for</strong> both<br />

regions.<br />

Clearly, in deciding which regional curve to use <strong>for</strong><br />

points on <strong>the</strong> Rangitaiki River system, consideration needs<br />

to be given to such factors as which region contains <strong>the</strong><br />

greater proportion of <strong>the</strong> catchment <strong>are</strong>a, and whe<strong>the</strong>r <strong>the</strong><br />

western or eastern part of <strong>the</strong> catchment contributes most<br />

to <strong>the</strong> peak flows at <strong>the</strong> point in question (see also section<br />

5.2\.<br />

The number of stations near <strong>the</strong> eastern boundary of <strong>the</strong><br />

Bay of Plenty region permitted such a detailed examination<br />

ofihe boundary line. In general, however, <strong>the</strong>re were insufficient<br />

stations to be able to do this' Most lines were subjectively<br />

defined and <strong>the</strong>y should be regarded as broad dividing<br />

iines between regions. To define <strong>the</strong> regional boundarils<br />

more precisely will require more flow stations with<br />

more flood peak data.<br />

3.3.4 Final rog¡onal curves<br />

The final regional flood frequency curves that were derived<br />

<strong>are</strong> summarised in Figure 3'20. In general' <strong>the</strong> curves<br />

The excePtion is <strong>the</strong><br />

minimal amount of<br />

gional curve Past 100<br />

years, and <strong>the</strong> curve is tentative only.<br />

The ordinates Q'¡/Q <strong>for</strong> <strong>the</strong> final regional curves <strong>are</strong><br />

listed in Table 3.4 <strong>for</strong> selected return periods. As well, <strong>the</strong><br />

<strong>the</strong> eastern South Island <strong>are</strong>a identical to <strong>the</strong> annual flood<br />

regions defined f,or estimating Q (section 4.5). Regional<br />

plots correspondirng to <strong>the</strong> flood regions in <strong>the</strong> <strong>are</strong>a were<br />

constructed, but <strong>the</strong> data showed substantially greater variability<br />

than was evident in <strong>the</strong> plots <strong>for</strong> <strong>the</strong> original flood<br />

frequency regions, i.e., Regions 6, 7 and 8 in Figures 3'14-<br />

3.16. Still pursuing <strong>the</strong> possibility of having consistent regions,<br />

all of <strong>the</strong> flood peak data <strong>for</strong> <strong>the</strong> three flood frequency<br />

regions were subsequently pooled toge<strong>the</strong>r, <strong>for</strong>ming<br />

a combined region known as <strong>the</strong> Eastern South Island region.<br />

The regional plot that was obtained <strong>for</strong> this <strong>are</strong>a, and<br />

<strong>the</strong> resulting regional curve, <strong>are</strong> shown in Figure 3'21. A<br />

comparison of this plot with those <strong>for</strong> <strong>the</strong> original three<br />

flood frequency regions (Figures 3.14-3.16) shows that <strong>the</strong><br />

variability in <strong>the</strong> data <strong>for</strong> <strong>the</strong> combined region is much<br />

greater. This is borne out by <strong>the</strong> standard error equation<br />

developed <strong>for</strong> <strong>the</strong> regional curve of <strong>the</strong> combined <strong>are</strong>a<br />

which gave a C¡ I'alue at <strong>the</strong> 100-year return period, <strong>for</strong> example,<br />

that was 25 percent greater than that given by <strong>the</strong><br />

group equation (llable 3.9) <strong>for</strong> <strong>the</strong> original regions (see section<br />

3.4.1). This greater variability was <strong>not</strong> surprising in<br />

view of <strong>the</strong> range in <strong>the</strong> ordinates of <strong>the</strong> regional curves <strong>for</strong><br />

<strong>the</strong> three regions. For instance, at <strong>the</strong> lü)-year return period<br />

<strong>the</strong> difference between <strong>the</strong> South Canterbury and South<br />

Island East Coast regional curve ordinates is l.l8' or 50<br />

percent of <strong>the</strong> ordinate <strong>for</strong> <strong>the</strong> latter curve. Because of this<br />

iange, and <strong>the</strong> greater variability in <strong>the</strong> regional plot <strong>for</strong> <strong>the</strong><br />

combined <strong>are</strong>a, tlhe curves <strong>for</strong> <strong>the</strong> three original regions offer<br />

a more accurate estimate of Q/Q <strong>for</strong> sites in <strong>the</strong> <strong>are</strong>a<br />

and <strong>the</strong> three regions were <strong>the</strong>re<strong>for</strong>e retained as <strong>the</strong> flood<br />

frequency regions.<br />

3.3.5 Consistent regions<br />

For th<br />

<strong>the</strong> resul<br />

made of<br />

3.3.6 Sub-reglons<br />

It will be <strong>not</strong>ed that two small <strong>are</strong>as in Figures 3.6 and 3.7<br />

have been specially identifl¡ed as sub-regions. The first is<br />

that <strong>are</strong>a around Mt Egmont in <strong>the</strong> combined North Island<br />

West Coast region (see Figure 3'6). Flood peak data were<br />

available <strong>for</strong> onìly two stations in <strong>the</strong> <strong>are</strong>a, although each<br />

was associated u¡ith a representative basin. The catchment<br />

<strong>for</strong> <strong>the</strong> station on <strong>the</strong> east of <strong>the</strong> mountain (site 39504,<br />

Manganui River at Tariki Road) was included in <strong>the</strong> North<br />

Island West Coast region after its flood peak data were<br />

found to con<strong>for</strong>m very well with <strong>the</strong> regional flood frequency<br />

tr€nd. The second station (site 36001, Punehu River<br />

at Pihama) was located on <strong>the</strong> sou<strong>the</strong>rn side of <strong>the</strong> mountain.<br />

Its flood peak data displayed distinct upwards curvature<br />

on a probability plot, a trend markedly different from<br />

<strong>the</strong> regional one,, Because it was uncertain whe<strong>the</strong>r this was<br />

ase ofaPPlication of a real trend, or simply <strong>the</strong> result of using a short record<br />

an examination was (eight years), <strong>the</strong> sou<strong>the</strong>rn <strong>are</strong>a of Mt Egmont was excluded<br />

frequencY regions in from <strong>the</strong> North ltsland West Coast region' More flood peak<br />

Water & soil technical publication no. 20 (1982)<br />

39


NOBTH ISLRND ßEGIONÊL CUBVES<br />

1.50 2.?S 3. OO<br />

REDUCED Y VRBIßTE<br />

2,33 sl02030<br />

BETUBN FERIOO (YE8BS)<br />

50 75 r00<br />

Flgure 3.2Oa Summary of North lsland regional cury€s.<br />

SOUTH iSLÊND REGIONÊL CURVES<br />

1.50 2-25 3.(<br />

BEOUCED Y VRBIFTE<br />

s r'o ¿'o g'o<br />

RETUNN PEBIOO IYERNS)<br />

1t.50 5.2S<br />

so 7s t00 200<br />

4<br />

Fþure 3.2Ob Summary of South lsland regional curves.<br />

Water & soil technical publication no. 20 (1982)


EßSTEBN SÚUTH ISLÊND OÊTÊ<br />

00 3.75 q.50<br />

FEOUCEO I VFFIFTE<br />

l.Oll ?,33 s t0 20 30 50 75 rO0<br />

NETUFN FEFI OO f YERFS'I<br />

EßSTEBN SOUTH ISLßND REGIONÊL CUBVE<br />

o<br />

1.50 2.25 3.00<br />

BEOUCEO Y VRBIBTE<br />

5r02030<br />

NETUHN PEHIOO (IERBS)<br />

q.50 5. ?5<br />

s0 ?s r00 200<br />

Figure 3,21 Eastern South lsland regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

4l


data <strong>for</strong> this <strong>are</strong>a <strong>are</strong> required be<strong>for</strong>e a decision can be<br />

made whe<strong>the</strong>r to make <strong>the</strong> <strong>are</strong>a a region in itself or to include<br />

it in <strong>the</strong> surrounding region.<br />

The second sub-region identified is <strong>the</strong> <strong>are</strong>a south-west of<br />

Nelson in <strong>the</strong> South Island West Coast region (see Figures<br />

3.7 and 3.22). lt was of interest in that <strong>the</strong> flood peall data<br />

<strong>for</strong> two flow stations (sites 57008 and 57101) in <strong>the</strong> <strong>are</strong>a did<br />

<strong>not</strong> con<strong>for</strong>m at all to <strong>the</strong> regional flood frequency trend;<br />

<strong>the</strong>se stations were omitted from <strong>the</strong> derivation of <strong>the</strong> regional<br />

curve. The non-con<strong>for</strong>mity of <strong>the</strong> data was thought<br />

to be due to <strong>the</strong> fact that <strong>the</strong> <strong>are</strong>a is in a rain-shadow, caused<br />

mainly by <strong>the</strong> Sou<strong>the</strong>rn Alps to <strong>the</strong> west, and receives<br />

significantly less rainfall than <strong>the</strong> o<strong>the</strong>r parts of <strong>the</strong> region.<br />

<strong>These</strong> factors encouraged a detailed look at <strong>the</strong> flood frequency<br />

behaviour in <strong>the</strong> whole <strong>are</strong>a,<br />

The flood peak data that were collected <strong>for</strong> <strong>the</strong> <strong>are</strong>a according<br />

to <strong>the</strong> criteria in sections 3.2.1 and 3.2.2,toge<strong>the</strong>r<br />

with extra data that did <strong>not</strong> meet <strong>the</strong>se criteria but were<br />

never<strong>the</strong>less thought to be of some use here, were pooled<br />

toge<strong>the</strong>r to <strong>for</strong>m a probability plot <strong>for</strong> <strong>the</strong> <strong>are</strong>a. All <strong>the</strong> data<br />

used in <strong>the</strong> plot <strong>are</strong> summarised in Table 3.5, while <strong>the</strong> extra<br />

data <strong>are</strong> listed in full in Appendix C.<br />

The probability plot that was obtained <strong>for</strong> <strong>the</strong> Nelson<br />

<strong>are</strong>a, and <strong>the</strong> curve that was fitted to <strong>the</strong> plotted data, <strong>are</strong><br />

shown in Figure 3.23. Despite <strong>the</strong> inadequacies with <strong>the</strong><br />

data and <strong>the</strong> small number of flow stations used it would<br />

seem, both from <strong>the</strong> trend in <strong>the</strong> probability plot and from<br />

<strong>the</strong> large difference between <strong>the</strong> fitted curve and <strong>the</strong> South<br />

Island West Coast regional curve (shown as <strong>the</strong> dashed line<br />

in Figure 3.23), that <strong>the</strong>re is some justification <strong>for</strong> treating<br />

<strong>the</strong> <strong>are</strong>a south-west of Nelson as a separate sub-region, and<br />

<strong>not</strong> part of <strong>the</strong> surrounding region. A greater amount of re-<br />

Iiable data is needed to confirm this point and to define <strong>the</strong><br />

<strong>are</strong>a's own regional curve with confidence. In <strong>the</strong> meantime,<br />

however, it is suggested that <strong>the</strong> regional curve <strong>for</strong> <strong>the</strong><br />

South Island East Coast region should be used <strong>for</strong> <strong>the</strong> <strong>are</strong>a<br />

ra<strong>the</strong>r than <strong>the</strong> one <strong>for</strong> <strong>the</strong> South Island West Coast region.<br />

The <strong>for</strong>mer region is drier and has a steeper frequency<br />

curve and hence is more in keeping with <strong>the</strong> Nelson <strong>are</strong>a.<br />

3.3.7 General¡sed flood frequency curves<br />

From all <strong>the</strong> flood peak data assembled <strong>for</strong> this study,<br />

two generalised flood frequency curves extending to high<br />

return periods were developed. In recognition of <strong>the</strong> differences<br />

in <strong>the</strong> characteristics of <strong>the</strong> regional curves <strong>for</strong> <strong>the</strong><br />

west and east of New Zealand, one generalised curve was<br />

developed <strong>for</strong> <strong>the</strong> western <strong>are</strong>as (Regions I and 5) and one<br />

<strong>for</strong> <strong>the</strong> eastern <strong>are</strong>as (Regions 2,3, 4,6, 7 and 8). The development<br />

was based on <strong>the</strong> principle utilised by Stevens<br />

and Lynn (1978) of pooling regional data toge<strong>the</strong>r to obtain<br />

more stable flood estimates <strong>for</strong> high return periods. With<br />

<strong>the</strong> large base of pooled data <strong>for</strong> each generalised curve, it<br />

was hoped that <strong>the</strong> curves could be extended to <strong>the</strong> 1000-<br />

year return period with sufficient accuracy to be useful in<br />

design.<br />

<strong>These</strong> curves incorporated many of <strong>the</strong> historical flood<br />

peaks that were excluded from <strong>the</strong> regional analyses under<br />

Rule (lli) of section 3.2.2. ln general, this rule was invoked<br />

in a regional analysis because a flood peak was an extreme<br />

outlier and <strong>the</strong> available length of flood record at <strong>the</strong> station<br />

concerned was insufficient <strong>for</strong> <strong>the</strong> computation of a<br />

plausible return period <strong>for</strong> that flood peak. However, <strong>the</strong>re<br />

were good reasons <strong>for</strong> including here some of <strong>the</strong> previously<br />

excluded historical peaks: <strong>the</strong> large base of data <strong>for</strong><br />

each curve, toge<strong>the</strong>r with <strong>the</strong> use of <strong>the</strong> extension method,<br />

would help to prevent <strong>the</strong>se peaks from exerting undue bias<br />

on <strong>the</strong> shape of <strong>the</strong> curves; and as <strong>the</strong> curves were to be extended<br />

to <strong>the</strong> 1000-year return period, <strong>the</strong> flood peaks with<br />

return periods approaching this limit should be used, where<br />

possible.<br />

All but four of <strong>the</strong> previously excluded extreme peaks<br />

were considered suitable <strong>for</strong> <strong>the</strong> development of <strong>the</strong> generalised<br />

curves, The remaining four peaks were truly extreme<br />

events, and even tbe large bases of data associated with <strong>the</strong><br />

generalised curves were insufficient to enable realistic return<br />

periods to be ascribed to <strong>the</strong>m. Two of <strong>the</strong> peaks occurred<br />

in <strong>the</strong> same storm in 1938 in <strong>the</strong> adjacent Mohaka<br />

Table 3.6 Calculations <strong>for</strong> extending <strong>the</strong> sets of average values<br />

<strong>for</strong> <strong>the</strong> generalised curves.<br />

(a) The Maximum O/O and y values.<br />

Western New Zealand<br />

Group 1 Group 2 Group 3 Group 4<br />

o/o<br />

4.58 7.13<br />

2.94 6.11<br />

2.91 5.61<br />

2.74 5.28<br />

o/o<br />

4.84 7.O7<br />

2.62 6.O5<br />

2.59 5.55<br />

2.45 5.22<br />

yo/OyO/Oy<br />

M= 7OO 661 659<br />

No. of Stat¡ons<br />

: 23 15<br />

Eastern New Zealand<br />

2.99 7.O7 3.90 7.13<br />

2.58 6.05 3.25 6.1 1<br />

2.46 5.55 2.81 5.61<br />

2.40 5.22 2.49 5.28<br />

700<br />

Group 1 Group 2 Group 3 Group 4<br />

o/o o/o o/o o/o<br />

3.12 6.68<br />

2.87 5.65<br />

2.74 5.15<br />

2.54 4.42<br />

4.31 6.68<br />

4.06 5.66<br />

3.65 5.1 6<br />

3.55 4.83<br />

4.62 6.69 3.85 6.83<br />

3.82 5.66 3.75 5.80<br />

2.99 5.17 3.53 5.31<br />

2.A7 4.83 3.06 4.98<br />

M= 444 448 450 517<br />

No. of Stations<br />

= 14<br />

19<br />

(bl Classification and averages of <strong>the</strong> maximum O/O and y values.<br />

t5<br />

t3<br />

Table 3.5 Summary of flow stations in <strong>the</strong> Nelson a¡ea.<br />

Site No. Flow Station Catchment No. Annual<br />

Area (km'zl (and historical)<br />

flood peaks<br />

56901 Riwaka River at Moss Bush<br />

57002 Motueka River at Baton Br.<br />

57006 Wangapeka River at Swing Br.<br />

57OOB Motueka River at Gorge<br />

57009 Motueka River at Woodstock<br />

571O1 Moutere River at Old House Rd.<br />

571OG Stanleybrook River at Barkers<br />

48<br />

'1647<br />

373<br />

163<br />

1750<br />

60.7<br />

81<br />

10<br />

18<br />

I<br />

9<br />

8<br />

10<br />

7<br />

y lnterval<br />

Wefem NZ:<br />

7.O - 7.5<br />

6.5 - 7.0<br />

6.0 - 6.5<br />

5.5 - 6.0<br />

5.0 - 5.5<br />

Eaetem NZ:<br />

6,5 - 7.O<br />

6,0 - 6.5<br />

5.5 - 6.0<br />

5.0 - 5.5<br />

4.5 - 5.O<br />

No. of values Average O/O Average y<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4.O8<br />

2.85<br />

2.69<br />

2.52<br />

3.98<br />

3.63<br />

3.23<br />

3.O2<br />

7.10<br />

6.08<br />

5.58<br />

5.25<br />

6.72<br />

569<br />

520<br />

487<br />

42<br />

Water & soil technical publication no. 20 (1982)


7009<br />

o<br />

ELSON<br />

57tO6<br />

LOCALITY PLAN<br />

Scole O 5 lO 15 20 25 km<br />

Figwe 3.22 Some flow stations in <strong>the</strong> Nelson <strong>are</strong>a.<br />

generalised curves'<br />

The development of each geleralised curve involved <strong>the</strong><br />

calculation of <strong>the</strong> average Q/Q and y values, <strong>for</strong> <strong>the</strong> 0'5<br />

class intervals of y, from all <strong>the</strong> pooled data <strong>for</strong> <strong>the</strong> <strong>are</strong>a<br />

concerned. Additional average values were <strong>the</strong>n obtained<br />

using <strong>the</strong> same extension method as employed <strong>for</strong> <strong>the</strong> tsay<br />

of Plenty regiorr (section 3.3.3). This time, however, four<br />

groups of staticlns were considered fo-r each curve, with<br />

each group again comprising all <strong>the</strong> Q/Q values <strong>for</strong> <strong>the</strong> stations<br />

whose catchments were <strong>not</strong> close neighbours. A summary<br />

of <strong>the</strong> foul largest Q/Q values <strong>for</strong> each group is given<br />

in Table 3.6a. It will be <strong>not</strong>ed from this table that <strong>the</strong> number<br />

of stations rvithin each group and also M, <strong>the</strong> number<br />

of station years spanned by <strong>the</strong> data in a group, were kept<br />

reasonably constant. The four Q/Q values per group ìvere<br />

treated as being <strong>the</strong> four largest in a sample of record length<br />

M, and <strong>the</strong>ir corresponding y values were calculated accordingly<br />

using <strong>the</strong> Gringorten <strong>for</strong>mula (Equation 3'20)<br />

and Equation 11.16. The resulting sixteen pairs of Q/Q<br />

values <strong>for</strong> each curve and <strong>the</strong> corresponding y values, i.e.,<br />

<strong>the</strong> four pairs fiom each of <strong>the</strong> four groups, were subsequently<br />

averaged over <strong>the</strong> 0.5 class intervals of y (Table<br />

3.6b). <strong>These</strong> new averages were later plotted on <strong>the</strong> same<br />

probability plot as <strong>the</strong> original averages. Finally, Equation<br />

Water & soil technical publication no. 20 (1982)<br />

43


NELSON REGIONFL CURVE<br />

BEOUCEO Y VRRIÊTE<br />

FETUNN PEBIOO (YEHRS)<br />

Figure 3.23 Mass probability plot and fitted curve <strong>for</strong> <strong>the</strong> Nelson a¡ea.<br />

3.14 was fiued ro rhe combined set of original and new 3.4 FlOod ffequency acculacy<br />

averages using <strong>the</strong> optimisation technique.<br />

Figures 3.24 and,3.25 show, <strong>for</strong> <strong>the</strong> combined western 3.4.1 Accuracy of flood frequency tat¡o Or/õ<br />

and eastern <strong>are</strong>as, respec<br />

was fitted to <strong>the</strong> two types<br />

<strong>the</strong> extension method arç<br />

tern generalised curve id<br />

marised in Table 3.7.<br />

T¡ble 3.7 Summary of <strong>the</strong> characteristics of <strong>the</strong> generalised<br />

curves.<br />

al curve, it is<br />

of statistical<br />

sets of flood<br />

peak data used to define <strong>the</strong> curye _ if different sets<br />

of records of equal length had been available <strong>the</strong> curve<br />

would be different; and<br />

(b) tne spatial variation due to <strong>the</strong> curve being taken as an<br />

of <strong>the</strong> flood frequencv relation-<br />

ï"t#iltriiLt iJerage<br />

Since in this study a regional curve is interpreted as <strong>the</strong><br />

o./o_<br />

o,o/_o<br />

Oro/O<br />

O.o/õo,@/_o<br />

O'æ/Q<br />

O¡æ/O-<br />

Oroo/O<br />

u=<br />

o= k:<br />

General<br />

Eq;ation:<br />

4<br />

Western N.Z.<br />

1.18<br />

1.42<br />

1.67<br />

2.O4<br />

2.36<br />

2.71<br />

3.23<br />

3.68<br />

0.788<br />

o.234<br />

-o.1s6<br />

O/O = -0.714+<br />

1.502 exp (0.1 56yl<br />

o/o<br />

Eastern N.Z.<br />

1.49<br />

1.87<br />

2.23<br />

2.71<br />

3.06<br />

3.42<br />

3.88<br />

4.24<br />

o.724<br />

0.509<br />

=O.724+<br />

O.6O9y<br />

var (a.b) = E(a),.var(b) + E(b),.var(a) 324<br />

where E ( ) de<strong>not</strong>es <strong>the</strong> expected value and var ( ) <strong>the</strong> variance.<br />

Errors of estimation in Q can be considered statistically<br />

independent of errors of estimate in <strong>the</strong> regional curve ordinate<br />

Q.¡/Q. Hence, applying <strong>the</strong> expansìon in Equation<br />

Water & soil technical publication no. 20 (1982)


1^IESTEBN NEhI ZEÊLRND DRTR<br />

Þ<br />

o<br />

Þ<br />

o<br />

t<br />

Þ<br />

ro<br />

ooo<br />

o<br />

ê ê<br />

l.0r t<br />

ê<br />

2.33<br />

hESTEBN<br />

1.50 2.25 3- 00<br />

BEOUCED Y VRRIRTE<br />

s<br />

t0<br />

ßEIURN PEN¡OD (YERNS)<br />

NEI,,I ZERLÊND GENERRL I SED CURVE<br />

o<br />

t<br />

o<br />

to<br />

ot<br />

E<br />

t<br />

I - 50 2.25 3.00 3.75 {,50 5.25 6,00 l. ?¡<br />

BEDUCED Y VRSIRTE<br />

r.ort 2.t3 s l0 20 30 so 7s ir00 eoo 600 t000<br />

NETURN PEñIOD<br />

Water & soil technical publication (YEÊRS}<br />

no. 20 (1982)<br />

Flgute 3.24 Western New Zealand: <strong>the</strong> mass probability plot and <strong>the</strong> generalised curve.<br />

45


46<br />

EÊSTEFìN NEI,,I ZEFLÊND DÊTIì<br />

o<br />

Þ<br />

o<br />

o<br />

di'<br />

o<br />

tct<br />

a oê<br />

.ü'<br />

€<br />

o<br />

o<br />

è<br />

t.0tr<br />

t .50 2.25 3.00 3. ?5 r¡.50<br />

BEDUCEO Y VRßIRTE<br />

2,33 S r0 ?0 30 S0 7s r00 200<br />

BETUNN PERIOO fYEÊNS)<br />

EÊSTERN NEI^I ZEÊLRND GENEI-IRL I SED CUßVE<br />

o<br />

,to -.rr . s0 2.2s 3.00 !,75 lr. s0 25 6.00 a.?S<br />

NEOUCEO Y VFRIRTE<br />

l.otr 2.!t s t0 20 !0 60 75 t00 200 s00 ¡000<br />

BETUNN FENIOO ÍYEFñ5I<br />

Water & soil technical publication no. 20 (1982)<br />

Figure 3.25 Eastern New Zealand: <strong>the</strong> mass probability plot and <strong>the</strong> generalised curve.


3.?A, <strong>the</strong> variance of <strong>the</strong> flood peak estimate Q.¡ may be<br />

given as (NERC 1975, p.184)<br />

var(Qr) : var_(Q.Qr/Q) _<br />

= E(Q)'.var(Qr/_Q)<br />

+ E(Qr/Q)'?.var(Q)<br />

325<br />

The quantity var(Q ) on <strong>the</strong> right han_d side of Equation<br />

3.25 depends on <strong>the</strong> manner in which Q is estimated (see<br />

Chapter 4). In practice Q is substituted <strong>for</strong> E(Q ) and, similarly,<br />

QrlQ <strong>for</strong> E(Q1/Q). This leaves only <strong>the</strong> quantity<br />

var (Qr/Q) unaccounted <strong>for</strong>. It is <strong>the</strong> variance of <strong>the</strong> regional<br />

curve ordinate Q.¡/Q at return period T and is <strong>the</strong><br />

type (b) variation mentioned previously.<br />

The quantity var (Q1/Q ) was calculated as <strong>the</strong> variance<br />

of <strong>the</strong> individual station flood frequency curves <strong>for</strong><br />

T=2.33,5, 10,20,30, 50 and 100 years. Given this variance,<br />

<strong>the</strong> coefficient of variation (Cp) of individual station<br />

curves about <strong>the</strong> regional curve is defined as<br />

c¡ = (var (Qr/Q) )k/(Qr/Q) 326<br />

and is a measure of <strong>the</strong> type (b) variation above'<br />

Regression analyses of C¡ against <strong>the</strong> return period T,<br />

and also fnT, were carried out and it was found that <strong>the</strong> relationships<br />

between C¡ and /nT were approximately linear.<br />

Regression equations of <strong>the</strong> <strong>for</strong>m<br />

Cp=(c+m./nT)/100 321<br />

were <strong>the</strong>re<strong>for</strong>e obtained, where c and m <strong>are</strong> constants <strong>for</strong> a<br />

reglon.<br />

The regression equations <strong>for</strong> <strong>the</strong> various regions <strong>are</strong> summarised<br />

in Table 3.8. The squ<strong>are</strong> of <strong>the</strong> correlation coefficient<br />

R was in <strong>the</strong> range of 0.946 to 0.992 in all cases but one,<br />

indicating that generally <strong>the</strong> equations explained at least<br />

9490 of <strong>the</strong> variation in C¡. The exception was <strong>the</strong> equation<br />

<strong>for</strong> <strong>the</strong> Bay of Plenty region where <strong>the</strong> R'z value was only<br />

0.380. This low R' value was presumably <strong>the</strong> result of <strong>the</strong><br />

regional curve having a different trend from some of <strong>the</strong><br />

frequency curves <strong>for</strong> <strong>the</strong> individual stations where <strong>the</strong>re was<br />

historical flood in<strong>for</strong>mation. Fur<strong>the</strong>r, <strong>the</strong> Bay of Plenty region<br />

was <strong>the</strong> only one where <strong>the</strong> equation <strong>for</strong> CF was <strong>not</strong><br />

statistically significant at <strong>the</strong> l9o level.<br />

While <strong>the</strong> statistical properties listed in Table 3'8 indicate<br />

that <strong>the</strong> equations would generally be satisfactory <strong>for</strong> estimating<br />

C¡ <strong>for</strong> a regional curve, some of <strong>the</strong> regions did <strong>not</strong><br />

contain sufficient stations to enable truly representative<br />

equations to be determined. For instance, in three of<strong>the</strong> regiòns<br />

less than l0 stations were used. Since <strong>the</strong> equations<br />

were only a measure of <strong>the</strong> type (b) variation and were intended<br />

to convey only an order of magnitude of<strong>the</strong> standard<br />

error associated with an estimate of Q'¡/Q obtained<br />

from a regional curve, it was decided to pool toge<strong>the</strong>r <strong>the</strong><br />

individual station estimates of Q1/Q <strong>for</strong> different regions<br />

into larger groups and to derive a new C¡ equation <strong>for</strong> each<br />

group. <strong>These</strong> grou¡r equations could <strong>the</strong>n be taken as <strong>the</strong><br />

estimating equatiorrs <strong>for</strong> C¡ <strong>for</strong> <strong>the</strong> regions <strong>the</strong>y represented.<br />

However, prior to <strong>the</strong> pooling of estimates, it was<br />

necessary to dividr: <strong>the</strong> individual station estimates of<br />

Qr/Q bv <strong>the</strong> corresponding regional curve ordinates.<br />

Group C¡ values were <strong>the</strong>n calculated <strong>for</strong> <strong>the</strong> pooled estimates<br />

<strong>for</strong> <strong>the</strong> return period concerned.<br />

Two groups of regions were considered <strong>for</strong> each of <strong>the</strong><br />

North and South Islands, with one group representing <strong>the</strong><br />

western and <strong>the</strong> o<strong>the</strong>r <strong>the</strong> eastern regions. Grouping <strong>the</strong> regions<br />

in this mannen is supported by <strong>the</strong> overall trend in <strong>the</strong><br />

value <strong>for</strong> <strong>the</strong> slope m of <strong>the</strong> regional regression equations<br />

(Table 3.8), with <strong>the</strong> value generally being greater on <strong>the</strong><br />

east of an island than on <strong>the</strong> west. This trend indicates that<br />

<strong>the</strong> variance of <strong>the</strong> estimates of <strong>the</strong> regional ordinates<br />

Q-¡/Q is greater on <strong>the</strong> east than on <strong>the</strong> west, and it also reflects<br />

<strong>the</strong> greater variability in <strong>the</strong> flood peak data <strong>for</strong> <strong>the</strong><br />

eastern regions (see also section 4.9). Fur<strong>the</strong>r justification<br />

<strong>for</strong> this grouping of regions is given by <strong>the</strong> trend in <strong>the</strong><br />

characteristics of ttre regional curves (section 3.3.2).<br />

The way in which <strong>the</strong> individual station estimates <strong>for</strong> <strong>the</strong><br />

regions were pooled toge<strong>the</strong>r into groups is shown in Table<br />

3.9. The estimates <strong>for</strong> <strong>the</strong> Bay of Plenty region were <strong>not</strong><br />

used in <strong>the</strong> derivation of <strong>the</strong> group equations. The C¡ equation<br />

<strong>for</strong> this region was <strong>not</strong> meaningful in view of <strong>the</strong> low<br />

R2 value and it thurs seemed inappropriate to use <strong>the</strong> data<br />

<strong>for</strong> this region in deriving a useful equation <strong>for</strong> its group <strong>for</strong><br />

estimating C¡. The combined North Island West Coast and<br />

South Island West Coast regions <strong>are</strong> <strong>the</strong> only regions in<br />

<strong>the</strong>ir respective groups, and thus <strong>the</strong>ir regional C¡ eQuations<br />

(Table 3.8) automatically became <strong>the</strong> corresponding<br />

group equations.<br />

Table 3.9 gives thre regression equations that were derived<br />

<strong>for</strong> <strong>the</strong> groups andt it also lists <strong>the</strong> regions to which each<br />

equation applies. The tabulated statistical properties indicate<br />

that <strong>the</strong> equa,tions <strong>are</strong> statistically acceptable, with<br />

each being significant at <strong>the</strong> l9o level. Table 3.9 gives <strong>the</strong><br />

100-year C¡ value as computed from each group equation.<br />

The 1OO-year values range from 0.13 to 0.19 <strong>for</strong> <strong>the</strong> western<br />

groups and from O.24to 0.25 <strong>for</strong> <strong>the</strong> eastern groups. They<br />

comp<strong>are</strong> very favourably with <strong>the</strong> value of 0.32 as given by<br />

<strong>the</strong> corresponding Cp equation recommended by NERC<br />

(1975, p.183) <strong>for</strong> use with all its regional curves.<br />

Each group equation was derived from station estimates<br />

<strong>for</strong> return periods only up to 100 years, even though most<br />

regional curves extend to <strong>the</strong> 2(Ð-year return period. Normally<br />

it is recommended that an equation should <strong>not</strong> be applied<br />

outside <strong>the</strong> range of data from which it was derived.<br />

However, in this case it was preferred to allow each equation<br />

to be applied up to <strong>the</strong> 2D-year return period, ra<strong>the</strong>r<br />

Table 3.8 The regional regression equations <strong>for</strong> estimated CF'<br />

REGION<br />

Coefficient<br />

c<br />

S ope<br />

m<br />

R2<br />

s.E.<br />

Est.<br />

No. ol<br />

Stat¡ons<br />

NORTH ISTAND<br />

1. Combined N.l. West Coast<br />

2. Bay of Plenty<br />

3. North lsland East Coast<br />

4. Central Hawke's Bay<br />

o.94<br />

6.19<br />

-2.21<br />

o.25<br />

3.93<br />

o.91<br />

6.O1<br />

5.38<br />

0.997<br />

0.617<br />

o.972<br />

o.989<br />

o.993<br />

0.380<br />

o.946<br />

o.979<br />

27.O* O.OO145<br />

1.75 0.Oo518<br />

9.32* 0.00645<br />

14.9* 0.00361<br />

65<br />

12<br />

12<br />

8<br />

SOUTH ISI-AND<br />

5. South lsland West Coast<br />

6. South lsland East Coast<br />

7. South Canterbury<br />

8. Otago-Southland<br />

2.46<br />

-o.37<br />

4.53<br />

-o.40<br />

2.25<br />

4.59<br />

5.90<br />

4.19<br />

0.996<br />

o.996<br />

0.981<br />

o.982<br />

o.992<br />

0.992<br />

0.963<br />

o.965<br />

25.2* o.oo244<br />

24.6* O.OO508<br />

1 1 .4* 0.10410<br />

11.7* O.OO974<br />

21<br />

14<br />

9<br />

t)<br />

NOTE:<br />

The regression is of <strong>the</strong> <strong>for</strong>m C¡ = (c + m.fnT)/lOO<br />

* ¡ndicates significance at <strong>the</strong> 196 level<br />

S.E. Est. is <strong>the</strong> standard error of est¡mate of C¡<br />

Water & soil technical publication no. 20 (1982)<br />

47


Table 3.9 The grouping and <strong>the</strong> group equations <strong>for</strong> est¡mation CF.<br />

GROUP<br />

West N.l.<br />

East N.l.<br />

West S.l.<br />

East S.l.<br />

NOTES:<br />

Regions whose<br />

Data were<br />

Regions Represented<br />

Pooled Toge<strong>the</strong>r by <strong>the</strong> Group<br />

1<br />

3,4 2. Bay of Plenty<br />

3. North ls. East Coast<br />

4. Central Hawke,s Bay<br />

5 5. South ls. West Coast<br />

6, 7, I 6. South ls. Easr Coast<br />

7. South Canterbury<br />

L Otago-Southland<br />

Group<br />

C¡ Equation,<br />

C.=<br />

1. Combined N.l. West Coast (O.94+3.93/nT)/1OO<br />

(- 1.25 +5.74fnTl<br />

/100<br />

12.46 +2.25tnTll1OO<br />

(2.61 +4.54/nT)/1OO<br />

+ indicates significance at <strong>the</strong> 1 7o level<br />

S.E. Est. is <strong>the</strong> standard error of estimate of C¡<br />

No. of stations is <strong>the</strong> total number used in <strong>the</strong> derivation of <strong>the</strong> group equation.<br />

S.E.<br />

R2 t Est.<br />

o.993 27.O* O.OO15<br />

0.984 17.7' O.O0g2<br />

0.992 25.2+ O.OO24<br />

o.985 18.1* 0.0068<br />

No. of C¡ value<br />

Stations <strong>for</strong>T=1OO<br />

65<br />

20<br />

2'l<br />

29<br />

o.1 I<br />

o.25<br />

o.1 3<br />

o.24<br />

than to obtain individual estimates of er/Q beyond a re_<br />

turn period of 100 years, which would have involved a gross<br />

extrapolation with several of <strong>the</strong> records.<br />

C¡ equations <strong>for</strong> estimating standard errors associated<br />

with <strong>the</strong> application of <strong>the</strong> generalised curves were also de_<br />

rived, and in exactly <strong>the</strong> same manner and with <strong>the</strong> same<br />

data as that used <strong>for</strong> <strong>the</strong> regional C¡ equations. Details of<br />

<strong>the</strong> resulting CF equations <strong>are</strong> given in iable 3.10.<br />

From a comparison of <strong>the</strong> coefficients of f nT in <strong>the</strong><br />

le 3.<br />

can be seen that<br />

<strong>for</strong><br />

rve produces CF<br />

thin<br />

given by <strong>the</strong> twô<br />

that<br />

<strong>are</strong>a. This result<br />

was <strong>not</strong> surprising, since a generalised curve <strong>for</strong> an <strong>are</strong>a<br />

represent<br />

that <strong>are</strong>a,<br />

and so it<br />

erages <strong>the</strong><br />

scatter in<br />

plo-ts. Be_<br />

cause of<br />

d that <strong>the</strong><br />

Never<strong>the</strong>less, some of <strong>the</strong> curves and <strong>the</strong> associated regional<br />

boundaries can<strong>not</strong> be regarded as definitive because<br />

of small data samples, a lack of samples, and a poor <strong>are</strong>al<br />

distribution of <strong>the</strong> flow stations' catchmenti (section<br />

3.4.3). In fact, <strong>the</strong> study exposed a number of <strong>are</strong>as where<br />

ef<strong>for</strong>ts to acquire flood peak data should be concentrated<br />

in <strong>the</strong> future.<br />

In <strong>the</strong> South Island <strong>the</strong>re were very few flow stations on<br />

<strong>the</strong> coastal plains of <strong>the</strong> east coast. Here <strong>the</strong>re <strong>are</strong> practical<br />

difficulties in estabtishing flow stations because <strong>the</strong> alluvial<br />

3.4.3 Definition of flood frequency<br />

reg¡onal boundaries<br />

As mentioned in section 3.3. I , use was made of available<br />

3.4.2 Data limitations<br />

most<br />

ever<br />

data<br />

rves.<br />

Island regions. A difference in <strong>the</strong> flood frequency trend<br />

between <strong>the</strong> North Island stations in <strong>the</strong> west änd those in<br />

<strong>the</strong> east was also evident.<br />

Table 3.1O The C¡ equations derived <strong>for</strong> <strong>the</strong> generalised curves.<br />

Area<br />

Western NZ<br />

Eastern NZ<br />

cF<br />

cF<br />

Equation<br />

S.E.<br />

R R2 t est.<br />

= (2.06+3.59fnT)/1OO 0.991 O.9Bt 16.3* 0.0060<br />

= (1.79 +4.84hrV1OO 0.996 0.992 26.8* O.OO49<br />

Water & soil technical publication no. 20 (1982)<br />

No. of<br />

stations<br />

86<br />

61<br />

48


The regions that were chosen initiatly reflect <strong>the</strong> difference<br />

in rainfall behaviour in New Zealand, and each region<br />

can generally be distinguished by its own rainfall characteristics.<br />

Where <strong>the</strong>re <strong>are</strong> pronounced regional rainfall characteristics,<br />

and where <strong>the</strong>re <strong>are</strong> sound topographical reasons<br />

<strong>for</strong> this, <strong>the</strong> boundary line between regions was easily decided<br />

upon. For instance, in <strong>the</strong> South Island West Coast<br />

region, where <strong>the</strong> rainfall is greatest and is dominated by<br />

<strong>the</strong> orographic influence of <strong>the</strong> Sou<strong>the</strong>rn Alps, <strong>the</strong> ridge<br />

line of <strong>the</strong> Alps was <strong>the</strong> obvious dividing line between this<br />

region and <strong>the</strong> o<strong>the</strong>r South Island regions. However, it is<br />

probable that <strong>the</strong> effect of <strong>the</strong> West Coast rainfall extends<br />

somewhat east of <strong>the</strong> ridge line, as indicated by <strong>the</strong> probability<br />

plots <strong>for</strong> <strong>the</strong> Shotover and upper Wairau catchments.<br />

The actual boundary line <strong>for</strong> <strong>the</strong> South Island West<br />

Coast <strong>the</strong>re<strong>for</strong>e includes <strong>the</strong>se catchments and some eastern<br />

headwater catchments in <strong>the</strong> Alps, e.g., <strong>the</strong> catchments of<br />

<strong>the</strong> Wilkin, Makarora and Matukituki Rivers.<br />

While <strong>the</strong> rainfall characteristics of different parts of<br />

New Zealand helped to identify <strong>the</strong> regions, <strong>the</strong> actual definition<br />

of <strong>the</strong> regional boundaries was <strong>not</strong> always as<br />

straight<strong>for</strong>ward as in <strong>the</strong> South Island West Coast example<br />

<strong>the</strong> topographical features were <strong>not</strong> always as dominant<br />

-<br />

as <strong>the</strong> Sou<strong>the</strong>rn Alps in influencing <strong>the</strong> rainfall. ln addition,<br />

<strong>the</strong>re was sometimes a poor <strong>are</strong>al distribution of flow<br />

stations, so that often <strong>the</strong> definition of <strong>the</strong> regional boundaries<br />

was ra<strong>the</strong>r subjective.<br />

A striking outcome of <strong>the</strong> regionalisation work was <strong>the</strong><br />

small number of flood frequency regions. In earlier work<br />

Toebes and Palmer (19ó9) divided <strong>the</strong> country into 90<br />

hydrological regions according to climatological, geological<br />

and topographical factors. However, in this study eight regions<br />

were considered adequate to define <strong>the</strong> variation in<br />

flood frequency behavioui in <strong>the</strong> country. This is an order<br />

of magnitude less than <strong>the</strong> number used by Toebes and<br />

Palmer, and suggests that climate is <strong>the</strong> dominant factor influencing<br />

floods in New Zealand and that geology and topography<br />

generally play relatively minor roles.<br />

3.4.4 Homogene¡ty test<br />

Some flood regionalisation studies have used <strong>the</strong> statistical<br />

test described by Dalrymple (1960) to identify <strong>the</strong> stations<br />

that <strong>for</strong>m a hydrological homogeneous region. This<br />

homogeneity test involves <strong>the</strong> graphical or analytical fitting<br />

of a frequency distribution to each station's flood peak<br />

data and <strong>the</strong> estimation of peak discharge values <strong>for</strong> <strong>the</strong><br />

2.33 and lO-year return periods, i.e., Qt ,, and Q,o respectively.<br />

The ratio of Q,o/Q, ,¡ is <strong>the</strong>n <strong>for</strong>med, which is an index<br />

of <strong>the</strong> straightJine slope of <strong>the</strong> fitted frequency curve between<br />

<strong>the</strong> two return periods. The test places confidence<br />

limits on <strong>the</strong> ratio Q'o/Q, ¡¡ and stations with ratios lying<br />

within <strong>the</strong> limits <strong>are</strong> taken as being part of <strong>the</strong> homogeneous<br />

region.<br />

Although <strong>the</strong> test Provides a quant<br />

ing a region, it was <strong>not</strong> relied uPon a<br />

insensitive when tested on South Is<br />

served that <strong>the</strong> test was unable to detect even major differences<br />

in individual frequency curves past <strong>the</strong> lO-year return<br />

period. This deficiency of<strong>the</strong> test was also <strong>not</strong>ed by Benson<br />

(r962a\.<br />

3.5 Flood frequencY discussion<br />

3.5. I Regional d¡fferences<br />

The most prominent characteristic of <strong>the</strong> regional curves<br />

is that <strong>the</strong> curves <strong>for</strong> <strong>the</strong> western regions of an island have a<br />

Water & soil technical publication no. 20 (1982)<br />

regions receive more rainfall more regularly than <strong>the</strong>ir eastern<br />

counterparts. Thus, <strong>the</strong> ratio of runoff to rainfall is<br />

comparatively high <strong>for</strong> <strong>the</strong> western catchments and does<br />

<strong>not</strong> vary markedly <strong>for</strong> <strong>the</strong> storms that produce <strong>the</strong> annual<br />

floods. The mean annual flood is <strong>the</strong>re<strong>for</strong>e fairly large and<br />

<strong>the</strong>re is little variability in <strong>the</strong> annual flood peak data (section<br />

4.9). As a consequence, <strong>the</strong> difference between <strong>the</strong><br />

100-year and mean annual flood is <strong>not</strong> very great, e.g., in<br />

<strong>the</strong> curves <strong>for</strong> <strong>the</strong> two western regions <strong>the</strong> 100-year flood<br />

peak is less than 2.35 times <strong>the</strong> mean annual flood.<br />

On <strong>the</strong> o<strong>the</strong>r hanLd, <strong>the</strong> catchments in <strong>the</strong> eastern regions<br />

<strong>are</strong> usually drier and have a lower runoff to rainfall ratio.<br />

The mean annual Ilood <strong>for</strong> an eastern catchment is <strong>the</strong>re<strong>for</strong>e<br />

less than that <strong>for</strong> a western one of <strong>the</strong> same size (section<br />

4.5). There is eLlso a greater range in <strong>the</strong> runoff to rainfall<br />

ratio fo¡ an eastern catchment and this is reflected in<br />

<strong>the</strong> greater variability of <strong>the</strong> annual flood peak data <strong>for</strong><br />

such a catchment (section 4.9). The difference between <strong>the</strong><br />

100-year and <strong>the</strong> rnean annual flood is <strong>the</strong>re<strong>for</strong>e significantly<br />

greater than that <strong>for</strong> a western catchment, as is borne<br />

out by eastern regional curves being steeper than <strong>the</strong> western<br />

curves. It is worth <strong>not</strong>ing that <strong>the</strong> wettest region (<strong>the</strong><br />

South Island West Coast region) has <strong>the</strong> flattest regional<br />

curve and one of <strong>the</strong> driest regions (<strong>the</strong> South Canterbury<br />

region) has <strong>the</strong> steepest curve.<br />

While <strong>the</strong> slope of a regional curve is an indication of <strong>the</strong><br />

variability in <strong>the</strong> individual data samples <strong>for</strong> <strong>the</strong> region, <strong>the</strong><br />

curvature may be taken as an index of <strong>the</strong> skewness in <strong>the</strong><br />

samples. As indicated by NERC (1975, p.42,47), <strong>the</strong> EVI<br />

distribution has a coefficient of skew of 1.14, and skew<br />

values greater or ler;s than this figure correspond to <strong>the</strong> EV2<br />

and EV3 distributions respectively. The majority of <strong>the</strong> regional<br />

curves in this study <strong>are</strong> described by <strong>the</strong> straight-line<br />

EVI distribution, implying that <strong>the</strong> average skewness in <strong>the</strong><br />

data samples <strong>for</strong> <strong>the</strong>se regions was small. This in fact was<br />

<strong>the</strong> case: <strong>for</strong> <strong>the</strong> regions with straight-line fits to <strong>the</strong> data<br />

<strong>the</strong> average skew of a region's annual flood peak samples<br />

was in <strong>the</strong> range 0.39 (S.I. West Coast) to 1.09 (Central<br />

Hawke's Bay) and <strong>the</strong> EVI distribution was found to give a<br />

good approximation to <strong>the</strong> regional data up to <strong>the</strong> 200-year<br />

return period. In <strong>the</strong> Bay of Plenty, South Canterbury and<br />

Otago-Southland regions <strong>the</strong> average skew of a region's<br />

data samples was greater than 1.2. For <strong>the</strong> first two of <strong>the</strong>se<br />

regions, <strong>the</strong> EV2 dtistribution was found to give a good fit<br />

to <strong>the</strong> regional dat¡1. Because of <strong>the</strong> smaller number of data<br />

samples <strong>for</strong> <strong>the</strong> third region, however, less significance can<br />

be attached to <strong>the</strong> average skew (1.23) of <strong>the</strong> region's data<br />

samples, and <strong>the</strong> IlVl distribution approximated <strong>the</strong> data<br />

satisfactorily up to <strong>the</strong> 100-year return period.<br />

It is interesting to <strong>not</strong>e that <strong>the</strong> two regions with EV2 regional<br />

curves can both be regarded as dry <strong>are</strong>as; <strong>the</strong> South<br />

Canterbury region because of its low rainfall, and <strong>the</strong> Bay<br />

of Plenty region because of its absorbent pumice soils (see<br />

also section 4.6.2) and its relatively low rainfall in comparison<br />

with its regional neighbour to <strong>the</strong> west.<br />

The pooling of <strong>the</strong> regional flood peak data to construct<br />

<strong>the</strong> generalised curves produced mass probability plots<br />

(Figures 3.24 and 3.25) that show very little scatter in <strong>the</strong><br />

data up to about <strong>the</strong> l0-year return period. Beyond this <strong>the</strong><br />

scatter is greater, but <strong>not</strong> excessively so, and is due in part<br />

to some of <strong>the</strong> uncertainty associated with <strong>the</strong> historical<br />

flood peaks. The averaging of <strong>the</strong> pooled data and <strong>the</strong><br />

application of <strong>the</strong> extension method (NERC 1975) clearly<br />

defined <strong>the</strong> flood frequency trend <strong>for</strong> <strong>the</strong> fitting of each<br />

generalised curve. rühile <strong>the</strong> curves require some refinement<br />

using more and especially longer flood records, <strong>the</strong>y<br />

should still provide <strong>the</strong> designer with a reasonable guide as<br />

to <strong>the</strong> magnitude of flood peaks past <strong>the</strong> 2(Ð-year return<br />

period, <strong>the</strong> maximLum upper bound of <strong>the</strong> regional curves.<br />

An assessment of <strong>the</strong> reliability of each curve can be made<br />

from an inspectiorr of <strong>the</strong> scatter in <strong>the</strong> corresponding mass<br />

probability plot eLnd by applying <strong>the</strong> appropriate North<br />

Island group CF equation (section 3.4.1).<br />

49


allowing curves ra<strong>the</strong>r than just straight lines to be fitted to<br />

<strong>the</strong> regional data with confidence. In this New Zealand<br />

curve and <strong>the</strong> eastern curve is <strong>the</strong> straight-line EVl. This is<br />

d generalised curves<br />

ynn (1978) <strong>for</strong> Creat<br />

given in Figure 3.26.<br />

curve and <strong>the</strong> corresponding regional ones, results from in_<br />

clusion in <strong>the</strong> development of <strong>the</strong> generalised curve of some<br />

of <strong>the</strong> extreme flood peaks which had been excluded from<br />

<strong>the</strong> derivation of <strong>the</strong> corresponding regional curves. While<br />

<strong>the</strong>re is a valid argument <strong>for</strong> <strong>the</strong> inclusion of <strong>the</strong>se extreme<br />

e still been too<br />

<strong>the</strong>reby weightperiods.<br />

been described<br />

New Zeatand curves bear a remarkabl|t','"tJJr:i*t;tÏ::<br />

to <strong>the</strong>ir Great Britain counterparts.<br />

Although <strong>the</strong> two countries have broadly similar cli_<br />

mates, New Zealand has greater extremes of wet and dry.<br />

That <strong>the</strong> New Zealand curves do <strong>not</strong> reflect this with túe<br />

western and eastern curves be<br />

-<br />

tively, in relation to <strong>the</strong> corre<br />

- is possibly due to <strong>the</strong> ave<br />

ment of <strong>the</strong> curves, i.e., <strong>the</strong> i<br />

treme wet or dry climates is largely nullified by <strong>the</strong> lumping<br />

toge<strong>the</strong>r of <strong>the</strong>se <strong>are</strong>as with o<strong>the</strong>rs which <strong>are</strong> <strong>not</strong>iceãblt<br />

drier or wetter, respectively. The fact that <strong>the</strong> western New<br />

was used to describe <strong>the</strong> generalised curve.<br />

ntinuity between<br />

Oing generalised<br />

"<br />

. ;;,f.tïi'l"i::;<br />

expectation. This may be viewed as taking a weighted aver_<br />

age of <strong>the</strong> estimates.<br />

3.5.3 Vadation within a reg¡on<br />

3.5.2 Compar¡son with rhe Br¡t¡sh lsles<br />

;<br />

f<br />

<strong>the</strong>se curves reveals some remarkable similarities with <strong>the</strong><br />

curves obtained in this New Zealand study.<br />

First of all, <strong>the</strong> British Isles regional curves display <strong>the</strong><br />

same trend of an increase in <strong>the</strong> slope of <strong>the</strong> curves between<br />

those <strong>for</strong> <strong>the</strong> western regions and those <strong>for</strong> <strong>the</strong> eastern re_<br />

gions <strong>the</strong> curve <strong>for</strong> <strong>the</strong> western-most<br />

- region, <strong>the</strong> whole of<br />

Ireland, has <strong>the</strong> smallest slope, whereas <strong>the</strong> curve <strong>for</strong> <strong>the</strong><br />

eastern-most region, East Anglia, has <strong>the</strong> greatest,<br />

Fur<strong>the</strong>r, <strong>the</strong> range of <strong>the</strong> ordinates of <strong>the</strong> British Isles<br />

and New Zealand curves is almost <strong>the</strong> same at high return<br />

periods. For example, <strong>the</strong> South Island West Coast regional<br />

curve, which has <strong>the</strong> smallest slope of all <strong>the</strong> New Zéaland<br />

very dry in relation to<br />

is likely to be steeper<br />

catchment which is ve<br />

tend to have a flatter<br />

An extension of this argument leads to <strong>the</strong> concept of<br />

sub-regions which, although geographically part of a làrger<br />

surrounding region, display a e/Q frequency trend of thiir<br />

is<br />

E<br />

b<br />

50<br />

3.5.4 Secular climatic variat¡on<br />

-In th9 regionalisation procedure described by Dalrymple<br />

(19@), it is recommended that all <strong>the</strong> flood records should<br />

be brought to a common base length by correlating <strong>the</strong> re-<br />

Water & soil technical publication no. 20 (1982)


o<br />

SOUTH AFRICA<br />

to<br />

o<br />

,s.E. BRtTAtN<br />

.,,'<br />

EASTERN N.Z.<br />

WESTERN N.Z.<br />

-N.W. BRITAIN<br />

23<br />

Reduced Voriote<br />

567<br />

2.33 5to2050<br />

-ffi<br />

roo 200 500 rooo<br />

Return Period ! yeors<br />

Figure 3.26 Comparison of <strong>the</strong> New Zealand generalised curves with those f rom <strong>the</strong> British lsles and South Af rica.<br />

-<br />

cords with <strong>the</strong> longest reliable one. The aim of this correlation<br />

is to remove <strong>the</strong> effect of any climatic variation that<br />

might exist amongst <strong>the</strong> records of differing length. However,<br />

<strong>the</strong> correlations <strong>are</strong> often so poor that <strong>the</strong>re appears<br />

to be very little advantage in attempting this <strong>for</strong>m of extension.<br />

Fur<strong>the</strong>r it is uncertain at <strong>the</strong> present time whe<strong>the</strong>r<br />

<strong>the</strong>re <strong>are</strong> significant climatic trends in annual flood peak<br />

records (ICE 1975, pp.76-80). For example, Cunnane<br />

(NERC 1975, pp.l25-32) per<strong>for</strong>med a number of statistical<br />

tests on 28 long records of annual flood peaks. The tests<br />

suggested that <strong>the</strong> peaks were largely random, and <strong>the</strong>re<strong>for</strong>e<br />

contained no <strong>not</strong>iceable climatic trend. A similar con-<br />

clusion was reaclned by Beard (1977) in an analysis of annual<br />

flood peaks in 300 long records <strong>for</strong> stations in <strong>the</strong><br />

United States.<br />

In this New Ze:aland study it was assumed that <strong>the</strong>re was<br />

no climatic trend in <strong>the</strong> annual flood peak records. This<br />

same assumptiorn was made by NERC (1975), and in<br />

Beard's (1977) flood frequency analysis work <strong>for</strong> <strong>the</strong> U.S.<br />

Water Resources Council. The possibility of <strong>the</strong>re being climatic<br />

variations in <strong>the</strong> flood records is <strong>not</strong> ruled out, but<br />

this is an <strong>are</strong>a ol'hydrology that requires fur<strong>the</strong>r research<br />

be<strong>for</strong>e proper account can be taken of such variation in a<br />

regional study like this.<br />

Water & soil technical publication no. 20 (1982)<br />

5l


3.5.5 Extension method<br />

The NERC (1975) extension method proved very useful<br />

in developing <strong>the</strong> Bay of Plenty regional curve and <strong>the</strong> generalised<br />

curves. However, it was <strong>not</strong> considered necessary<br />

to use <strong>the</strong> method <strong>for</strong> <strong>the</strong> development of every regional<br />

curve. For instance, in a test on <strong>the</strong> South Island tr)Vest<br />

Coast regional data, <strong>the</strong> extension method produced a<br />

curve almost identical with that obtained by <strong>the</strong> usual<br />

curve-fitting procedure (section 3.3.2). There was also uncertainty<br />

in <strong>the</strong> method concerning <strong>the</strong> statistical dependence<br />

between <strong>the</strong> original and <strong>the</strong> new set of average values.<br />

In a sense it appe<strong>are</strong>d that <strong>the</strong> same in<strong>for</strong>mation on <strong>the</strong><br />

large Q/Q values was being used twice. This would weight<br />

<strong>the</strong> curve-fitting process in favour of <strong>the</strong> historical flood<br />

peaks, <strong>the</strong> estimat€s of which <strong>are</strong> generally less reliable than<br />

those <strong>for</strong> <strong>the</strong> annual flood peaks. In addition, <strong>the</strong>re is considerable<br />

difficulty in grouping <strong>the</strong> stations of a region such<br />

that neighbouring catchments <strong>are</strong> <strong>not</strong> represented in a<br />

group. While this condition can normally be satisfied, <strong>the</strong>re<br />

<strong>are</strong> necessarily some catchments represented which <strong>are</strong> in<br />

close proximity to one a<strong>not</strong>her, which raises doubts about<br />

treating <strong>the</strong> flood peak data of a group as independent sample<br />

items.<br />

3.5.6 Catchment s¡ze<br />

Catchments less than 20 km'? were omitted from <strong>the</strong><br />

study, except in <strong>the</strong> Northland-Auckland <strong>are</strong>a, on <strong>the</strong> prior<br />

belief that <strong>the</strong>y would have steeper flood frequency curves<br />

than <strong>the</strong> larger catchments (section 3.2.1). This was found<br />

to be true at times, especially <strong>for</strong> <strong>the</strong> very small catchments<br />

of <strong>the</strong> order of I km' in <strong>are</strong>a. However, <strong>the</strong> initial curve <strong>for</strong><br />

<strong>the</strong> Nor<strong>the</strong>rn North Island region (Figure 3.8) refutes <strong>the</strong><br />

general argument against <strong>the</strong> omission of small catchments.<br />

The curve was based on <strong>the</strong> flood peak däta <strong>for</strong> catchments<br />

ranging in <strong>are</strong>a from 2.48 to 1606 km':(see Table 3.2), yet it<br />

is <strong>not</strong> steep nor does <strong>the</strong> corresponding regional probability<br />

plot show greater scatter than that <strong>for</strong> o<strong>the</strong>r western regions.<br />

The curve is a typical western one and flatter than<br />

any eastern regional curve.<br />

While it was quite evident that <strong>the</strong> flood peak data <strong>for</strong><br />

some small catchments could <strong>not</strong> be tolerated in <strong>the</strong> derivation<br />

of a regional curve, it does appear from <strong>the</strong> Nor<strong>the</strong>rn<br />

North Island example that small catchments could possibly<br />

have been considered in <strong>the</strong> derivation of some of <strong>the</strong><br />

curves.<br />

3.6 Summary<br />

Eight flood frequency regions have been defined <strong>for</strong> New<br />

Zealand, and an average Q/Q vs T curve derived <strong>for</strong> each.<br />

It is suggested that <strong>the</strong>se regional curves can be used to estimate<br />

Qr/Q <strong>for</strong> rural catchments within <strong>the</strong> region concerned<br />

<strong>for</strong> return periods up to 200 years. An exception is<br />

<strong>the</strong> Otago-Southland curve; it is only tentative and should<br />

<strong>not</strong> be extrapolated beyond <strong>the</strong> 100-year return period. For<br />

return periods exceeding <strong>the</strong> recommended upper limit of<br />

<strong>the</strong> regional curve, one of <strong>the</strong> two generalised curves developed<br />

<strong>for</strong> <strong>the</strong> east and <strong>the</strong> west of New Zealand can aid<br />

<strong>the</strong> estimation of Q1/Q. With all <strong>the</strong> curves it is important<br />

that <strong>the</strong>y <strong>are</strong> <strong>not</strong> applied to catchments whose <strong>are</strong>as <strong>are</strong> too<br />

far outside <strong>the</strong> range of <strong>are</strong>as used in <strong>the</strong> derivation of <strong>the</strong><br />

curve concerned. An indication of <strong>the</strong> reliability of a Q1/Q<br />

estimate taken from a curve is provided by standard error<br />

equations, which give values somewhat less than a similar<br />

equation determined by NERC (1975) <strong>for</strong> use with <strong>the</strong> British<br />

Isles curves.<br />

The most <strong>not</strong>able characteristic of <strong>the</strong> curves is that those<br />

<strong>for</strong> <strong>the</strong> east have steeper slopes than those <strong>for</strong> <strong>the</strong> west, reflecting<br />

<strong>the</strong> greater variability in <strong>the</strong> annual flood peak data<br />

<strong>for</strong> <strong>the</strong> eastern catchments. The same characteristic is evident<br />

in <strong>the</strong> British Isles regional curves. Also of <strong>not</strong>e is that<br />

<strong>the</strong> two New Zealand generalised curves resemble <strong>the</strong>ir<br />

Great Britain counterparts (Stevens and Lynn 1978).<br />

52<br />

Water & soil technical publication no. 20 (1982)


4 Estimation of mean annual flood<br />

4.1 lntroduction<br />

This chapter covers estimation of <strong>the</strong> mean annual flood<br />

1Q¡ tor sites with no flood record. A procedure is presented<br />

which estimates Q as a function of catchment and climatic<br />

characteristics. Where necessary, Q so estimated is designated<br />

Q "s<br />

distinguishing it from Q o5, calculated from<br />

observed flood records.<br />

The flood records used to derive <strong>the</strong> procedure were selected<br />

as outlined below. This selection was based on <strong>the</strong><br />

length of record, <strong>the</strong> size and type of catchment, and <strong>the</strong><br />

quality of record. Selection of <strong>the</strong> characteristics and <strong>the</strong>ir<br />

abstraction from maps and o<strong>the</strong>r published in<strong>for</strong>mation <strong>are</strong><br />

detailed. It was found that improved estimates of Q were<br />

obtained by <strong>for</strong>ming regions. Delineation of <strong>the</strong>se regions<br />

and obvious boundary problems <strong>are</strong> discussed. Catchments<br />

with records <strong>not</strong> fitting into regional patterns <strong>are</strong> identified<br />

and reasons <strong>for</strong> some anomalies <strong>are</strong> suggested. Best fitting<br />

equations <strong>are</strong> summarised with accompanyinig standard error<br />

estimates.<br />

4.2 Proposed method<br />

The relation between Q and measurable catchment characteristics<br />

was assumed to have <strong>the</strong> fo¡m of<br />

Q: a X' b'X, b' 4t<br />

where a, b,, b, ... <strong>are</strong> constants to be estimated and X', X,<br />

... <strong>are</strong> characteristics of <strong>the</strong> catchment having an influence<br />

on <strong>the</strong> mean annual flood.<br />

After taking logarithms, log a, b,, b, ... were estimated<br />

by standard multiple linear regression. There is good precedent<br />

in <strong>the</strong> literature <strong>for</strong> this type of multiplicative function<br />

(NERC 1975; Benson 1962b); thus o<strong>the</strong>r possible <strong>for</strong>ms<br />

were <strong>not</strong> investigated.<br />

4.3 Records used<br />

Catchments used in <strong>the</strong> study were selected from those<br />

having an <strong>are</strong>a within <strong>the</strong> range 0.22 to I 100 km'. The three<br />

smallest catchments have <strong>are</strong>as 0.22, 0.52 and 2.18 km'.<br />

Smaller catchments were excluded because flood discharges<br />

from very small (often ephemeral) catchments result from<br />

short duration rainfalls and <strong>are</strong> sensitive to infiltration and<br />

vegetation effects (Campbell 1962). The upper bound was<br />

imposed because estimates of mean rainfalls over large catchments<br />

can be unrealistic. In any case, since most large<br />

catchments in New Zealand <strong>are</strong> monitored, most ungauged<br />

catchment estimation problems occur in relatively small<br />

catchments.<br />

Records <strong>for</strong> catchments with significant impoundments<br />

or diversions were <strong>not</strong> used. This meant excluding a number<br />

of lake outflow records. However, outflows from all<br />

larger lakes <strong>are</strong> monitored <strong>for</strong> hydroelectric purposes and<br />

flood estimates <strong>for</strong> <strong>the</strong>m <strong>are</strong> best derived directly from<br />

<strong>the</strong>se records. Urban catchments, and o<strong>the</strong>rs with <strong>are</strong>as of<br />

limestone country, or permanent snowfields or glaciers,<br />

were also excluded.<br />

Four years of re_cord were considered <strong>the</strong> minimum necessary<br />

to estimate Qou, md with <strong>the</strong> above constraints, data<br />

<strong>for</strong> 63 South Island (Figure 4. I and Table 4.1) and 97 North<br />

Island (Figure 4.2 atd Table 4.2) catchments were assembled<br />

<strong>for</strong> <strong>the</strong> study. The distribution of <strong>the</strong>se catchments<br />

throughout <strong>the</strong> country was reasonable, except that <strong>the</strong>re<br />

were too few in <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> South Island'<br />

Tables 4.I and 4.2 contain <strong>the</strong> data used in this chapter.<br />

<strong>These</strong> <strong>are</strong> <strong>the</strong> mean annual flood Qo6, , <strong>the</strong> coefficient of<br />

variation Cu of annual maxima, <strong>the</strong> length of record, catchment<br />

<strong>are</strong>a, and o<strong>the</strong>r catchment and climatic characteristics.<br />

Generally, flow data <strong>are</strong> complete to <strong>the</strong> 1976 or 1977<br />

calendar year.<br />

4.4 Collect¡on of character¡st¡cs<br />

A number of indiLces can be used as characteristics X,, X,<br />

... in Equation 4.1. However, if <strong>the</strong> relation to be developed<br />

is to be useful as a design procedure, <strong>the</strong> cha¡acteristics<br />

must be rea'dily obtainable from published in<strong>for</strong>mation<br />

such as maps, climate summaries, etc. The characteristics<br />

can be subdivided into two groups; those which<br />

cha¡acterise <strong>the</strong> phvsical catchment, and those representing<br />

<strong>the</strong> climate over <strong>the</strong> catchment. The physical characteristics<br />

included <strong>the</strong> size arnd shape of <strong>the</strong> catchment and <strong>the</strong> embedded<br />

stream channel, <strong>the</strong> vegetation, and <strong>the</strong> hydraulic<br />

properties of <strong>the</strong> soil. The NZMS I (l:63360) map series is<br />

<strong>the</strong> most detailed map series giving a national coverage and<br />

was used to providr: measurements of <strong>the</strong> <strong>are</strong>a, mean elevation,<br />

channel density, main channel length and slope, and<br />

percent <strong>for</strong>est cover. Hydraulic properties of <strong>the</strong> soil (e.g.<br />

permeability) <strong>are</strong> less easily defined; <strong>the</strong>se depend on soil<br />

type, surface slope, vegetation rooting characteristics and<br />

underlying geology, and vary widely over most catchments.<br />

Much of this latter in<strong>for</strong>mation is now available nationwide<br />

from <strong>the</strong> National Land Resource Inventory Iùy'orksheets<br />

which <strong>are</strong> plotted at <strong>the</strong> same scale as <strong>the</strong> NZMS I map<br />

series, but this was <strong>not</strong> available when <strong>the</strong> present study was<br />

undertaken.<br />

Climatic data available in Meteorological Service reports<br />

and maps include rnean annual rainfall, rainfall intensity of<br />

specified probability, distance of <strong>the</strong> catchment from important<br />

meteorological barriers, and measures related to<br />

<strong>the</strong> time and rate of snowmelt. Snowmelt is generally <strong>not</strong> an<br />

important flood-producing mechanism in New Zealand and<br />

in this study two rainfall parameters were used: mean annual<br />

rainfall <strong>for</strong> <strong>the</strong> catchment, and <strong>the</strong> 2-year return<br />

period 24-hour duration rainfall estimated <strong>for</strong> <strong>the</strong> catchment.<br />

Thus <strong>the</strong> following characteristics were estimated <strong>for</strong><br />

each catchment:<br />

Catchment <strong>are</strong>a.<br />

Water & soil technical publication no. 20 (1982)<br />

(i)<br />

(it) Main channel length.<br />

(iii) Main charurel slope.<br />

(iv) Mean catchment elevation.<br />

(v) Stream frequency.<br />

(vi) Percentagecatchment<strong>for</strong>ested.<br />

(vii) Mean annual rainfall over catchment.<br />

(viil) 2-year return period, 24-hour duration rainfall.<br />

The first six of <strong>the</strong>se <strong>are</strong> physical and vegetation characteristics<br />

which were extracted from <strong>the</strong> NZMS I maps.<br />

Although recent nraps in this series <strong>are</strong> photogrammetric<br />

maps, earlier maps <strong>are</strong> based on survey records and plane<br />

table sketch surveys. O<strong>the</strong>rs <strong>are</strong> provisional without contours,<br />

so channel slope and mean elevation could <strong>not</strong> be defined<br />

<strong>for</strong> every catchment. The considerable variation from<br />

one map to a<strong>not</strong>hcr in <strong>the</strong> definition of streams meant that<br />

estimates of <strong>the</strong> sl:ream frequency, that is, <strong>the</strong> number of<br />

stream junctions lper unit <strong>are</strong>a, were unlikely to be consistent<br />

from one <strong>are</strong>a to a<strong>not</strong>her. It was felt important to<br />

utilise all available in<strong>for</strong>mation so stream frequency was included<br />

but, in <strong>the</strong> event, it did <strong>not</strong> assist in explaining <strong>the</strong><br />

variation of Q between catchàents'<br />

The procedures <strong>for</strong> estimating <strong>the</strong> physical characteristics<br />

which were adapted from Benson (1962b, 1964) and Newsom<br />

(1975), and acronyms by which <strong>the</strong>se cha¡acteristics<br />

will subsequently be known <strong>are</strong> given here.<br />

(i)<br />

Catchment <strong>are</strong>a: (AREA) (km')<br />

Catchment boundaries were drawn on maps and <strong>the</strong><br />

enclosed at'ea measured by planimeter. <strong>These</strong> <strong>are</strong>as<br />

<strong>are</strong> normally available with recording station in<strong>for</strong>mation.<br />

53


Table 4.1 South lsland catchment characteristics.<br />

1rì<br />

11<br />

2It<br />

2(¡<br />

27<br />

28<br />

21<br />

30<br />

51<br />

32<br />

51<br />

Jlr<br />

55<br />

l5<br />

37<br />

38<br />

lq<br />

h0<br />

41<br />

lr2<br />

ll'¡<br />

qq<br />

b5<br />

46<br />

lr7<br />

q8<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

6l<br />

o ^.-<br />

STATIoN tm{il<br />

5?tì16 tlÏ-.nni<br />

5 7008 l¡37.00<br />

57106 6S.20<br />

5750! 83t.00<br />

59001 77.nr\<br />

6fìl 10 1161 .74<br />

601tli 260.00<br />

6fì1I6 59.f10<br />

62!.0t 133.f'n<br />

62104 -1.6.80<br />

621rì5 187.fllì<br />

64t01 524.n0<br />

6460C 89.2fì<br />

64610 1I.30<br />

651n4 540.00<br />

65q02 56.n0<br />

66409 0,27<br />

6660J 1.05<br />

66604 1,42<br />

67601 lt.?0<br />

6Î001 35.00<br />

68806 108.00<br />

69506 260.00<br />

696I lr 25 0 .00<br />

61 618 I 20 .00<br />

61621 72,7i<br />

717î2 tJ.0n<br />

7!LO3 11 2. 70<br />

71106 91.60<br />

71109 100,I0<br />

71116 227 .nn<br />

7lr2t 67.5tì<br />

71f22 7,Jtt<br />

lLlz? 16.10<br />

711 29 2b . nn<br />

711t5 6l .fio<br />

7!702 148.0n<br />

73501 37,80<br />

7rr5l,h 55,2rì<br />

TttSItE 22.F,rt<br />

74t5i 2.87<br />

7tt7Ol ,1-0.00<br />

75259 22.20<br />

7527 6 ll5 6. 0 n<br />

7850-\ t0.00<br />

73625 46.60<br />

78801 5.09<br />

80201 18.70<br />

th701 5h9,00<br />

86802 3725.00<br />

906 0tt 2132.0î<br />

90605 27 .iî<br />

91101 1588.00<br />

911102 lq.10<br />

9!lr0h 692.00<br />

91407 119tì.00<br />

9!206 1680.00<br />

91207 460.00<br />

9t'2on 7rB.no<br />

932u 974.00<br />

91212 196.00<br />

932t7 181.00<br />

94502 1 251 .flo<br />

cv<br />

0.1n<br />

0.85<br />

0.79<br />

0.tfj<br />

o.7n<br />

o.lrb<br />

0,¡0<br />

0 .10<br />

0.55<br />

0 .95<br />

n.lr8<br />

0.70<br />

0.27<br />

| ,17<br />

ll.t!7<br />

0.70<br />

1.54<br />

1.1i<br />

I .01<br />

0.fi8<br />

0.5'r<br />

0.71r<br />

0.75<br />

0¡98<br />

r.l5<br />

0.61<br />

0.81<br />

0.77<br />

0.58<br />

0.1 I<br />

n.5lr<br />

I .14<br />

o.70<br />

0.h7<br />

0,11<br />

n.75<br />

1.nt<br />

0.1 1<br />

n,56<br />

0.59<br />

r) .96<br />

0.30<br />

o.26<br />

0.lrl<br />

0.1)0<br />

0.81<br />

n.78<br />

o .2P,<br />

0.!.6<br />

0.10<br />

o.2tl<br />

0 .15<br />

o.2t<br />

o .27<br />

0.r4<br />

0.40<br />

0.28<br />

0.59<br />

o .?.7<br />

0.20<br />

o.32<br />

l-ength<br />

Record<br />

(yrs)<br />

8<br />

6<br />

15<br />

5<br />

16<br />

25<br />

11<br />

18<br />

5<br />

73<br />

t2<br />

10<br />

3<br />

10<br />

It<br />

5<br />

t2<br />

I2<br />

6<br />

16<br />

I<br />

40<br />

lll<br />

10<br />

5<br />

1l<br />

(;<br />

6<br />

L2<br />

7<br />

6<br />

q<br />

11<br />

10<br />

6<br />

72<br />

10<br />

10<br />

L3<br />

7<br />

7<br />

11<br />

7<br />

It<br />

ll<br />

7<br />

9<br />

6<br />

9<br />

1l<br />

11<br />

13<br />

IJ<br />

16<br />

11<br />

5<br />

AREA MARAIN 1224 LENGTH 51O85<br />

{km'¿) {mm) (mm} (kml (m/m)<br />

5lEû0 287r !.10 16.50 0.0198<br />

161.00 2100 Rl 25.10 0.(tr00<br />

B1 .60 1140 81 20,50 0.0134<br />

1164.00 1500 124 16.50 0. CI79<br />

_l1,fta 7620 9t 6.50 0,n210<br />

76b.00 14Lo 3t G1.so oi'riis<br />

505.00 L6L0 69 4C.00 0.0118<br />

192.00 24!0 69 29.40 0.0140<br />

q9?.00 1570 76 68.90 0.0092<br />

2n.00 7200 76 9.rlo 0.0600<br />

440.00 L720 7l) st.tO 0.0097<br />

464 .00 L23\ Lt2 49. q0 0.0109<br />

7r,.60 4300 7ß L7.tt} 0.0290<br />

41.60 030 74 10,50 0.0120<br />

1070.00 2000 0t 76.10 o;00i2<br />

tlz.2o 7\0 77 li,40 0.0270<br />

o.22 L4C0 8l O.lO 0.20r¡0<br />

?.13 1GO 63 2.50 0.1280<br />

1,2t |to GJ 2.70 0.1ir0<br />

5.20 l.rr00 !.04 Z.trO 0.1t¡00<br />

16r; .0 0 1100 6 9 10 .7 0 O, (07 9<br />

q?1.q0 L35o 6c 54.90 0.0140<br />

t20.00 1010 80 t,6.BO o.oijO<br />

456.00 1075 61 r¡6.40 0.0262<br />

41 2 .0 0 777 61 tti .ZO 0 .010 6<br />

2?.\9 800 52 7.eo UNDEF<br />

78.70 ejo q1 2t: (o úi¡óEÊ<br />

899.00 720 48 62.30 uilDEF<br />

150.00 s70 q1 29.50 0.0070<br />

23,7i lr30 3\ 9.10 0.0470<br />

11.40 tz(J bi 10.10 0.0160<br />

122.00 [00 J5 25.t0 0.0420<br />

108C .00 7022 75 06.00 0.005 6<br />

1!!.90 1010 rrr 2e.10 0.0020<br />

109.00 10t0 51 17.10 0.01ió<br />

36.80 10r!0 b6 17.!.0 0.0030<br />

, u 1.90 lt t0 66 L7 .70 0,0070<br />

155.00 6520 520 16,30 o:fì'riõ<br />

842.00 6920 tO2 7rr,00 0.0168<br />

152.00 731,0 ttl ,1.40 lt.0290<br />

3.99 1500 18s 5.20 0.0560<br />

99q.00 5700 226 65.90 0.0067<br />

_lq.qq 27\3 104 8.90 0.0190<br />

642.00 4010 81 66.s0 o.noõé<br />

790.00 l¡1r70 8l 62.50 0.OOBO<br />

99e.00 3580 81 69,50 0.0082<br />

254.00 2520 81 15.60 o,ollo<br />

980.00 2990 64 95.00 0.0091<br />

E:7.SS i250 64 75.20 0.0120<br />

-2!!.gg 1610 6b<br />

1e8.00<br />

2t.Eo ö:diii<br />

t070 64 th.1o 0:ótÉ,,<br />

694.00 \720 LS2 116-10 0.0170<br />

FOREST<br />

{%)<br />

4t<br />

4t<br />

62<br />

57<br />

22<br />

7<br />

19<br />

2<br />

0<br />

1<br />

2<br />

5<br />

25<br />

1<br />

32<br />

0<br />

0<br />

0<br />

9<br />

0<br />

11<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

3<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

29<br />

0<br />

0<br />

0<br />

8<br />

0<br />

2<br />

0<br />

0<br />

99<br />

26<br />

49<br />

2f<br />

78<br />

56<br />

16<br />

76<br />

58<br />

76<br />

77<br />

7t<br />

72<br />

76<br />

67<br />

77<br />

STMFCY ELEV<br />

(km-'z) (m)<br />

0.16 Ln'<br />

0.48 1019<br />

0.89 52tt<br />

0 .71 587<br />

0.80 594<br />

0.87 785<br />

0 .2\ 1 qll<br />

0,21 t392<br />

0.62 1510<br />

0.02 11q0<br />

0,r5 1200<br />

0,72 500<br />

0,27 rb20<br />

0.41 5t5<br />

0. b6 960<br />

0.55 UNDEF<br />

0 .0 9¡¡5<br />

0.0 2E'1<br />

0.0 r18<br />

1 .60 t 0ll<br />

0.78 647<br />

0 .1¡r 100O<br />

0,51 .820<br />

o.ql 917<br />

0 .25 5lr0<br />

].10 UNDEF<br />

1.80 UNDEF<br />

O. 85 UNDEF<br />

l.tt 827<br />

L .72 1128<br />

0.85 12b0<br />

0.46 l0llr<br />

0.11 840<br />

o.25 970<br />

o.22 lt85<br />

0 .3t 1l¡90<br />

1 . 1O UI,¡DE F<br />

0. t5 288<br />

1 ,71 83t<br />

r.r1 913<br />

2 .62 3lr 2<br />

5. (l) L75<br />

L.3t 1t68<br />

0.28 tt88<br />

0,08 50<br />

1 .05 38'<br />

0.0, 69<br />

o.z\ 162<br />

0.15 8b0<br />

0,¡2 1050<br />

0.56 1150<br />

0.0 2\0<br />

0 . 74 8l+t<br />

1.08 L\2<br />

0.17 7 20<br />

0.21 710<br />

0.t3 610<br />

0 .26 860<br />

tr zE 'TtÌ<br />

0.25 971¡<br />

0.50 679<br />

0.2[ 1168<br />

0.50 700<br />

(ii)<br />

(iii)<br />

(iv)<br />

Chsnnel length: (LENGTH) (km)<br />

The main channel of <strong>the</strong> stream was defined and extended<br />

to <strong>the</strong> catchment divide, and its length meas_<br />

ured with an opisometer.<br />

Channel slope: (51085) (m/m)<br />

Two points were chosen at l0 per cent and g5 per<br />

cent of <strong>the</strong> channel length from <strong>the</strong> outlet. Channel<br />

slope was determined by dividing <strong>the</strong>ir difference in<br />

elevation by % of <strong>the</strong> channel length.<br />

Catchment mesn eleyrtion: (ELEV) (m)<br />

A grid was overlaid on <strong>the</strong> map, <strong>the</strong> grid size being<br />

selected such that at least 20 points lay within <strong>the</strong><br />

catchment boundary. The elevation of each point<br />

within <strong>the</strong> <strong>are</strong>a was <strong>not</strong>ed and <strong>the</strong> mean of <strong>the</strong>se<br />

elevations was taken as <strong>the</strong> catchment mean elevation.<br />

(v) Stream frequency: (STMFCY) (tns/km,)<br />

The number ofjunctions <strong>for</strong> all stream channels de_<br />

fined on <strong>the</strong> catchment map was counted and expressed<br />

as <strong>the</strong> number per unit <strong>are</strong>a.<br />

(vi) Forest cover: (FOREST) (Vo)<br />

The <strong>are</strong>a of catchment defined as <strong>for</strong>est on <strong>the</strong><br />

NZMS I maps was measured and expressed as a percentage<br />

of <strong>the</strong> total <strong>are</strong>a.<br />

54<br />

(vii¡ Me¡n annual rainfall: (MARAIN) (mm)<br />

Mean annual rainfall <strong>for</strong> <strong>the</strong> catchment was estimated<br />

from records <strong>for</strong> rainfall stations within and<br />

adjacent to it. Where catchments had no such rainfall<br />

records, mean values were obtained by planimetry<br />

from l:500 000 isohyetal maps of l94l-1.} annual<br />

rainfall normals (NZ Met. Ser. (1977) ..Mean<br />

annual rainfall maps (1941-70),' unpublished). In<br />

mountainous <strong>are</strong>as having few raingauges and large<br />

rainfall gradients, <strong>the</strong> isohyets <strong>are</strong> believed to indicate<br />

only general trends and do <strong>not</strong> provide accurate<br />

estimates of catchment rainfall, particularly in <strong>the</strong><br />

catchments draining <strong>the</strong> Main Divide of <strong>the</strong><br />

Sou<strong>the</strong>rn Alps.<br />

(vüi) Rainf¡ll intensity: (1224) (mm)<br />

At <strong>the</strong> time of <strong>the</strong> study <strong>the</strong> most recent source of<br />

published rainfall intensity data <strong>for</strong> New Zealand<br />

was Robertson (1963). This provides frequency analyses<br />

of rainfall intensity in<strong>for</strong>mation available in<br />

<strong>the</strong> early 1960's, using data <strong>for</strong> 46 recording rainfall<br />

stations and 468 daily-read stations. As <strong>the</strong>re were<br />

relatively few records from recording gauges available<br />

to provide short period rainfall data, <strong>the</strong> <strong>are</strong>al<br />

extrapolation of this in<strong>for</strong>mation to catchments<br />

remote from gauges was considered unwise. It was<br />

Water & soil technical publication no. 20 (1982)


Cobb.<br />

5291ó '\<br />

Stonley Bkr \<br />

57011. \<br />

Moluckor \ 7<br />

57008 '. ¡.<br />

rWo i¡oo<br />

'P7so2<br />

I<br />

I<br />

I<br />

lnonoohuor \ \<br />

93266 'r \'<br />

liåî";--- )-l<br />

lnonoohuo- \<br />

932Õ7 -:-<br />

er96iyt- )<br />

Eîidt" tn--<br />

Toromokou<br />

9lrol --:<br />

Butchers Ck :<br />

90ó05 \<br />

Hokitiko:<br />

?9ó04 \:<br />

-/<br />

óó4O9 Hur Ck--<br />

71.129 torksr - :<br />

Fiï!Ë'" t'., 'r_ f<br />

- Io-llie. '. \<br />

7t135 \.<br />

ffiåä'"n..<br />

"...!<br />

'r'<br />

I t 59003<br />

\ao,r,no<br />

'<br />

( \ óono'<br />

twoi¡ou<br />

\ óoìl¡<br />

\ \wo¡rou<br />

,- r óOlló<br />

r \. rConwoy<br />

\. ó4301-<br />

\ \<br />

'Achoron acha¡an<br />

\ ó2103<br />

I I \Sronton<br />

i r \ ó4ólo<br />

ì r i r'Áls9re ¡Ribblc<br />

'-<br />

ì !¡ ó2104<br />

\ L-Clo.cnce<br />

\ ó2105<br />

-Weko Ck<br />

t\- v¿ 6s902 ava<br />

*, -- coshme¡e<br />

- óóó03<br />

- sHoon Hov<br />

\ \- óóól 66601<br />

\ s.r*y.^R'vi#Éi<br />

Srh<br />

lwo¡hooo¡<br />

Rowollonburn /<br />

80201 \<br />

e ',<br />

\ wo¡hooo i<br />

78sOc<br />

- gå3g5'<br />

Fþure 4,1 Location of <strong>the</strong> South lsland catchments.<br />

Water & soil technical publication no. 20 (1982)<br />

55


I<br />

2<br />

t<br />

l¡<br />

5<br />

5<br />

7<br />

I<br />

9<br />

l0<br />

t1<br />

,12<br />

I5<br />

1{<br />

l5<br />

l6 t7<br />

18<br />

19<br />

20<br />

2t<br />

22<br />

23<br />

2lt<br />

25<br />

26<br />

27<br />

28<br />

29<br />

t0<br />

t1 t2<br />

t,<br />

5\<br />

t5<br />

56<br />

,7<br />

t8<br />

39<br />

¡0<br />

¡1 tt2<br />

Irt<br />

4h<br />

Ir5<br />

It5<br />

47<br />

|l8<br />

It9<br />

50<br />

51<br />

52<br />

51<br />

5lr<br />

55<br />

56<br />

s7<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

6lr<br />

65<br />

66<br />

57<br />

68<br />

69<br />

70<br />

7t<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

8t<br />

82<br />

It<br />

84<br />

fì5<br />

86<br />

87<br />

B8<br />

89<br />

90<br />

91<br />

92<br />

g3<br />

fth<br />

.,5<br />

96<br />

97<br />

TaHe 4.2 NoÉh lsland catchment characteristics.<br />

_<br />

L€ngrth<br />

065¡ ^ Roco¡d AREA MARATN 1224 LENGTH s1085<br />

STATION lm¡s-r) (,v lyrs| (kmrl lfnm) (mm) (km) (m/ml<br />

t506 57.80 0.29 10 11.10 2250 105<br />

5819<br />

7.00 0.0260<br />

107.00<br />

11901<br />

0.¡4 10 229.00 1510<br />

83.90 0, l+lr<br />

109 ¡10.10 0.0014<br />

I 12.5 0 19 q0<br />

5809<br />

l2t+ 4.60 0.0091r<br />

63.30 0.67 10 16.20 l7 00<br />

8501<br />

102 7.L0 0.0510<br />

tL.20 0.55 15 t2.70 17 90<br />

s10t<br />

74 8.50 0.0150<br />

q2 .10 0.4s t7 455.00 15 00<br />

9108<br />

69 75.00 0.0010<br />

tl0.00 0.64 L7 528.00 L230<br />

9201¡<br />

71 43.50 0.0020<br />

[92.00 0.28<br />

92QB<br />

t3 t08.00 ztr0 119 ,5 . lr0 0 .0010<br />

t 5. t¡0 1.05 7 7.90 t9 20<br />

9501 519.50 0. r+2<br />

llf 4.00 0.17 20<br />

18 l22.OO 5090<br />

15901<br />

8q 21.80 0.0177<br />

5.06 1.20 6 2.95 15r 0<br />

Ur6l0 20.t0 0.t8<br />

10tl t.80 0,01+50<br />

I 57.00 150 0<br />

Ltt627<br />

86 16.90 0.0100<br />

¡rt.40 o.37 10 69.90 2L20 104 2\.20 0.0170<br />

10528 147.00 0.52 I 179.00 22tt0 108<br />

151r10<br />

31.50 0.01q0<br />

120 .50 O.75<br />

15511<br />

25 53t¡.00 L730 84<br />

t87.00 0.60<br />

55.t0 0.010rr<br />

25 q¡0.00 17 90<br />

l55rl¡<br />

12ì+ l0.2o 0.0130<br />

2.11 0.65 10 2.59 l5 t0<br />

15556<br />

95 2.66 0.0515<br />

218.10 0.46<br />

15901<br />

8 207.00 20¡0<br />

819.00 0,65<br />

lztt 28,70 0.02b3<br />

19t09<br />

19 640.00 217 î 91 50.70 0.0088<br />

14rr.00 0.29 t2 lst.30 1¡0 0<br />

19711<br />

79 21r.10 0.0216<br />

t70 .00 0,65<br />

21601<br />

11 175.t0 llr00 8l 27.tO 0.0158<br />

59.60 0.52<br />

218 05<br />

l0 20 .60 142 I lztt 7.00 0.02!8<br />

45 9.00 o<br />

22802<br />

.52 13 997 .00 22tO<br />

216.00 o.77<br />

99 72 .50 0 .0060<br />

23002<br />

13 25t¡.00 15 01r<br />

501.00 0.64<br />

99 31.60 0.0150<br />

2too5<br />

10 826.00 154 0 92 67.10 0.0070<br />

1,51 0.40<br />

2tl0tt<br />

10 0.52 2605 86 0.50 0.01180<br />

209.00 0.32<br />

2tL06<br />

t3 570.00 1450 9lr 62.10 0.0080<br />

66,30 0.48<br />

21209<br />

t0 259.00 160n 70 t4.60 0,0110<br />

10.50 0.90<br />

232LO<br />

t2 24.10 955<br />

48.70 0.57<br />

66 7.60 0.0086<br />

10 54.q0 t277<br />

2920t<br />

t02 t'.30 0.0040<br />

{29.00 o.27<br />

29224<br />

22 6t7.00 16 60 66 5q.60 0.0080<br />

532.00 0. 28<br />

29211<br />

22 185 .00 \t+7o<br />

156.00<br />

rrl<br />

99<br />

292\2<br />

I<br />

58.00 0.0210<br />

t|t .O0<br />

89.00 0.40 '9<br />

1110 7tt 68.10 0.00t1<br />

58.80 Ir00ll<br />

2921t4<br />

6l+<br />

27.60 0.111<br />

16:70 0.0410<br />

I 56.t0 1090<br />

29250<br />

76<br />

31.70 0.87<br />

15.50 0.0064<br />

7 15.50 18 40<br />

29808<br />

107 5.70 UNoEF<br />

254.00 0 .t2 9 88 .80 2410<br />

29818<br />

99 14.60 0.02110<br />

546.00 0.28<br />

t0516<br />

6 427.00 2700<br />

7.86 0.112 B<br />

79 38.1¡ 0.0050<br />

0.t5 10t n<br />

,180t<br />

69<br />

1027.00 0.15<br />

7.60 0.0102<br />

l8 50r.00 2670<br />

t2so3 539.00 0 . ¡ll<br />

102 ¡9.90 0.0116<br />

32526<br />

22 71t.00 15 r0<br />

719.00 0. l¡0<br />

78 67 . t0 0. 0050<br />

24 266.00 2tt7<br />

12529 262.00 0 . ltg<br />

î 100 65 .20 0. 0060<br />

24 7t lr .00 15 70 6h 5t . l0 0.0010<br />

t25rt b3r.00 0.37 2\ [52.00 1780 8J 55.t0 0.00110<br />

t2565 18¡.00 0.26 10 570.00 12 60 60 92.00 0.0100<br />

32576 5t7.00 0.56 8 bt1.00 15 70 79 56. ¡0 0.0160<br />

12708 522.60 0.t2 10 58t.00 2t 00 76 76.00 0.006t<br />

52721 21.70 0.¡t 7 25.60 t1 l0 52 9.5 0 0.01t9<br />

32712 106. 00 0,35 17 285.00 2260 5l ,t.00 0.0140<br />

32711 182.00 0.]5 5 650.00 178 0 55 70.00 0.0110<br />

,273\ 5 .11 0.16 15.00 I 701 51 8.20 0.0550<br />

t2735 t2.\0 0.67 8 62. [0 920 55 20.90 0.0100<br />

J27t9 18.70 0. b8 t2 47 .70 I 100 52 1t.50 0.0087<br />

,5707 96.5 0 0,19 l0 1192.00 1650 58 51. .00 0.OL72<br />

3t111 240.00 0.35 lt 5t9.00 157 0 69 59.70 0.0168<br />

t1114 lr,18 0.18 9 6t.50 1101 55 15.20 0.0110<br />

StlLs 19.70 0.17<br />

ltll7 t3.20 1568 66 8. 20 0.0b70<br />

25.10<br />

ttt07<br />

0.51 I 21.04 2160<br />

h0.70 0.¡5<br />

7t 20.90 0.0400<br />

11 81.5u 2¡¡00 toz 7.70 0.0901<br />

3tt09 t21.00 0 .26 15 132.00 2220 7t t8.00 0.0326<br />

35tlL 265.00 0.11 15 207.00 219 0 89 60.00 0.0058<br />

35112 350.00 0.69 6 256.00 19 40 7\ 26.90 0.0159<br />

t33t3 268 .00 0 .5 0 15 668 .00 180 0 19 82 .40 0.0018<br />

5t316 259.00 0.24 14 1075.00 7770 74 72.00 0.0049<br />

31320 0.28 L7 181¡.00 1220 t02 2a.L0 0.0519<br />

tt324 '82.00 41.60 o.52 8 tl .00 2592 102 16.00 0.0417<br />

55538 512.00 0.15 I 971.00 2160 8lr 66.!0 0.0172<br />

31t47 125.00 0.20 5 207.00 18t 0 89 5tr.l0 0.0025<br />

50.90 0 .46 10 28 .00 2rt0 90 tq .60 0.0650<br />

'tttt7 ,6001 t8.90 0 .60 f 29.50 23L0 79 25.60 0.01110<br />

19501 572.00 0.29 8 725.00 2280 97 l[0.00 0.0005<br />

10504 175.00 0.12 t2 80.00 ,582 104 28.60 0.0298<br />

39508 (t7.2O 0.51 4 11.t0 1582 104 17.50 0.0580<br />

rl 07 0l 5 .24 0.2t 7 15.60 207 0 74 5.00 0.0280<br />

41601 7.\3 o.52<br />

t+3ttt5<br />

5 9.10 15 90 611 11.60 0.0520<br />

45 .20 î-25 t1 157.00 195 0 81 10.40 0.0502<br />

\1472 21.1 0 0. 61 16 228.00 t270 76 21.60 0.0050<br />

10¡3419 27.60 o.52 73 446.00 1500 66 q1.80 0.0120<br />

1043\27 58.90 0.1 7 14 t7t.oo 1880 72 t7 .3ît 0, 0102<br />

10¡t428 44.90 0.t4 72 210.00 1q00 90 21r.50 0.0100<br />

104tlt5lr 5.68 0.70 I 22.00 1¡t 0 76 11.50 0.0250<br />

1043459 î.82 20 772.00 2270 88 62,80 0.0120<br />

104t461 '65.01 241.01r 0.29 t7. 174.00 2980 89 11.80 0.0187<br />

104tt66 [7.50 0.25 25 88.00 5580 76 b.90 0.1010<br />

11113408 0.01 0.23 7 0.17 16 60 80 0.51 0.1500<br />

Llttt\zz 5 . tio 0.68 6 5.11 2000 66 lù.50 0.0820<br />

7145t+28 4,10 0. 44 B 17 .1¡0 llr 60 66 5.70 0.00llr<br />

\3602 2r.50 1.32 9 17.60 lt60 75 5.70 0.0092<br />

Ir3805 t9.90 0.66 I 52.60 1r4 0 69 18.50 0.0050<br />

45102 t2.70 0.lr8 10 8.00 15 70 109 5.70 0.0t20<br />

¡!6611 153 .00 0 .32 8 116 .00 16 20 117 22.70 0. 0190<br />

46618 4l+7.00 0.46 17 2[6.00 195 0 ll7 26.80 0.0190<br />

Ir6625 221.90 0.28 I 189.00 l5t 0 101 2t .20 0 .0040<br />

\6612 189. lr0 0.52 t7 162.00 lB20 1tl7 20.90 0.0070<br />

46660 9.72 0.t9 L2 2. b8 1540 t00 2.70 0.0210<br />

45662 2.t1 0.r5 r0 0.t9 11r 90 117 0.60 0. 1000<br />

tt7527 41.90 0.98 t2 10.60 I 800 llb 6 .00 0.0102<br />

FOREST STMFCY<br />

(%l (km{}<br />

0 0.90<br />

29 0. 45<br />

¡8 1. E4<br />

6¡ 1.70<br />

100 5. l0<br />

5 0.r1<br />

0 0.50<br />

tt5 2.10<br />

t00 1.t9<br />

82 2.t0<br />

0 2.00<br />

b5 I .00<br />

55 1.50<br />

57 0. 92<br />

95 UNDÊF<br />

89 UNDEF<br />

0 t.50<br />

100 l¡.70<br />

79 UNDEF<br />

O UNDEF<br />

2 1.91r<br />

o 2.13<br />

50 UNOEF<br />

12 UTIDEF<br />

5 0.90<br />

lOO UNDEF<br />

[¡ 0.E0<br />

Irl 0.80<br />

5 UNDEF<br />

o 2.\0<br />

14 0.16<br />

78 0.62<br />

t 1.00<br />

65 0, 49<br />

0 1,00<br />

l0 7.50<br />

q5 1.50<br />

55 L.rl<br />

0 2.10<br />

90 0.58<br />

5 U¡IDEF<br />

51 0. 66<br />

2 UNDEF<br />

t2 0.10<br />

7 0 .116<br />

22 0. lt7<br />

l8 0.59<br />

2 0i98<br />

7 L.1L<br />

5 1,t5<br />

tf 5.50<br />

0 0.69<br />

I 1.15<br />

t5 0.81<br />

2t t.'l<br />

0 0.6t<br />

E7 5 .50<br />

59 0.76<br />

L2 0.96<br />

56 L.77<br />

85 0.96'<br />

51 1.70<br />

28 r.61<br />

27 0.79<br />

E 1.62<br />

0 t.l¡8<br />

ql L.27<br />

58 0.71<br />

0 1 .1r2<br />

tt 0.q6<br />

59 1 .50<br />

2t 1.19<br />

51 0¡62<br />

16 1.10<br />

0 0.55<br />

55 0.65<br />

5 I UNDEF<br />

57 UNDEF<br />

¡t 0,t8<br />

t9 1.10<br />

16 2.45<br />

3L UNNEF<br />

50 2.05<br />

! 2.65<br />

0 2.70<br />

7 0.t2<br />

0.52<br />

0 1.20<br />

6 1.50<br />

57 r.00<br />

llr 1.5t<br />

ll 0.92<br />

16 0 .80<br />

[0 1.50<br />

0,0<br />

0 0.0<br />

8 0. lr7<br />

ELEV<br />

(m)<br />

2.50<br />

tL2<br />

180<br />

16t<br />

zilt<br />

80<br />

86<br />

275<br />

510<br />

3ro<br />

110<br />

t99<br />

lll6<br />

,72<br />

UNDE F<br />

48lt<br />

1t0<br />

660<br />

6q0<br />

450<br />

,20<br />

l¡ ¡r<br />

UNDEF<br />

UNDEF<br />

t92<br />

10 10<br />

1121<br />

965<br />

220<br />

200<br />

,0tr<br />

726<br />

265<br />

672<br />

280<br />

UNDE F<br />

6tr0<br />

t+7\<br />

ztt0<br />

55'<br />

8trI<br />

Ir 66<br />

UNDEF<br />

29r<br />

1.95<br />

568<br />

10 ¡rf<br />

285<br />

11 70<br />

992<br />

119 0<br />

180<br />

2tl<br />

959<br />

680<br />

825<br />

5<br />

970<br />

869<br />

831<br />

392<br />

492<br />

581<br />

474<br />

1108<br />

861<br />

726<br />

t22<br />

111 0<br />

510<br />

286<br />

427<br />

778<br />

280<br />

200<br />

487<br />

4 5l¡<br />

160<br />

527<br />

4lrl<br />

l+60<br />

970<br />

L202<br />

900<br />

610<br />

[00 l0<br />

50<br />

ft<br />

270<br />

t10<br />

t52<br />

155<br />

105<br />

80<br />

100<br />

2t6<br />

Water & soil technical publication no. 20 (1982)<br />

56


Ooohi 17527'<br />

Mongåkohio 46618'-<br />

Koihu 16611" )<br />

Puketuruo 4óóóOl<br />

& Pukewoengo 4óóó2<br />

(z'<br />

,Woiwhiu<br />

a<br />

45 702<br />

,Kouoerongo 93Oì<br />

a 7/ ¡woit- gtol<br />

Pìoko 9l08-<br />

Ohote 1143428- - -<br />

Pokoiwhenuo lO43419- -<br />

\ Te Tohi 1143427-. -<br />

Oteke 4ìó0'l1 \-<br />

& Purukohukohu 'l143408<br />

-Woimono l55l I<br />

,Woimono ì553ó<br />

/'<br />

/ / Woioeko 15901<br />

Popokuro 43803'-<br />

Woiroo 85Ol- -<br />

Woitongi 13602'-<br />

- - -Woiotopu 43172<br />

-whirinok¡ l54lo<br />

--T<br />

- - -Woingoromiq ì97I<br />

- - -Whorekogoe l97O<br />

,1',/<br />

lO43¿59<br />

rL<br />

Y- - - -Tongoriro<br />

:--<br />

- .- --Tohekenui 2lóOl<br />

- --Wongonui<br />

-=ln --_-t<br />

333¡7<br />

- - -Mongolepopo 33324<br />

- - Whokopopo 33320<br />

It-L-<br />

\t-<br />

Mokotuku 33.l17 /<br />

Woipopo 4343* -<br />

Mongokowhoi 4O7O3- -<br />

Tohunootoro 1013128- -<br />

Mongokino 1C,13427-- -<br />

Ongorræ3331ó - -<br />

Mongoroo3334l---<br />

Ohuro 333ì3- - -<br />

Tongorokou 333 I l- -<br />

Woitoro 39501 --;<br />

Mongonui 39504--<br />

Mongonui 39508-- -<br />

Punehu3óOOl - - -<br />

Wongonui 33338- -.<br />

ñeørute 3g312/<br />

Mongonui-o-te-oo 33309/ -.<br />

,'<br />

Mångowhero 33lll/ ./<br />

üu-h""ã*h, 33107/ - -\,<br />

MoungorouPi 32723¿,/t<br />

Tuloenur 32739' /<br />

Rongilowo 32735/<br />

Mongohoo 32526- -<br />

Mcngoloinoko 32531-'<br />

ì,fhonqoehu 29211- -<br />

Oroki 3ì803- -<br />

Monooloroo 33ì15 /<br />

-( j-îftx,t-t-\-<br />

--<br />

--O,rouo 325ó3<br />

-Ti¡oumco 32529<br />

Aliwhokolu 29242<br />

ì,--loueru2923l<br />

\- --Woiohine29221<br />

/ -: -\Hutt 29808<br />

-:- --Hurt 29818<br />

-- - Ruohokopotuno 2'?250<br />

'rv\iil ck 3o5tó<br />

---<br />

Rro-oho-ngo2.92Ol<br />

Êigutø 4.2 Location of <strong>the</strong> North lsland catchments'<br />

Water & soil technical publication no. 20 (1982)<br />

51


decided instead to use estimates of <strong>the</strong> 24-hour dura_<br />

tion 2-year return period rainfall derived from <strong>the</strong><br />

more extensive net$,ork of daily_read gauges, since<br />

<strong>the</strong>se could be extrapolated to remotè catchments<br />

with greater confidence.<br />

The use,of a 2-year recurrence interval seemed ap_<br />

propriate because <strong>the</strong> mean annual flood has a rècurrence<br />

interval only slightly greater than 2 years,<br />

2.33 years if <strong>the</strong> annual ma,rimã con<strong>for</strong>m to <strong>the</strong> extreme<br />

value Type I (Gumbel) distribution. Estimates<br />

of this parameter (without <strong>the</strong> application of an<br />

<strong>are</strong>al reduction factor) were made from Robertson's<br />

data <strong>for</strong> each catchment using rainfall stations with_<br />

in, or near to, <strong>the</strong> catchment. <strong>These</strong> estimates were<br />

<strong>not</strong> adjusted <strong>for</strong> effects of altitude.<br />

<strong>These</strong> eight characteristics were estimated <strong>for</strong> each catchment<br />

(Table 4.1 and 4.2 <strong>for</strong> <strong>the</strong> SI and NI respectively). For<br />

those catchments <strong>not</strong> contoured, channel slópe and mean<br />

elevation were undefined; <strong>the</strong>re were 5 such bouth Island<br />

catchments and 7 North Island catchments.<br />

4.5 Analys¡s of South lsland data<br />

4.5.1 Preliminary examinat¡on of data<br />

table shows that <strong>the</strong> highest correlations of Q <strong>are</strong> with<br />

AREA and LENGTH, but that signifìcant correlations also<br />

occur with all o<strong>the</strong>r characteristics except STMFCy. Fur<strong>the</strong>r<br />

strong correlations occur between AREA and<br />

LENGTH, between MARAIN andl2}4andalso MARAIN<br />

and FOREST. <strong>These</strong> <strong>are</strong> all physically plausible. Significant<br />

negative correlations occur between Sl0B5 and AREA and<br />

<strong>not</strong> well determined.<br />

The results of applying a, stepwise multiple regression<br />

program to <strong>the</strong> data <strong>are</strong> summarised in Table 4.4. The best<br />

fit equation is that involving <strong>the</strong> three variables AREA,<br />

I2A and FOREST and is<br />

Q = 4.40 x l0{ AREAÙ.¿'12241.27 (l +FOREST/lcf|/)t 6'<br />

.....4.3<br />

The coefficient of determination indicates that glgo of<br />

of errors of estimate is given in section 4.10.<br />

quently. For <strong>the</strong> present <strong>the</strong> data <strong>are</strong> considered as one.<br />

with AREA (Figure 4.3),<br />

rs of magnitude <strong>for</strong> Q <strong>for</strong><br />

approximate equation <strong>for</strong><br />

south of <strong>the</strong> island, and strongly positive residuals on <strong>the</strong><br />

Q = I.9SAREAo eo 42<br />

where Q is in_m3ls. The linear correlation coefficient (R)<br />

between loe (Q) and log (AREA) is 0.85, and <strong>the</strong> stand;rá<br />

error-of_estimate of logarithms of Q is 0.45. Although this<br />

correlation is highly significant, <strong>the</strong> standard errorls too<br />

large <strong>for</strong> Equation 4.2 to be of much value, an obvious con_<br />

clusion when <strong>the</strong> scatter <strong>for</strong> Q <strong>for</strong> any given AREA is con_<br />

sidered (Figure 4.3). Equation 4.2 demonstrates two im-<br />

this systematic residual variation may be due to variation in<br />

<strong>the</strong> precipitation regime across <strong>the</strong> island <strong>not</strong> fully represented<br />

by <strong>the</strong> estimates of 1221.<br />

4.5.2 Development of tdal rcgionalest¡mators<br />

into four regions is<br />

of <strong>the</strong> high rainfall<br />

<strong>the</strong> Sou<strong>the</strong>rn Alps is<br />

des <strong>the</strong> Nelson <strong>are</strong>a<br />

with <strong>the</strong> \Vest Coast. The division of <strong>the</strong> East Coast is more<br />

tenuous, but is supported by <strong>the</strong> consistent underestimation<br />

of Q <strong>for</strong> <strong>the</strong> small catchments along <strong>the</strong> coast (Figure 4.4),<br />

and by <strong>the</strong> knowledge that some of <strong>the</strong> morè intenie<br />

from cyclonic<br />

inland. Specia<br />

third inland<br />

part comprises<br />

T¡He 4.3 Correlation matrix <strong>for</strong> logs of South lsland characteristics.<br />

MARAIN STMFCY s1 085. ELEV*<br />

o<br />

AREA<br />

MARAIN<br />

1224<br />

LENGTH<br />

FOREST<br />

STMFCY<br />

s1085.<br />

ELEV'<br />

l.OOO<br />

.846<br />

.612<br />

.448<br />

.799<br />

.464<br />

-.078<br />

-.473<br />

.383<br />

1.OO0<br />

.2e3<br />

.045<br />

.978<br />

.163<br />

,010<br />

-.673<br />

.460<br />

l.OOO<br />

.753<br />

.228<br />

.647<br />

-.390<br />

-.o51<br />

.ioz<br />

l.OOO<br />

.o23<br />

.424<br />

-.314<br />

.181<br />

.o98<br />

l.OOO<br />

.155<br />

.oo7<br />

-.733<br />

.424<br />

l.OOO<br />

-.259<br />

-.134<br />

-.092<br />

l.OOO<br />

-,049<br />

-.o47<br />

l.OOO<br />

.10,4<br />

1.OO0<br />

I lncomplete Sample<br />

58<br />

Water & soil technical publication no. 20 (1982)


I ]n<br />

e<br />

d qgoinst CATCHMENT AREA <strong>for</strong> South Istond x<br />

64<br />

x+O<br />

¡XOs<br />

Xt<br />

x<br />

o<br />

74314 Toieri<br />

1é<br />

x V,/est CoqsT<br />

+ Eqst Coost<br />

O Intond Morlborough/<br />

Conterbury<br />

O Mqckenzie, Inlqnd Ofogo,<br />

Southlond<br />

10<br />

Iotch me n I<br />

100<br />

A¡e u (kmz)<br />

1000 10000<br />

Fþure 4.3 O vs AREA, South lsland catchments.<br />

<strong>the</strong> inland hill country of Marlborough and Canterbury.<br />

The sou<strong>the</strong>rn part includes <strong>the</strong> Waitaki River basin, inland<br />

Otago and most of Southland. This division is made on <strong>the</strong><br />

basis that with <strong>the</strong> exception of coastal Southland, <strong>the</strong><br />

sou<strong>the</strong>rn part is a low rainfall <strong>are</strong>a <strong>for</strong> which Q rvas overestimated<br />

by <strong>the</strong> equation.<br />

The regional division is evident in Figure 4.3. When <strong>the</strong><br />

catchments were identified according to <strong>the</strong> region including<br />

<strong>the</strong>m, it was found that data <strong>for</strong> West and East Coast<br />

regions tend to lie in an upper band. Those <strong>for</strong> Inland Ma¡lborough/Canterbury<br />

tend to lie in a central band, whereas<br />

those <strong>for</strong> Inland Otago and Southland tend to lie in a lower<br />

band.<br />

The data were grouped according to <strong>the</strong>se regions and regional<br />

stepwise regressions were calculated (Table 4.5). In<br />

all cases AREA is <strong>the</strong> most important variable, although in<br />

all regions additional variation in log Q is explained by<br />

o<strong>the</strong>r variables. In <strong>the</strong> West Coast, and Inland Otago and<br />

Southland, rainfall intensity (I2Z)'signifïcantly improves<br />

<strong>the</strong> fit of <strong>the</strong> estimating equations.<br />

For <strong>the</strong> East Coast, MARAIN is <strong>the</strong> second most important<br />

variable. The reason this is more important than I2Z is<br />

<strong>the</strong>re<strong>for</strong>e preferred.<br />

Water & soil technical publication no. 20 (1982)<br />

<strong>not</strong> obvious. It naay be that, because <strong>the</strong> East Coast catchments<br />

<strong>are</strong> relatively small (<strong>the</strong> largest, Station 64301 is<br />

464 km'z), <strong>the</strong> 2-hour storm intensity may be more important<br />

than <strong>the</strong> Z4-hour figure used. However, such in<strong>for</strong>mation<br />

was <strong>not</strong> generally available. The appropriateness of<br />

annual rainfall <strong>for</strong> estimating a flood parameter is open to<br />

question, but it is supported by Figure 4.5. This figure<br />

shows that, with <strong>the</strong> exception of Station 65Ð2, <strong>the</strong>re appearsto<br />

be a linear relationship between log MARAIN and<br />

<strong>the</strong> residual of log Q, after <strong>the</strong> effect of AREA is removed.<br />

This is <strong>the</strong> justification <strong>for</strong> including MARAIN in <strong>the</strong> estimating<br />

equation.<br />

For Inland Marlborough/Canterbury FOREST appears<br />

as significant in <strong>the</strong> best-fit equation. However, this is a little<br />

deceptive since only 4 of <strong>the</strong> 15 of <strong>the</strong> catchments in this<br />

region <strong>are</strong> more than l09o <strong>for</strong>ested and <strong>the</strong> ma¡


\Í<br />

l{<br />

I<br />

t,<br />

ìj(<br />

Fþurc 4.4 Distribution of residuals from Equation 4,3.<br />

Water & soil technical publication no. 20 (1982)<br />

60


3.1<br />

z<br />

Í ¡.0<br />

=<br />

t:'<br />

o<br />

2-9<br />

2-8<br />

2.7 --4 .2<br />

'l+<br />

.ó<br />

(roc õ-.sz LoG AREA)<br />

Figure 4.5 Plot of log MARAIN vs (bg õ -.92 log AREA) <strong>for</strong> East Coast Region.<br />

Table 4.4 Stepwise regressions <strong>for</strong> all South lsland data,<br />

No, Var. Name<br />

Coef<br />

br<br />

se<br />

of coef<br />

R2<br />

se<br />

€8t<br />

Const<br />

log a<br />

Muhiplier<br />

a<br />

1 AREA<br />

2 AREA<br />

1224<br />

3 ABEA<br />

1224<br />

FOREST<br />

4 AREA<br />

1224<br />

FOREST<br />

STMFCY<br />

5 AREA<br />

1224<br />

FOREST<br />

STMFCY<br />

MARAIN<br />

6 AREA<br />

1224<br />

FOREST<br />

STMrcY<br />

MARAIN<br />

LENGTH<br />

0.90<br />

0.88<br />

1.58<br />

o.85<br />

1.27<br />

1.65<br />

o.85<br />

1.34<br />

1.75<br />

o.44<br />

o.82<br />

1.O4<br />

1.34<br />

o.54<br />

o.39<br />

o.95<br />

o.99<br />

1.35<br />

0.53<br />

0.41<br />

-o.25<br />

o.073<br />

o.046<br />

o,169<br />

0.041<br />

o.162<br />

o.364<br />

0.040<br />

0.163<br />

0.360<br />

o.229<br />

o.o42<br />

o.222<br />

o.412<br />

o.230<br />

o.202<br />

o.202<br />

o.236<br />

o.414<br />

o.232<br />

o.204<br />

o.373<br />

12.4',<br />

19,8*<br />

9.3*<br />

20.6*<br />

7,8*<br />

4.5"<br />

21 .O*<br />

8,2*<br />

4.91<br />

1.9<br />

19.6*<br />

4.7'<br />

3.2*<br />

2.4*<br />

1.9 -<br />

4.7'<br />

4.2*<br />

3.3*<br />

2.3'<br />

2.O'<br />

-o.7<br />

o.846<br />

o.940<br />

0.954<br />

0.956<br />

o.959<br />

o.716<br />

0.884<br />

0.910<br />

o.914<br />

o.920<br />

o.450<br />

o.292<br />

0.256<br />

o.252<br />

o.249<br />

o.0333<br />

- 2.866<br />

-2.351<br />

-2.571<br />

-3.195<br />

1.O8<br />

1 .36 x 1O-s<br />

4.46 x 1O-3<br />

2.69 x 1O-2<br />

6.38 x 1O<<br />

o.958 0.918 o.262 -3.071 8.49 x 1O{<br />

' Significam at 5% level.<br />

Note: 1 The fitted relation is õ = a Xr h Xz b ...<br />

2 The multiple correlation coefficient (R) and standard error of ostimato quoted 8re <strong>for</strong> tho logarithmic <strong>for</strong>m<br />

Water & soil technical publication no. 20 (1982)<br />

logO = loga + br logXr + bzlogX¡ * .,,


62<br />

Fþurc 4,6 Logarithmic rcsidual errors <strong>for</strong> trial South lslend regional equat¡ons.<br />

Water & soil technical publication no. 20 (1982)


4.5.3 Examlnstion of residuals<br />

The geographic distribution of <strong>the</strong> logarithmic errors of<br />

<strong>the</strong> regional equations is shown in Figure 4.6. Except <strong>for</strong><br />

some possible clustering of positive residuals at <strong>the</strong> sou<strong>the</strong>rn<br />

end of <strong>the</strong> island, <strong>the</strong> errors appear to be randomly distributed.<br />

Be<strong>for</strong>e <strong>the</strong> regional equations were finalised, <strong>the</strong> more<br />

extreme errors were examined to see whe<strong>the</strong>r <strong>the</strong>y could be<br />

attributed to known causes. Errors greater than t0.25 a¡e<br />

shown in Figure 4.6 <strong>for</strong> Stations 57008 (Motueka at Gorge),<br />

64ó06 (Waiau at Malings Pass), 65902 (Weka Creek at Antills<br />

Bridge), 68806 (Ashburton South at Mt Somers'),7ll02<br />

(Otekaieke at Stock Bridge), 71122 (Maryburn at Mt<br />

McDonald), 74314 (Taieri at Patearoa-Faerau Bridge),<br />

78625 (Otapiri at McBrides Bridge), 9ll0l (Taramakau at<br />

Gorge), atd9l4O2 (Sawyers Creek at High Street Bridge).<br />

The following reasons <strong>are</strong> advanced as possible explanations<br />

<strong>for</strong> some of <strong>the</strong>se and o<strong>the</strong>r lesser outliers.<br />

(Ð Cstchment in wrong region<br />

For Station 64ó06 (V/aiau at Malings Pass) <strong>the</strong> error is<br />

0.32. This small catchment (74.6 km') is adjacent to<br />

<strong>the</strong> Main Divide and subject to <strong>the</strong> same heavy rainfalls<br />

that cause many rWest Coast rivers to reach flood<br />

levels. The West Coast region'should be extended<br />

slightly to <strong>the</strong> east of <strong>the</strong> Main Divide to include this<br />

catchment. Two o<strong>the</strong>r catchments (60114 and 60116)<br />

lie near, but <strong>not</strong> generally as close to <strong>the</strong> Main Divide<br />

and do <strong>not</strong> on <strong>the</strong> basis of <strong>the</strong>ir residual errors justify<br />

inclusion in <strong>the</strong> West Coast region. This adjustment of<br />

regions is supported by a ra<strong>the</strong>r abrupt cut-off of<br />

north-westerly rainfall which seems to occur a short<br />

distance to <strong>the</strong> east of <strong>the</strong> Main Divide. Also, Figure<br />

4.3 suggests that Station 64606 fits better with <strong>the</strong> West<br />

Coast catchments than with <strong>the</strong> inland catchments of<br />

<strong>the</strong> Inland Marlborough/Canterbury region.<br />

(it) Unreli¡ble e¡tlm¡te of Q from excessively short record<br />

The error <strong>for</strong> Station 65902 (Weka Creek at Antills<br />

Bridee) at 0,6 is <strong>the</strong> higlrest <strong>for</strong> all 63 stations. As an<br />

error of about 0.33 would occur if <strong>the</strong> bounda¡y between<br />

<strong>the</strong> East Coast and <strong>the</strong> Inland regions was<br />

shifted slichtlv to include <strong>the</strong> catchment in <strong>the</strong> Inland<br />

region, it-is óoncluded that Qo6, <strong>for</strong> this catchs€nt<br />

ba--sed on only fóùr'years of recdiã is an unreiiable estìmate<br />

and <strong>the</strong> station is <strong>not</strong> used in <strong>the</strong> subsequent analysis.<br />

(lil) Catchments wlth large pondlng effects<br />

The frrtted equations seriously ov€r-estimate Q <strong>for</strong> stations<br />

68806 (Ashburton South at Mt Somers) and Station<br />

71122 (Maryburn at Mt McDonald). Part of <strong>the</strong><br />

Ashburton South catchment and all <strong>the</strong> Maryburn<br />

Region<br />

1 West Coast, Nelson 1<br />

Number Variable<br />

Variables Name<br />

2<br />

faHe 4.5 Stepwise regressions <strong>for</strong> South lsland regions.<br />

AREA<br />

AREA<br />

1224<br />

Coef<br />

br<br />

se<br />

of coef<br />

0.87 0.103 8.5*<br />

o.91 0.063 14.3*<br />

o.90 0.165 5.4*<br />

2 East Coast 1 AREA 0.92 0j42 6.5*<br />

2 AREA o.91 0.081 11.2*<br />

MARAIN 2.58 0.559 4.6'<br />

AREA 0.96 0.108 8.9t<br />

1224 1.62 0.557 2.9*<br />

AREA 0.93 0.083 1 1.2*<br />

1224 o.58 0.566 1.O<br />

MARAIN 2.O7 0.14A 2.8*<br />

3 lnland Marlborough/<br />

Canterbury<br />

4 Mackenzie, lnland<br />

Otago, Southland<br />

+ Designated beet fit equation<br />

* Significant at 5% level.<br />

Notes: 1<br />

1<br />

2<br />

AREA<br />

AREA<br />

FOREST<br />

AREA<br />

FOREST<br />

1224<br />

AREA<br />

1224<br />

AREA<br />

MARAIN<br />

o.85 0.049 17.5*<br />

0.83 0.042 19.9'<br />

2.58 1.OO2 2.6'.<br />

o.82 0.044 18.4*<br />

2.58 1.032 2.5'.<br />

-o.23 0.402 0.6<br />

o.84 0.052 16.2*<br />

-o.22 0.4A2 0.5<br />

o.85<br />

0.34<br />

o.o47 18.z',<br />

0.238 1,4<br />

o.899<br />

0.964<br />

R2<br />

se<br />

est<br />

Const Muhiplier<br />

loga<br />

a<br />

o.81 0.2A7 0.560 3.60<br />

O.93 0.181 -'l .381 4.16x1O-'z+<br />

0.899 0.81 0.359 0.1 1 1 '.|.29<br />

0.968 O.94 0.216 -7.600 2.51 x 10{ +<br />

0.946 O.9O 0.235 -2'891<br />

1 .29 x 1O-3<br />

0.971 0.94 0.177 -7.149 7'1O x 1O{<br />

0.979 0.96 0.175 0.0363 1.O9<br />

0.986 0.97 0.152 0.O212 1.O5<br />

0.987 0.97 0.129 0.455 2.45<br />

0.980 0.96 0.162 0.454 2'84<br />

0.982 0.96 O,1 51 - 1 .O3 9'33 x 1O-2<br />

AREA 1.O2 0.131 7.8' o.89s 0.80 0.257 -0.706 1.97 x 1O{<br />

1<br />

2 AREA o.91 0.098 9.3* 0.947 O.9O O.1A7 -2.A97 1.27 x1O4 +<br />

1224 1.40 0.367 3.8*<br />

AREA 1.38 0.249 5.6* 0.957 0.92 O.180 -2'122 7.55x1O-3<br />

t224 1.13 0,357 3.2'<br />

LENGTH -o.93 0.460 -2.O<br />

The <strong>for</strong>m of fitted relation is O = a ¡¡'¡b' (Xzlb' "'<br />

2 The multiple cor¡elation coefficient and standa¡d error quoted <strong>are</strong> fo¡ <strong>the</strong> lcgarithmic <strong>for</strong>m<br />

log O = log a + br log Xr + br log Xz '..<br />

3 FOREST computed as (1 +FOREST/IOOl<br />

Water & soil technical publication no. 20 (1982)<br />

63


Table 4.6 Final equations <strong>for</strong> South lsland regions.<br />

Region<br />

West Coast. Nelson<br />

East Coast<br />

lnland Marlb, Canty<br />

McK, lnland Otago, Sthld<br />

No.<br />

Stns<br />

19<br />

11<br />

13<br />

15<br />

õ<br />

õ<br />

õ<br />

õ<br />

B€st Fh Equations R2<br />

Se<br />

est<br />

= 0,0233 AREAo...l224o.e¡<br />

= 1,1 1 x lo-e AREAo ¡e MARA|N3.o<br />

= 0.964 AREAo.¡o<br />

=o.oo1 90 AREAo.el 12241,3<br />

o.971<br />

o.989<br />

0.992<br />

o.963<br />

0.94<br />

o.98<br />

0.98<br />

o.93<br />

Factorial<br />

se €8t<br />

0.1 48 1 .41<br />

0.117 1.30<br />

0.1 09 1 .28<br />

o.1 46 1 .40<br />

catchm€nt drain <strong>for</strong>mer glacial moraines on s,hich <strong>the</strong><br />

surface drainage network is ill-defined. Considerable<br />

surface storage occurs in swamps and, in <strong>the</strong> case of<br />

<strong>the</strong> South Ashburton, <strong>the</strong> drainage divide with Lake<br />

Heron is ill-defined. There<strong>for</strong>e, flood-flow levels <strong>are</strong><br />

expected to be substantially reduced and it is uûeal_<br />

istic to use data from <strong>the</strong>se catchments to estimate<br />

flows <strong>for</strong> o<strong>the</strong>r catchments where similar ponding does<br />

<strong>not</strong> occur. On this basis <strong>the</strong> data <strong>are</strong> omitted from <strong>the</strong><br />

final analysis.<br />

The central <strong>are</strong>a of <strong>the</strong> Taieri catchment (Station<br />

74314) is a flat plain through which <strong>the</strong> river channel<br />

follows a meandering course. The recording station is<br />

situated downstream of a narrow gorge in which flood<br />

waters back up and inundate large <strong>are</strong>as of <strong>the</strong> plain.<br />

This ponding occurs to a much greater extent thãn on<br />

most o<strong>the</strong>r catchments. The resulting reduction in<br />

peak discharge is reason <strong>for</strong> rejecting data from this<br />

catchment in <strong>the</strong> final analysis. Note that this catch_<br />

ment is an outlier in <strong>the</strong> Q against AREA plot in Fig_<br />

ure 4.3<br />

(iv) Station wlth unreliable rating<br />

Because flow records <strong>for</strong> Station 9ll0l (Taramakau at<br />

Gorge) were derived using a <strong>the</strong>oretical rating <strong>the</strong> re_<br />

cord qualìty was expected to be only fair andihe esti_<br />

mate of Qo6, subject to more error than most values<br />

<strong>for</strong> most o<strong>the</strong>r stations. As <strong>the</strong> value used appears to<br />

result in a large error, <strong>the</strong> station is excludeã in <strong>the</strong><br />

final analysis.<br />

(v) Remaining outliers<br />

(vi) Snowmelt<br />

Although snowmelt is <strong>not</strong> an important flood-producing<br />

mechanism in New Zealand, when it combines with<br />

rainfall it may cause floods greater than would occur<br />

through rain alone. However, snowmelt catchments do<br />

<strong>not</strong> appear aniongst <strong>the</strong> catchments listed earlier as<br />

outliers. Although data on <strong>the</strong> extert, depth, and<br />

water-producing capabilities of snowpack <strong>are</strong> sparse in<br />

New Zealand, it is known that in <strong>the</strong> Fraser catchment<br />

(Station 75259) five of seven annual flood maxima<br />

us€d in this study occurred in October, November or<br />

Decernber, and <strong>are</strong> likely to have been associated with<br />

snorvmelt. This may account <strong>for</strong> any underestimation<br />

of Q <strong>for</strong> this catchment (residual error equal to 0. 16).<br />

Snowmelt may also be a contributory factor to <strong>the</strong><br />

underestimation of Q <strong>for</strong> o<strong>the</strong>r catchments in <strong>the</strong><br />

island, paticularly 71116 (Ahuriri at South Diadem)<br />

and75276 (Shotover at Bowens peak).<br />

The final estimation equations were derived after shifting<br />

<strong>the</strong> boundary between <strong>the</strong> West Coast and Inland Marlborough/Canterbury<br />

regions slightly lo include <strong>the</strong> catchment<br />

<strong>for</strong> Station 64ó06 in <strong>the</strong> West Coast region, and excluding<br />

Stations 65902, 68806, 71122,74314 and 9ll0l <strong>for</strong> <strong>the</strong> reasons<br />

stated.<br />

4,5.4 Final equations <strong>for</strong> South lsland<br />

estimate is decreased comp<strong>are</strong>d with <strong>the</strong> first trial equations<br />

in Table 4.5.<br />

The geographic distribution of residual errors <strong>for</strong> <strong>the</strong> fin_<br />

4.7. Yery good fit has been<br />

Inland Marlborough/Cantrs<br />

<strong>are</strong> +0.22, and <strong>the</strong>ir disdom.<br />

The fÏt <strong>for</strong> <strong>the</strong> W€st<br />

Coast and Inland Otago and Southland regions is satisfactory;<br />

one error exceeds 0.30 and t$¡o more exceed O.A.<br />

Although most errors appear randomly distributed in<br />

sDace, several positive errors clustered in <strong>the</strong> sou<strong>the</strong>rn part<br />

of <strong>the</strong> Inland Otago and Southland region suggest ihat<br />

some consistent underestinnation of Q has occuried <strong>the</strong>re.<br />

Table 4.7 correration malrix <strong>for</strong> rogs of North rsrand charact€rist¡cs.<br />

o<br />

AREA<br />

MARAIN<br />

t224<br />

LENGTH<br />

FOREST<br />

STMFCY*<br />

s1 085*<br />

€LEVT<br />

1.OOO<br />

o.830<br />

o.294<br />

o.2ö7<br />

o.815<br />

o.342<br />

-o.117<br />

-0.413<br />

o.247<br />

AREA MARAIN LENGTH FOREST STMFCY. S1085. ELEV'<br />

1.0O0<br />

o.040<br />

-o.110<br />

0.944<br />

0.189<br />

-o.121<br />

-o.576<br />

0.303<br />

l.OOO<br />

0.296<br />

o.o44<br />

0.506<br />

o.o69<br />

0.332<br />

0.454<br />

l.OOO<br />

-o.101<br />

o.312<br />

o.o60<br />

o.o09<br />

-0.149<br />

l.OOO<br />

0.191<br />

-o.187<br />

-0.598<br />

o.278<br />

1.000<br />

o.178 l.OOO<br />

o.o77 o.196<br />

0.348 o.157<br />

l.OOO<br />

0.348<br />

l.OOO<br />

¡ lncomplete Sample<br />

&<br />

Water & soil technical publication no. 20 (1982)


West Coast<br />

õ= 0.0233 AREAeo I;?<br />

(R2=.la , se=0'148)--'<br />

I n land Marlborougþ/Canterbury<br />

õ = O'9ó4AREAo'88<br />

(i2=o're , se =Q'lQP|<br />

Mackenzie, lnland Otago, Southland<br />

õ=o.ootgAREA:to Ill,<br />

(.R2= o.rs, se =o.r4ó)"-<br />

East Coast<br />

õ = t. n x lo-ten¡Ätt¡nmAlN3'o<br />

(n'= 'ra , se=0.il7)<br />

Nole: R= Multiplle correlotion coefficient<br />

se= $1q.¿.rd error of estimote <strong>for</strong><br />

logorithms<br />

Water & soil technical publication no. 20 (1982)<br />

Fþu]|'4.TLogarithmicresidualerrors<strong>for</strong>finalsouthlslandregionalequations'<br />

65


I<br />

++<br />

++<br />

*<br />

E<br />

4.6 Analysis of North lsland data<br />

4.6.1 Preliminary analysis of data<br />

10 100<br />

[otchmenf Areo ( kmz)<br />

Figure 4.8 O vs AREA, North lsland catchments.<br />

a : 1.87 AREA o sr<br />

(R': = 0.69, se = 0.442)<br />

44<br />

As with section 4.5 <strong>the</strong> object of this section is to devise<br />

estimators of Q ttrat <strong>are</strong> better than Equation +.+ Uy using<br />

variables besides AREA, and by choosìng a number of re_<br />

grons.<br />

Stepwise regression results<br />

_<br />

<strong>for</strong> all 97 stations <strong>are</strong> tab_<br />

ulated in Table 4.8. The best fit equation obtained is<br />

a = 1.37 x l0-'AREA1 t3l2z4t,EeMARAIN¡ o?<br />

(R'? = 0.81, se = 0.348)<br />

45<br />

Examinati<br />

errors from<br />

which berter<br />

followed is s<br />

tion of residual<br />

it ïå'å:ì#i<br />

and.<br />

4.6.2 Development of trial regional estimators<br />

tween MARAIN and 1224 (0.30 comp<strong>are</strong>d with 0.75). phys_<br />

ically this may be a reflection of <strong>the</strong> sparseness Water òf & <strong>the</strong> soil net_ technical publication no. 20 (1982)<br />

66


Table 4.8. Stepwise regressions <strong>for</strong> all North lsland data.<br />

No. Var. Name<br />

Coef<br />

br<br />

se<br />

of coef<br />

R2<br />

se<br />

est<br />

Const<br />

log a<br />

Multiplier<br />

a<br />

1<br />

2<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

o.81<br />

0.84<br />

2.33<br />

o.83<br />

1.89<br />

1.O7<br />

o.o56<br />

0.048<br />

o.377<br />

o.045<br />

o.368<br />

o.270<br />

14.5<br />

17.7<br />

6.2<br />

18.6<br />

5.1<br />

4.O<br />

0.829<br />

o.882<br />

o.900<br />

o.687<br />

o.778<br />

o.810<br />

o.442<br />

o.372<br />

o.348<br />

0.271 1 .87<br />

-4.263 5.46 x 1O-õ<br />

- 6.862 1 .37 x 10'<br />

Table 4.9 Stepwise regressions <strong>for</strong> first trial North lsland regions<br />

Region<br />

Number Variable<br />

Variables Name<br />

Coef<br />

b'<br />

se<br />

of coef<br />

R2<br />

se<br />

est<br />

Const Mult¡plier<br />

loga a<br />

Non-Pumice<br />

(84 catchments)<br />

1<br />

2<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

o.74 0.049<br />

o.77 0.037<br />

2.13 0.271<br />

o.76 0.034<br />

1.77 0.262<br />

0.78 0. 1 91<br />

'15.2 0.861 0.74 0.341<br />

20.7 0.925 0.86 0.257<br />

7.9<br />

22.4 0.939 0.88 0.234<br />

6.8<br />

4.1<br />

0.507 3.21<br />

- 3.63 2.33 x 1O-a<br />

- 5.49 3.24 x 1O-o<br />

Pumice<br />

( 1 2 catchments)<br />

1<br />

2<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

o.84 0.22<br />

0.90 0.11<br />

3.88 0.64<br />

o.79 0.o9<br />

2.41 0.73<br />

1.74 0.64<br />

3.8 0.765<br />

8.5 0.958<br />

6.1<br />

8.9 0.978<br />

3.3<br />

2.7<br />

o.59 0.359 -O.310 0.490<br />

O.92 0.168 -7.806 1.56 x 1O-8<br />

0.96 O.142 - 10.36 4.39 x 1Oi1<br />

of which catchments lay within it, presented difficulty.<br />

Several catchments (<strong>for</strong> example 9101, Waitoa; 21803,<br />

Mohaka) have <strong>the</strong>ir headwaters in this pumice country, but<br />

most of <strong>the</strong>ir <strong>are</strong>as lie outside <strong>the</strong> pumice region. O<strong>the</strong>rs<br />

(e.g., 15410, Whirinaki) <strong>are</strong> mainly pumice but have a substantial<br />

<strong>are</strong>a outside <strong>the</strong> region. In still o<strong>the</strong>r catchments<br />

(those lying mainly on <strong>the</strong> slope of <strong>the</strong> central North Island<br />

volcanoes) <strong>the</strong> mantle of soil over rock is minimal and its<br />

hydrological influences were <strong>not</strong> known. After several<br />

trials, <strong>the</strong> pumice region was defined as comprehending<br />

three of <strong>the</strong> hydrological regions set out by Toebes and<br />

Palmer (1969). <strong>These</strong> were Taupo Pumice, Taupo Rhyolite,<br />

and East Raetihi which made up a discontinuous region including<br />

a total of 13 catchments, seven tributary to <strong>the</strong><br />

Waikato River, four draining to <strong>the</strong> Bay of Plenty, and two<br />

tributary to <strong>the</strong> Wanganui River. Closer inspection of <strong>the</strong><br />

data <strong>for</strong> <strong>the</strong>se l3 catchments showed that 11432108 (Purukohukohu)<br />

was a distinct outlier in having <strong>the</strong> smallest<br />

catchment <strong>are</strong>a and <strong>the</strong> least Q (by almost two orders of<br />

magnitude) <strong>for</strong> all 97 North Island catchments. For this<br />

reason, and because it was ephemeral, it was excluded from<br />

subsequent analyses.<br />

Taking two regions, pumice and non-pumice, trial regressions<br />

were undertaken. Stepwise results <strong>are</strong> given in<br />

Table 4.9 and <strong>the</strong> distribution of residual errors <strong>for</strong> <strong>the</strong> best<br />

fit equations is shown in Figure 4.9. This figure shows that<br />

within <strong>the</strong> pumice region <strong>the</strong> residuals seem randomly distributed<br />

with generally low values, but <strong>the</strong> remainder of <strong>the</strong><br />

island contains very large residuals, some exceeding I 0.50.<br />

The sou<strong>the</strong>rn part of <strong>the</strong> island including tributary catchments<br />

to <strong>the</strong> lower Rangitikei, all <strong>the</strong> Manawatu, Wairarapa<br />

and Wellington <strong>are</strong>a catchments, have, with one small<br />

exception, positive residuals meaning that Qo5, <strong>for</strong> this <strong>are</strong>a<br />

is underestimated. Similarly, positive residuals occur over<br />

much of <strong>the</strong> Northland and Auckland <strong>are</strong>as. The fact that<br />

tropical cyclone events tend to produce flooding in this<br />

<strong>are</strong>a, and also <strong>the</strong> Coromandel and East Cape <strong>are</strong>as, may<br />

be a tentative basis <strong>for</strong> a region including <strong>the</strong>se <strong>are</strong>as. Negative<br />

residual values occur in <strong>the</strong> central part of <strong>the</strong> island<br />

outside <strong>the</strong> pumice region. This suggests a division of <strong>the</strong><br />

Water & soil technical publication no. 20 (1982)<br />

island into four regions, and if <strong>the</strong> central part is divided<br />

between east and west coasts, into five regions, whose tentative<br />

boundaries <strong>are</strong> drawn dashed on Figure 4.9. <strong>These</strong><br />

five regions <strong>are</strong> taken as a basis <strong>for</strong> fur<strong>the</strong>r study.<br />

A number of trials were undertaken with <strong>the</strong>se regions to<br />

determine where boundaries should be placed. Catchments<br />

which appe<strong>are</strong>d as outliers were checked, both <strong>for</strong> <strong>the</strong> correctness<br />

of data and <strong>for</strong> any features of <strong>the</strong> catchment<br />

which might influence flood peaks. Seven of <strong>the</strong> larger residuals<br />

could be attributed to special conditions of <strong>the</strong> catchment<br />

and were excluded from <strong>the</strong> final analysis.<br />

<strong>These</strong> were as follows:<br />

(i) C¡tchments with large ponding effects<br />

Serious over-estimates were made <strong>for</strong> Q <strong>for</strong> 9l0l<br />

(Waitoa) and 9108 (Piako). Two possible causes <strong>for</strong><br />

this <strong>are</strong>, firslly that <strong>the</strong> headwaters <strong>for</strong> <strong>the</strong>se catchments<br />

lie in <strong>the</strong> pumice region, and secondly that <strong>the</strong><br />

catchments have amongst <strong>the</strong> lowest channel slopes of<br />

all <strong>the</strong> North Island catchments, and have a very flat<br />

topography with peaty soils and swamps in <strong>the</strong> lower<br />

reaches. This second factor also causes attenuation of<br />

flood hydrographs. Thus <strong>the</strong>se two catchments were<br />

excluded frorn fur<strong>the</strong>r analysis. O<strong>the</strong>rs having large<br />

negative residuals in Figure 4.9 were 33307 (Wanganui<br />

at Headwaters) and 1143428 (Ohote); <strong>the</strong>se also were<br />

excluded on <strong>the</strong> basis that large parts of <strong>the</strong> catchments<br />

<strong>are</strong> swamps.<br />

(ii) C¡tchment in l¡mestone <strong>are</strong>a<br />

Catchment 40703 (Mangakowhai), which drains Waitomo<br />

limestone country, also had a large negative residual<br />

and was subsequently excluded on <strong>the</strong> basis that<br />

<strong>the</strong> catchment topographic <strong>are</strong>a may <strong>not</strong> be <strong>the</strong> true<br />

catchment <strong>are</strong>a.<br />

(iii) Catchment with short record<br />

Catchment 39508 (Manganui) had only four years of<br />

record. It was excluded on <strong>the</strong> basis that <strong>the</strong> estimate<br />

of Q may have excessive sampling error.<br />

67


Non Pumice =<br />

õ = 3-24xto'6 AREA'7ó lr,o''" MARA|No'78<br />

( R2= 9.g3,- se= 0.228 I<br />

Pumice<br />

[ = a.39 ^<br />

ro ll AREATe \r1'^' MARATNI'24<br />

( R'= O'9ó , se<br />

= O.lO5 )<br />

Figure 4.9 Trial North lsland regions.<br />

68<br />

Water & soil technical publication no. 20 (1982)


ln <strong>the</strong> trials undertaken <strong>for</strong> <strong>the</strong> provisional regions<br />

shown dashed in Figure 4.9 both 13901 (Mangawhai) and<br />

15534 (Wairere) showed as outliers in <strong>the</strong> regions to which<br />

<strong>the</strong>y were initially assigned. As <strong>the</strong>y fitted best into <strong>the</strong><br />

adjacent pumice region, <strong>the</strong>y were placed <strong>the</strong>re <strong>for</strong> <strong>the</strong> final<br />

analysis. This required extension of <strong>the</strong> pumice region into<br />

<strong>the</strong> coastal Bay of Plenty <strong>are</strong>a; in terms of <strong>the</strong> hydrological<br />

regions of Toebes and Palmer (1969) it includes Tauranga<br />

and Opotiki regions. This assignment is tentative because<br />

<strong>the</strong> soils in <strong>the</strong>se catchments <strong>are</strong> <strong>not</strong> pumice to <strong>the</strong> extent of<br />

o<strong>the</strong>rs in <strong>the</strong> Rotorua/Taupo <strong>are</strong>a. Their better fit with <strong>the</strong><br />

pumice region could be <strong>the</strong> result of inaccurate rainfall intensity<br />

statistics.<br />

4.6.3 Final equations <strong>for</strong> North lsland<br />

Table 4.1O Stepwise regressions <strong>for</strong> final North lsland regions.<br />

After a number of trials, final equations were developed<br />

<strong>for</strong> <strong>the</strong> regions shown in Figure 4.10. The stepwise regression<br />

results <strong>are</strong> givern in Table 4. 10. In all but one case <strong>the</strong><br />

best fit equation includes AREA and one or two of <strong>the</strong><br />

rainfall statistics. The exception is <strong>the</strong> Manawatu/WairarapalWellington<br />

region were <strong>the</strong> equation including AREA,<br />

1224 and FOREST provides a very good fit. However,<br />

when MARAIN is substituted <strong>for</strong> FOREST in <strong>the</strong> equation<br />

it is almost as good; this is preferred as it should provide a<br />

more robust estimator. The table shows that <strong>for</strong> every region<br />

<strong>the</strong> accuracy of estimate can be improved by including<br />

a rainfall statistic in addition to AREA, and also, that o<strong>the</strong>r<br />

catchment parameters with <strong>the</strong> possible exception of FOR-<br />

EST in one region <strong>are</strong> <strong>not</strong> of importance. It is possible that<br />

FOREST does <strong>not</strong> directly influence flood size; ra<strong>the</strong>r it<br />

does so indirectly to <strong>the</strong> extent that correlations occur between<br />

FOREST and <strong>the</strong> rainfall statistics (Table 4.7). For<br />

<strong>the</strong> Manawatu/Wairarapa/Vr'ellington region where FOR-<br />

EST was most dominant in <strong>the</strong>se regional equations, <strong>the</strong><br />

Region<br />

Northland/<br />

Coromandel/<br />

East Cape<br />

{21 catchments}<br />

Pumice Land<br />

( 1 4 catchments)<br />

East Coast<br />

(1 1 catchments)<br />

Manawatu/<br />

Wairarapa/<br />

Wellington<br />

( 1 9 catchments)<br />

West Coast<br />

(25 catchments)<br />

Number Variable<br />

Varìables Name<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

AREA<br />

AREA<br />

MARAIN<br />

AREA<br />

MARAIN<br />

ELEV<br />

AREA<br />

MARAIN<br />

ELEV<br />

LENGTH<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

AREA<br />

t224<br />

MARAIN<br />

FOREST<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

AREA<br />

FOREST<br />

AREA<br />

FOREST<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

AREA<br />

t224<br />

MARAIN<br />

FOREST<br />

Coef<br />

bl<br />

se<br />

of coef<br />

R2<br />

SE<br />

est<br />

o.70 0.06 10.8+ 0.927 0.86 0.237<br />

0.64 0.o3 19.5* 0.983 0.97 0.1 19<br />

2.33 0.31 7.6*<br />

0.62 0.o3 18.7* 0.986 0.97 0.1 10<br />

2.O1 0.33 6.2*<br />

o.22 0.11 2.O<br />

o.84 0.16 5.2* 0.988 0.98 0.107<br />

2.O3 0.32 6.4*<br />

o.21 0.11 2.O<br />

-o.39 0.28 -1.4<br />

Const Multipl¡er<br />

loga a<br />

0.807 6.42<br />

-6.66 2.18 x 10'+<br />

- 6.OB 8.24 x 'l O-7<br />

-6.06 8.71 x 1O'<br />

0.67 0.12 5.5* o.a44 0.71 0.348 0.0933 1.24<br />

0.83 0.06 13.5* O.971 O.94 O.161 -7.94 1.15x1O-8<br />

4.O2 0.60 6.7*<br />

o.74 o.06 12.2* 0.984 O.97 Oi2A - 10.51 3.Og x 'l O{1 +<br />

2.54 o.72 3.5*<br />

1.75 0.64 2.7 *<br />

O.88 O.O9 9.9* 0.989 O.98 O.111 -11.94 1.15x1O{'?<br />

3.16 0.70 4.5*<br />

1.80 0.56 3.2*<br />

-o.17 0.o9 -2.O<br />

o.80 0.o8 10.6*<br />

0.76 0.o3 27.4*<br />

2.24 0.29 7.8*<br />

0.90 0.1 3 6.9*<br />

o.72<br />

0.46<br />

o.82<br />

1.53<br />

o.94<br />

0.06 12.2*<br />

o.o5 8.9-<br />

o.74 0.o4 16.7*<br />

o.34 0.o5 6.7*<br />

1.22 0.33 3.7*<br />

o.o5 15.8*<br />

o.19 4.O*<br />

o.39 4.9*<br />

o.85 0.o8 1 1.3*<br />

o.az 0.o5 16.7*<br />

2.18 0.38 5.8*<br />

o.82 0.o5 17.7*<br />

1.67 0.44 3.8*<br />

0.78 0.39 1.9<br />

o.79 0.o5 16.1 *<br />

1.6'l O.42 3.8*<br />

0.80 0.37 2.1<br />

0.1 1 0.06 1.8<br />

0.963 0.93 0.227<br />

0.996 0.99 0.082<br />

o.858 0.74 0.341<br />

0.978 0.96 0.144<br />

0.988 0.98 0.107<br />

0.982 0.96 0.1 18<br />

o.974 0.95 0.157<br />

0.977 0.96 0.1 50<br />

0.296 1.98<br />

-4.O5 8.84 x 10{ +<br />

0.232 1.70<br />

o.1 58 1.44<br />

-2.O5 8.99 x 1O-"<br />

-5.51 3.12x10-6 +<br />

0.920 0.85 0.258 0j82 1.52<br />

0.969 O.94 O.1 67 - 3.83 1 .48 x 1O-1 +<br />

- 5.41 3.87 x 10-6<br />

-5.51 3.13x10-6<br />

* significant at 5olo level<br />

+ preferred equation<br />

Water & soil technical publication no. 20 (1982)<br />

69


Northlond f C"ro^ondel f Eost Cope<br />

ö = 2.18 x lo z tRtlo'ó4 MARAIN2'33<br />

( R'= O'97 , se<br />

= O.ll9 )<br />

West Coost<br />

_Á<br />

Q = l.48xlO '<br />

( R2- o.94 ,<br />

AREÁ t' \r1''"<br />

se<br />

= 0'167 )<br />

Eost Coost<br />

õ g.g4 7ó<br />

= x lo-saREAo<br />

\rl'ro<br />

Pumice<br />

( R2= O.99 , se = 0.082 )<br />

õ = 3.o9 x td't' IREA.''o lrrl- t',<br />

MARAT N<br />

( R'= O.97 , se = O-nB )<br />

Monowotu /Woiroropo / Wellington<br />

Q = s.ts * ldo t" RREA' Irr''t MARAIN o'e1<br />

(R2=9.96 , se=O.ll8 )<br />

Figure Water 4.10 & soil Final technical North publication lsland regions. no. 20 (1982)<br />

70


correlations between (logs oÐ FOREST and 1224, and<br />

FOREST and MARAIN were 0.90 and 0.65 respectively;<br />

this was one region where estimates of l2?A were suspected<br />

to be unreliable.<br />

The preferred equations of Table 4.10 <strong>are</strong> shown in Figure<br />

4.10 with <strong>the</strong>ir appropriate regions, and also <strong>the</strong> residual<br />

errors <strong>for</strong> logarithms. In general <strong>the</strong> equations seem<br />

more reliable in <strong>the</strong> north and east of <strong>the</strong> island, a situation<br />

also <strong>not</strong>ed in <strong>the</strong> South Island. The distribution ofresiduals<br />

generally appears reasonably random in space. The region<br />

<strong>for</strong> <strong>the</strong> West Coast includes a number of catchments tributary<br />

to <strong>the</strong> Wanganui River and a number originating on<br />

<strong>the</strong> slopes of <strong>the</strong> central North Island volcanoes. Many of<br />

<strong>the</strong> larger residuals <strong>for</strong> <strong>the</strong> island <strong>are</strong> clustered here, presumably<br />

because of <strong>the</strong> variety of soil types, including pumice,<br />

and <strong>the</strong> sparse coverage of rainfall intensity measurements.<br />

The equations <strong>for</strong> <strong>the</strong> East Coast and West Coast regions<br />

suggest that <strong>the</strong>y should be combined into one, but<br />

doing so resulted in regional biases. Hence <strong>the</strong> separate regions<br />

should be maintained.<br />

4.7 Discussion of results<br />

The equations derived in sections 4.5 and 4.6 <strong>are</strong> intended<br />

<strong>for</strong> application to rural catchments where flood<br />

storage is <strong>not</strong> excessive or where o<strong>the</strong>r dampening effects<br />

<strong>are</strong> <strong>not</strong> dominant. All <strong>the</strong> nine regional equations use catchment<br />

<strong>are</strong>a, and all but one use <strong>are</strong>a and one or two of <strong>the</strong><br />

rainfall statistics; o<strong>the</strong>r physical catchment characteristics<br />

used in this study appear to be of little consequence. This is<br />

an important finding, since results obtained in overseas<br />

countries (see section 4.8) have suggested that <strong>the</strong>se o<strong>the</strong>r<br />

physical characteristics <strong>are</strong> relatively important. The<br />

dominance of rainfall statistics is possibly due to <strong>the</strong><br />

generally steep nature of New Zealand catchments (see section<br />

4.8). The two sets of rainfall statistics considered in <strong>the</strong><br />

study have a large range of values; both cover more than<br />

one order of magnitude in <strong>the</strong> South Island, though <strong>the</strong><br />

range is less in <strong>the</strong> North Island.<br />

Since this study was completed, an updated analysis of<br />

rainfall intensity data has become available (Tomlinson<br />

1980; Coulter and Hessell 1980). Tomlinson used 16000<br />

years of data from 940 manual daily raingauges and 3500<br />

years from 180 recording raingauges. Comparison of revised<br />

1224 estimates with those from Robertson (1963) <strong>for</strong> a<br />

sample of 87 stations did <strong>not</strong> reveal statistically significant<br />

differences. This suggested that <strong>the</strong> revised estimates may<br />

also be used <strong>for</strong> estimating 1224. Sirce <strong>the</strong> revision used<br />

more than twice <strong>the</strong> number of stations, more accurate estimates<br />

of 1224 lor individual catchments should be possible.<br />

For convenience, revised 1224 estimates <strong>for</strong> <strong>the</strong> 94O daily<br />

gauges used by Tomlinson <strong>are</strong> included as Appendix D.<br />

- The revised intensity data were also mapped by Tomlinson.<br />

However, in high altitude <strong>are</strong>as, especially along <strong>the</strong><br />

Sou<strong>the</strong>rn Alps, use of <strong>the</strong> mapped values is <strong>not</strong> recommended.<br />

In mapping, rainfall is assumed to increase with<br />

altitude, This increase was <strong>not</strong> allowed <strong>for</strong> when catchment<br />

estimates <strong>for</strong> l2A were made, so <strong>the</strong> maps will give catchment<br />

estimates of 1224 greater than <strong>the</strong> estimates used in<br />

deriving <strong>the</strong> equations <strong>for</strong> Q. Thus inflated Q estimates<br />

may result from<br />

The 2-year rec<br />

uration intensitY<br />

estimated from<br />

auges was used<br />

principally because of <strong>the</strong> better national coverage of daily<br />

iead manual gauges <strong>for</strong> observing this duration rainfall<br />

comp<strong>are</strong>d with shorter duration rainfall statistics estimated<br />

from automatic rainfall recorder data.<br />

As <strong>not</strong>ed in section 4.4, estimates of catchment mean annual<br />

rainfall have a low accuracy <strong>for</strong> many South Island<br />

and this is possibly why inclusion of mean annual rainfall<br />

improves <strong>the</strong> estimate in three of <strong>the</strong> five North Island regional<br />

equations.<br />

Little can be saicl of <strong>the</strong> physical significance of <strong>the</strong> exponents<br />

<strong>for</strong> <strong>the</strong> regional equations. Whilst values of <strong>the</strong> intensity<br />

exponent around unity <strong>for</strong> two of <strong>the</strong> South Island<br />

regions might have some physical interpretation, <strong>the</strong> meaning<br />

of exponents of <strong>the</strong> rainfall statistics which exceed 2.0 is<br />

unclear, even though <strong>the</strong>ir statistical significance is undoubted.<br />

Obviousl),, in using <strong>the</strong> equations, particular c<strong>are</strong><br />

must be given to <strong>the</strong> estimation of rainfall statistics, because<br />

estimates outside of <strong>the</strong> range of <strong>the</strong> values of <strong>the</strong><br />

sample used in developing <strong>the</strong> equations could result in<br />

severe errors in estimates of Q. Tables 4.1 and 4.2 <strong>are</strong> a<br />

guide to typical valtues of <strong>the</strong> rainfall statistics.<br />

Where a catchment lies near a regional boundary and<br />

each regional equation gives different estimates, <strong>the</strong> precise<br />

location of<strong>the</strong> boundary is bound to create difficulties. For<br />

some regions, dominant flood-producing wea<strong>the</strong>r patterns<br />

<strong>are</strong> thought to apply, and a decision about which region a<br />

catchment fits into could be based on <strong>the</strong> wea<strong>the</strong>r conditions<br />

which <strong>are</strong> believed to produce <strong>the</strong> most flooding.<br />

An example is a number of Marlborough and Canterbury<br />

rivers in <strong>the</strong> Inland region, where <strong>the</strong> flood-producing<br />

wea<strong>the</strong>r conditions <strong>are</strong> possibly sou<strong>the</strong>rly. Their headwaters<br />

near <strong>the</strong> divide flood in nor'westerly wea<strong>the</strong>r condi<br />

tions and fit in <strong>the</strong> West Coast region. The rivers flow<br />

through <strong>the</strong> East Coast region where flood-producing wea<strong>the</strong>r<br />

patterns <strong>are</strong> thought to be easterly.<br />

In <strong>the</strong> case of <strong>the</strong> North Island Pumice region, catchments<br />

have been included where pumice was thought to<br />

have a dominant influence on <strong>the</strong> flood hydrology, but two<br />

coastal Bay of Plenty catchments were tentatively included<br />

here because this was where <strong>the</strong>y fitted best, even although<br />

pumice is <strong>not</strong> dominant on <strong>the</strong>se small catchments. rÙVithin<br />

<strong>the</strong> Pumice region, <strong>the</strong>re appears to be a gradation in <strong>the</strong> effect<br />

of <strong>the</strong> pumice. For instance, pumice lies to great depths<br />

on <strong>the</strong> Kaingaroa Plateau within which much of <strong>the</strong> catchment<br />

of <strong>the</strong> Rangitaiki River lies. The 28 years of record <strong>for</strong><br />

this river at Murupara (AREA : ll84km', Station<br />

15408), but which was <strong>not</strong> used because it exceeds<br />

ll00 km', gives_a Qous : 41.6 m'/s but <strong>the</strong> estimate from<br />

<strong>the</strong> equation is Q"rt = 202 m3/s, representing a residual error<br />

of - 0.69. Clearly, <strong>the</strong> dampening effects of pumice <strong>are</strong><br />

severe in this case.<br />

The annual flood regions delineated in this chapter <strong>are</strong>'<br />

in general, very similar to <strong>the</strong> flood frequency regions defined<br />

in Chapter 3. An exception to this is in <strong>the</strong> eastern<br />

<strong>are</strong>a of <strong>the</strong> South Island (see Figure 4.7). From a design<br />

characteristics, on <strong>the</strong> o<strong>the</strong>r hand, is also concerned with<br />

<strong>the</strong> coefficients of variation and skewness of <strong>the</strong> flood record,<br />

and <strong>the</strong>se can be regarded as <strong>the</strong> slopes and curvatures<br />

respectively of <strong>the</strong> individual dimensionless-magni-<br />

There<strong>for</strong>e it was <strong>not</strong> unexof<br />

<strong>the</strong> flood frequencY chargions<br />

that differed in Places<br />

from <strong>the</strong> set deveioped <strong>for</strong> estimating Q.<br />

4.8 Compar¡son with o<strong>the</strong>r results<br />

Similar equations<br />

given in Table 4.ll l.<br />

favourably in terms<br />

ent of determination<br />

this needs to be balanced against <strong>the</strong> use of a relatively<br />

small range of catchment <strong>are</strong>as (0'2 to ll00 km'); poorer<br />

fits may be obtained if larger catchments <strong>are</strong> used' The<br />

o<strong>the</strong>r <strong>not</strong>able feature of Table 4'll is <strong>the</strong> range of expon-<br />

estimated with reasonable accuracy <strong>for</strong> <strong>the</strong> North Island, ents <strong>for</strong> AREA. The values tend to be less than <strong>the</strong> values<br />

Water & soil technical publication no. 20 (1982)<br />

7l


Table 4.11 Comparable equations <strong>for</strong> o<strong>the</strong>r countries,<br />

Est¡mat¡ng eqn R2 SC<br />

est<br />

Region<br />

Area Range (km,)<br />

Min. Max.<br />

Reference<br />

o<br />

o<br />

= 0.56 1 AREA 8s<br />

: 0.0765 AREAi o€ S1O85o s' o.841<br />

o.922<br />

o.1 94<br />

o.142<br />

New England<br />

New England<br />

: 2.42 AREA ss<br />

Texas and Sthn<br />

= o.o589 AREA 68110241 New Mexico<br />

50<br />

250OO Benson ('l 962b)<br />

90000 Benson (1 964)<br />

O :a AREAb<br />

0.267


Pooled<br />

Pooled<br />

Poo led<br />

Cy = 0.98<br />

Cy = O'óó<br />

Cv = o'3ó<br />

Figure Water 4.11 & soil Distr¡but¡on technical publication of Cv of annual no. 20 maxima (1982) <strong>for</strong> South lsland stations'<br />

73


Poo led<br />

cv<br />

Pooled<br />

o.40<br />

F¡guro 4.12 D¡stfibut¡on<br />

Water of & cv soil of technical annuar maxima publication <strong>for</strong> North no. 20 rsrand (1982) stat¡ons.<br />

74


Draper and Smith 1966). ln our case, <strong>the</strong> true value of <strong>the</strong><br />

dependent variable Qnu. is <strong>not</strong> known with certainty. It is<br />

subject to time sampling error and can only be estimated<br />

from <strong>the</strong> period of flow record available. The relative magnitudes<br />

of time sampling errors <strong>are</strong> indicated by <strong>the</strong> pooled<br />

Cy values in Figures 4.8 and 4.12.<br />

A second difficulty is that within a region some adjacent<br />

catchments may be subject to <strong>the</strong> same storms of large <strong>are</strong>al<br />

extent and a pair of series of annual maxima <strong>for</strong> such catchments<br />

is likely to be cross correlated: errors in estimates of<br />

Qo6, will <strong>the</strong>re<strong>for</strong>e <strong>not</strong> be random, but will also be correlated.<br />

In this situation regression analysis is still permissible,<br />

but estimation of <strong>the</strong> prediction error is more complex.<br />

An analysis of <strong>the</strong> situation is provided by Matalas<br />

and Gilroy (1968), and some practical examples <strong>are</strong> given<br />

by Hardison (1971).<br />

When a regional regression of log'o Q is calculated on a<br />

set of m catchment parameters, <strong>the</strong> standard deviation of<br />

<strong>the</strong> log,o Q about <strong>the</strong> regression expressed in log,o Q units<br />

is de<strong>not</strong>ed by Sp. lf <strong>the</strong>se deviations of <strong>the</strong> log,o Q from <strong>the</strong><br />

regression <strong>are</strong> normally distributed, <strong>the</strong>n <strong>the</strong> coefficient of<br />

variation of <strong>the</strong> untrans<strong>for</strong>med Q about <strong>the</strong> regression, C¡,<br />

is given by<br />

Cä = .*p (2.303 SR)' - I 47<br />

When Q is estimated from a flood record that is N years<br />

long, and <strong>the</strong> coeffìcient of variation of <strong>the</strong> annual maxima<br />

is de<strong>not</strong>ed Cy, <strong>the</strong> estimate of Q will differ from <strong>the</strong> population<br />

value (that would be obtained from a very long record)<br />

with a coel'ficient of variation of CylN.l.<br />

ci : ci /N"<br />

When Q is predicted using <strong>the</strong> regional regression it will As <strong>the</strong> quantity Nu could provide a useful guide <strong>for</strong> using<br />

differ from <strong>the</strong> population value, and <strong>the</strong> coefficient ofvar- <strong>the</strong> regression equations, it is evaluated <strong>for</strong> each of <strong>the</strong> reiation<br />

of <strong>the</strong> difference averaged over k sites, de<strong>not</strong>ed by gions toge<strong>the</strong>r with Cp <strong>for</strong> each region (Table 4.12). Esti-<br />

Table 4.12 Prediction errors and equivalent lengths of record.<br />

Cp, is calculated from Equation 4.8, which is derived from<br />

Hardison (1971).<br />

c'p : ch(t - + -<br />

tf+-, ) + ci (2q - r)/N6..... 4.8<br />

where p is <strong>the</strong> average cross-correlation between annual<br />

maxima series from pairs oi catchments in <strong>the</strong> region, and<br />

Nç is <strong>the</strong> average length of record. When <strong>the</strong>re <strong>are</strong> many<br />

uncorrelated records such that sampling errors tend to cancel,<br />

and <strong>the</strong> average record is short (k large, p small, N6<br />

small), <strong>the</strong>n Cþ can be less than CilNc, so rhat a better<br />

estimate is obtained from <strong>the</strong> regression at a site than from<br />

<strong>the</strong> record at a site.<br />

Note that Cp is an average prediction error, and will<br />

over-estimate errors on predictions <strong>for</strong> ungauged catchments<br />

whose parameters <strong>are</strong> near <strong>the</strong> mean value used in<br />

calculating <strong>the</strong> regression, and conversely. In New Zealand,<br />

no estimates of<strong>the</strong> interstation correlation coefficient q <strong>are</strong><br />

available, but typical values may reasonably be expected<br />

within <strong>the</strong> range 0.2 to 0.8. Three values of p (0.2, 0.5 and<br />

0.8), were <strong>the</strong>re<strong>for</strong>e used in evaluating Equation 4.8.<br />

Given <strong>the</strong> coefficient of variation of <strong>the</strong> prediction error<br />

Cp, ân estimate can be made of <strong>the</strong> length of record necessary<br />

to estimate Q with <strong>the</strong> same degree of accuracy as is<br />

given by <strong>the</strong> regression equation. If Nu is this equivalent<br />

length of record, anLd <strong>the</strong> prediction error is expressed as a<br />

percentage, <strong>the</strong>n<br />

49<br />

Region S¡<br />

(<strong>for</strong> regression<br />

of logarithms)<br />

Cvkm<br />

(no. of (no. of<br />

stations) regression<br />

variables)<br />

Nca<br />

(av length<br />

record)<br />

cR cP<br />

(Eqn 4.7) (Eqn 4.8)<br />

l"l,\ l"/"1<br />

N, Typical<br />

(Eqn 4.9) Nu<br />

(yrs)<br />

(yrs)<br />

Northland/<br />

Coromandel/<br />

East Cape<br />

Pumice<br />

East Coast Nl<br />

Wairarapai<br />

Manawatu/<br />

Wellington<br />

West Coast Nl<br />

West Coast Sl<br />

o.119<br />

o.128<br />

0.082<br />

o.118<br />

o.1 67<br />

0.148<br />

o.54<br />

o.54<br />

o.54<br />

o.40<br />

o.40<br />

0.36<br />

21<br />

14<br />

t1<br />

19<br />

25<br />

t9<br />

1 1.6<br />

12.O<br />

13.O<br />

13.5<br />

110<br />

9.4<br />

o.2<br />

o.5<br />

0.8<br />

o.2<br />

o.5<br />

o.8<br />

o.2<br />

0.5<br />

o.8<br />

o.2<br />

o.5<br />

o.8<br />

o.2<br />

o.5<br />

o.8<br />

o-2<br />

0.5<br />

o.8<br />

27.9<br />

21 .9<br />

27.9<br />

29.9<br />

29.9<br />

29.9<br />

1 9.1<br />

1 9.1<br />

1 9.1<br />

27.7<br />

27.7<br />

27.7<br />

39.9<br />

39.9<br />

39.9<br />

35.O<br />

35.O<br />

3 5.O<br />

27.5<br />

30.1<br />

32.5<br />

33.7<br />

35.8<br />

37.7<br />

19.4<br />

22.6<br />

25.4<br />

30.0<br />

31.1<br />

32.3<br />

41.6<br />

42.6<br />

43.6<br />

37.1<br />

38.1<br />

39.3<br />

39<br />

3.2<br />

2.3<br />

2.6<br />

2.3<br />

2.1<br />

7.8<br />

5.7<br />

4.5<br />

1.8<br />

1.7<br />

1.5<br />

o.9<br />

o.9<br />

0.9<br />

0.9<br />

o9<br />

o.8<br />

lnland<br />

Marlborough/<br />

Canterbury<br />

East Coast Sl<br />

Mackenzie/<br />

lnland Otago/<br />

Southland<br />

o.1 09<br />

o.1 05<br />

o.146<br />

0.66<br />

o.98<br />

o.66<br />

13<br />

1'l<br />

'I 5<br />

18.0 0.2<br />

0.5<br />

o.8<br />

8.4 0.2<br />

o.5<br />

o.8<br />

89 02<br />

o5<br />

o8<br />

25.O<br />

25.O<br />

25.O<br />

24.5<br />

24.5<br />

24.5<br />

34.5<br />

34.5<br />

34.5<br />

24.4<br />

27.2<br />

29.8<br />

12.5<br />

29.O<br />

39.1<br />

34.6<br />

38.6<br />

42.2<br />

7.3<br />

5.9<br />

4.9<br />

61.6<br />

11 .4<br />

6.3<br />

3.7<br />

2.9<br />

2.4<br />

Water & soil technical publication no. 20 (1982)<br />

75


mates of Cp typically range between 2OVo and 44go <strong>for</strong> different<br />

regions. They <strong>are</strong> generally somewhat greater than<br />

Cp, and <strong>are</strong> generally <strong>not</strong> greatly influenced by <strong>the</strong> values<br />

assumed <strong>for</strong> p.<br />

Values estimated <strong>for</strong> Nu given in <strong>the</strong> right-hand column<br />

of Table 4.12 range from one year <strong>for</strong> <strong>the</strong> West Coast of<br />

both islands to about seven years <strong>for</strong> <strong>the</strong> East Coast of <strong>the</strong><br />

South Island. Such results <strong>are</strong> in accord with intuition.<br />

Where <strong>the</strong> Cy is low_(as on <strong>the</strong> West Coast) a reasonably accurate<br />

estimate of Qo5, may be obtained from a relatively<br />

short period of rec<br />

on<br />

is of limited valu<br />

is<br />

greater, a longer<br />

to<br />

estimate Qo6. with<br />

on<br />

equation estimate, and <strong>the</strong> regression equations may be of<br />

greater utility.<br />

tühere only a short period of record is available <strong>for</strong> a site<br />

<strong>for</strong> which a design flood estimate is required, a decision<br />

var (Q)<br />

weights <strong>for</strong> combin<br />

in a best estimate. If<br />

its variance can be e<br />

_l<br />

var (Qo6.)<br />

I<br />

var (Q.,x)<br />

4t0<br />

4.11 Summary<br />

_ The country was divided into nine regions lbr estimating<br />

Q using regression analysis. The physical justification lor<br />

<strong>the</strong>se regions was discussed. Apart from <strong>the</strong> south of <strong>the</strong><br />

South lsland, <strong>the</strong> study used a good distribution ol catchments,<br />

and <strong>the</strong> range of values covered <strong>for</strong> Q, <strong>are</strong>a, and<br />

o<strong>the</strong>r parameters was very large.<br />

The results demonstated that generally catchment <strong>are</strong>a<br />

and <strong>the</strong> rainfall parameters considered <strong>are</strong> sufficient to predict<br />

large differences in flood magnitudes within <strong>the</strong> nine<br />

regions delineated and that <strong>the</strong> o<strong>the</strong>r physical characteristics<br />

used <strong>for</strong> <strong>the</strong> catchments do <strong>not</strong> improve that prediction.<br />

Apart from <strong>the</strong> Sou<strong>the</strong>rn Alps of <strong>the</strong> South lsland,<br />

<strong>the</strong> mean annual rainfall can be estimated with reasonable<br />

confidence from isohyetal maps. Rainfall intensities were<br />

estimated from data available in Robertson's (1963) publication.<br />

Updated intensity data <strong>are</strong> now available (Tomlinson<br />

1980; Coulter and Hessell 1980) and, with more extensive<br />

intensity in<strong>for</strong>mation, better estimation equations <strong>are</strong><br />

anticipated.<br />

Preliminary results of <strong>the</strong> study enabled identification ol<br />

catchments which did <strong>not</strong> fit into regional trends. Where<br />

reasons <strong>for</strong> anomalies could be identified, <strong>the</strong> catchments<br />

were excluded from <strong>the</strong> final analyses since <strong>the</strong>ir inclusion<br />

could have led to biased results. About 790 of catchments<br />

were in this category. Designers should be aw<strong>are</strong> of factors<br />

likely to modify flood peaks and if in doubt seek specialisr<br />

advice.<br />

16<br />

Water & soil technical publication no. 20 (1982)


5 Application<br />

5.1 lntroduction<br />

This chapter collates <strong>the</strong> applicable results and findings<br />

from <strong>the</strong> preceding two chapters and <strong>for</strong>mulates <strong>the</strong>m into<br />

what is subsequently reierred to as <strong>the</strong> Regional Flood Estimation<br />

(RFE) method. Rules <strong>for</strong> <strong>the</strong> applicability of <strong>the</strong><br />

RFE method <strong>are</strong> given, a design strategy <strong>for</strong> estimating <strong>the</strong><br />

T-year flood peak is suggested and a number of examples<br />

<strong>are</strong> given which demonstrate <strong>the</strong> use of <strong>the</strong> method.<br />

The RFE method is intended as a procedure to be used<br />

<strong>for</strong> estimating design flood magnitude in situations where<br />

insufficient flood records <strong>are</strong> available <strong>for</strong> conventional<br />

fiequency analysis. It is one of several design flood estimation<br />

methods in such situations and o<strong>the</strong>r methods should<br />

be used and comp<strong>are</strong>d with it. It has been derived from<br />

tlood records by:<br />

(¡) defining regional flood frequency curves of Q1/Q vs<br />

T, where Q1 is a design flood with return period T and<br />

Q is <strong>the</strong> mean annual flood; and<br />

(ii) developing a set of equations <strong>for</strong> estimating Q based<br />

on catchment <strong>are</strong>a and measures of rainfall.<br />

A comparison with Technical Memorandum No' 6l<br />

(TM 6l) is reported in Appendix E.<br />

5.2 Applicability<br />

The applicability of <strong>the</strong> RFE method is necessarily constrained<br />

by <strong>the</strong> restrictions that were applied to <strong>the</strong> data<br />

used in deriving <strong>the</strong> method. The following constraints<br />

<strong>the</strong>re<strong>for</strong>e apply.<br />

The method should only be used <strong>for</strong> rural catchments.<br />

The method should <strong>not</strong> be applied to catchments in<br />

which snowmelt, glaciers, springs, lake storage or<br />

ponding significantly affect <strong>the</strong> flood peak characteristics.<br />

The ranges of catchment <strong>are</strong>as <strong>for</strong> which <strong>the</strong> regional<br />

flood frequency curves and <strong>the</strong> regional mean annual<br />

flood equations were derived <strong>are</strong> listed in Table 5.1.<br />

<strong>These</strong> <strong>are</strong> a guide <strong>for</strong> <strong>the</strong> size of catchment to which<br />

<strong>the</strong> method should be applied.<br />

Because of <strong>the</strong> subjective and ra<strong>the</strong>r broad definition of<br />

regional boundaries, it is suggested that, <strong>for</strong> catchments<br />

near boundaries, floöd frequency curves and annual flood<br />

equations <strong>for</strong> <strong>the</strong> regions ei<strong>the</strong>r side of <strong>the</strong> lines.should be<br />

used in estimating Q1/Q and Q respectively. As in a design<br />

situation where different methods yield different estimates,<br />

<strong>the</strong> different Q1/Q and Q estimates <strong>the</strong>n need to be 'comp<strong>are</strong>d',<br />

i.e., <strong>the</strong> merits of each should be assessed and <strong>the</strong><br />

choice of an estimate should be made after a rationalisation<br />

of <strong>the</strong> relevant facts. Alternatively, a belief probability can<br />

be attached to each estimate and <strong>the</strong>ir expectation calculated,<br />

which is akin to taking a weighted average of <strong>the</strong> estimates.<br />

5.3 Design Strategy<br />

5.3.1 General<br />

The strategy <strong>for</strong> <strong>the</strong> use of <strong>the</strong> RFE method in design is<br />

dependent on two main factors: N, <strong>the</strong> length in years of<br />

<strong>the</strong> flood record if a record is available, and T, <strong>the</strong> design<br />

return period. The influence of <strong>the</strong>se factors on <strong>the</strong> two<br />

parts of <strong>the</strong> RFE method (i.e. <strong>the</strong> regional mean annual<br />

flood equations and <strong>the</strong> regional flood frequency curves) is<br />

explained in <strong>the</strong> two following sections and summarised in<br />

Figure 5.1 .<br />

5.3.2 Estimat¡on of O<br />

(¡) N(Nu<br />

Where <strong>the</strong>re is a flood record and its length N is less than<br />

Nu, which is <strong>the</strong><br />

is equivalent to <strong>the</strong><br />

prãcision of <strong>the</strong> r<br />

on (see Table 4. l2)'<br />

<strong>the</strong> mean annual<br />

imated from <strong>the</strong> regional<br />

equation and <strong>the</strong> available flood record. In applying<br />

<strong>the</strong> equation it is particularly important to estimate values<br />

<strong>for</strong> <strong>the</strong> rainfall variables 1224 and MARAIN in a similar<br />

manner and from <strong>the</strong> same data base as used in <strong>the</strong> equation's<br />

derivation. Specific points to <strong>not</strong>e in estimating<br />

values <strong>for</strong> 1224 and MARAIN <strong>are</strong> outlined below.<br />

1224 Estimates ol <strong>the</strong> 1224 rainfall intensity statistic used<br />

in deriving <strong>the</strong> equations <strong>for</strong> Q were obtained by taking <strong>the</strong><br />

arithmetic mean of <strong>the</strong> 2-year 24-hour data listed by Robertson<br />

(1963, Table 9) <strong>for</strong> rainfall stations located within,<br />

or near to, <strong>the</strong> catchment concerned. Estirrates can be<br />

made from <strong>the</strong> tabular results (Appendix D) obtained by<br />

Tomlinson (1980) in a recent revision of <strong>the</strong> frequency an-<br />

Table 5.1 Ranges of catchment <strong>are</strong>as used to derive regional flood frequency curves and mean annual<br />

flood equations.<br />

Flood frequency<br />

reglon<br />

(Fis. 3.6, 3.7)<br />

Combined N.l.<br />

West Coast<br />

Central Bay of PlentY<br />

N.l. East Coast<br />

Central Hawke's Bay<br />

S.l. West Coast<br />

S.l. East Coast<br />

South Canterbury<br />

Otagoi Southland<br />

Catchment <strong>are</strong>a<br />

(km2)<br />

(Table 3.2)<br />

fntn max<br />

2.5 6643<br />

28.2 2893<br />

171 2370<br />

24.3 2424<br />

48 6350<br />

74.6 3430<br />

22.4 899)<br />

lo9<br />

)<br />

18321<br />

Mean annual flood<br />

feglon<br />

(Fig.4 7,4.1O)<br />

Northland/Coromandel/<br />

East Cape<br />

West Coast<br />

Manawatu/WairaraPa/<br />

Wellington<br />

Pumice<br />

Northland/Coromandel/<br />

East Cape<br />

East Coast<br />

West Coast<br />

lnland Marlborough/<br />

Canterbury<br />

East Coast<br />

(Mackenzie, lnland<br />

(Otago, Southland<br />

(East Coast<br />

Water & soil technical publication no. 20 (1982)<br />

Catchment <strong>are</strong>a<br />

(km')<br />

(Tables 4.1, 4.2)<br />

min max<br />

o4 640<br />

3.1 1075<br />

9.4 734<br />

2.6 534<br />

o.4 640<br />

o5<br />

997<br />

4.O 998<br />

o.2 1070<br />

2.2 464<br />

36.8 1088<br />

2.2 464


-J<br />

æ<br />

'll<br />

o Eo<br />

!¡<br />

Assemble llood prák dåta<br />

lncludlng âll hletoslcat<br />

flood ln?ornatlon.<br />

lrha¿ lr th. I.ngÈh N of th. evallsblr flood rscord?<br />

.õ<br />

-3<br />

J<br />

!<br />

o<br />

{<br />

o t<br />

o<br />

f<br />

o*æ<br />

o<br />

CL<br />

o<br />

2.<br />

c¡ f<br />

Øñ<br />

o<br />

@<br />

c<br />

2.<br />

f<br />

(o<br />

è<br />

o<br />

Ðo<br />

e.<br />

o<br />

to,<br />

f!<br />

o<br />

cl<br />

m<br />

ø<br />

d.<br />

:t<br />

0t<br />

4.<br />

o<br />

f<br />

o ê<br />

, oo.<br />

Apply <strong>the</strong> Generallsed Curve<br />

Esttnato0arauelghtad<br />

o? tho âstlnãtls fron3<br />

I Calculating th€ n€an ol<br />

avall¿ble annual serleo (<br />

graphically interpolatlng<br />

0¡.¡¡ fron an histo¡ical<br />

:cri ee )<br />

2 Applylng <strong>the</strong> roglonal<br />

squation<br />

Ooes I<br />

exc.ed th! llnlt<br />

of th6 Rsglonal<br />

Cu¡ve?<br />

obtaln 0t snd<br />

det€rñiñs <strong>the</strong> stãndg¡d<br />

arror ol oltlnata<br />

NsNu<br />

Apply <strong>the</strong> RBglonåI Cu¡ve<br />

N>Nu<br />

E¡tlnate D ¡¡ th¡ arlthfr.tlc<br />

taån o? th¡ annual ae¡L¡s<br />

fo¡m e frequency anelysia ui<br />

tuo-Farsm6tsr distributioñs<br />

except <strong>for</strong> sitEÊ j.n rhe South<br />

CanteEbuDy snd 8ay of Plsnty<br />

flood l'¡6au€ncy rBgioñs. uhers<br />

I.<br />

hl6torlca¡ ftood p.ak<br />

infq¡ñatlon 6våilablo<br />

Is<br />

N ¿20<br />

o!<br />

1>100<br />

?<br />

EeÈlnate õ uy grephic;Ily<br />

lnt!¡pol3t¡ng Ê¡.¡¡ frm<br />

th. historlcal s.¡l3s<br />

Per<strong>for</strong>n a frequgñcy enalysis<br />

ulth tuo and th¡3e-paranrtsF<br />

di BtriSuti,oñ3<br />

ConpBr€ ths frsqu6ncy analyale rs6ult! uith ths rstinatr<br />

obtafn€d from <strong>the</strong> R€gional Curv¡ (o¡ <strong>the</strong> Gener€lla6d Curva<br />

\¡hen I excs€ds <strong>the</strong> reglonaÌ curve llnlt) ônd obtðin<br />

s uelghted flood p.!k ..tlnatr' .Epeclslly ll I > 2N<br />

Water & soil technical publication no. 20 (1982)


alysis of <strong>the</strong> country's rainfall intensity data. As this revision<br />

used data <strong>for</strong> twice <strong>the</strong> number of stations used by<br />

Robertson, more accurate estimates of 1024 <strong>for</strong> individual<br />

catchments should be possible using Tomlinson's results.<br />

Note that an <strong>are</strong>al reduction factor should <strong>not</strong> be applied<br />

to an 1224 estimate. Fur<strong>the</strong>r, <strong>the</strong> rainfall stations used in<br />

<strong>the</strong> estimation of 1224 should <strong>not</strong> necessarily be <strong>the</strong> ne<strong>are</strong>st<br />

but should be <strong>the</strong> ones that record wea<strong>the</strong>r patterns that <strong>are</strong><br />

of most relevance to <strong>the</strong> catchment.<br />

In <strong>the</strong> Sou<strong>the</strong>rn Alps, Tomlinson's (1980) maps of rainfall<br />

intensity assume that <strong>the</strong> intensity increases with altitude.<br />

This increase was <strong>not</strong> considered in <strong>the</strong> estimates of<br />

1224 used to obtain <strong>the</strong> regional mean annual flood equations.<br />

Thus <strong>the</strong> use of <strong>the</strong> estimates of rainfall intensity in<br />

<strong>the</strong> equations may lead to overestimates of Q <strong>for</strong> catchments<br />

running into <strong>the</strong> Sou<strong>the</strong>rn Alps. There<strong>for</strong>e, when<br />

calculating 1224, poinr estimates of intensity should be<br />

averaged <strong>for</strong> <strong>the</strong> raingauges which receive rainfall typical of<br />

that <strong>for</strong> <strong>the</strong> middle and lower parts of <strong>the</strong> catchment.<br />

MARAIN The mean annual rainfall <strong>for</strong> a catchment may<br />

be estimated directly from rainfall records <strong>for</strong> stations<br />

within, or near to, <strong>the</strong> catchment. Where only short rainfall<br />

records exist, or where <strong>the</strong>re <strong>are</strong> none, estimates of<br />

MARAIN should be obtained from <strong>the</strong> l:500 000 isohyetal<br />

maps of l94l-1970 annual rainfall normals published by<br />

<strong>the</strong> NZ Meteorological Service.<br />

When <strong>the</strong>re is at least one year of flood record available,<br />

we suggest that both <strong>the</strong> available record and <strong>the</strong> regional<br />

equation be used to obtain separate estimates of Q. <strong>These</strong><br />

estimates can <strong>the</strong>n be combined to <strong>for</strong>m a weighted average<br />

estimate of Q , with <strong>the</strong> weighting of <strong>the</strong> Q value estimated<br />

from <strong>the</strong> record being based on <strong>the</strong> length of<strong>the</strong> record relative<br />

to Nr. Hence, <strong>for</strong> example, if N : 3 and N, : 4' <strong>the</strong><br />

weighting factors <strong>for</strong> <strong>the</strong> estimates taken from <strong>the</strong> record<br />

and regional equation should be<br />

3/'7 lì.e.<br />

(ii) N > Nu<br />

NN<br />

N+Nu<br />

N*N,<br />

When <strong>the</strong> flood record length exceeds N' Q may be estimated<br />

as <strong>the</strong> arithmetic mean of <strong>the</strong> annual series. It could<br />

also be estimated f¡om a partial duration series (NERC<br />

1975, pp. 185-213) when N is less than l0 years. In <strong>the</strong> case<br />

where an outlier or historical flood peak Q."* occurs in an<br />

annual series such that Q*"*/Q.e¿ ) 3, it is suggested that<br />

Q be estimated graphically from a probability plot of <strong>the</strong><br />

annual series as <strong>the</strong> flood peak with return period T : 2.33<br />

years.<br />

more flexible frequency curves, it was found in <strong>the</strong> evaluation<br />

tests (Appendix A) that a two-parameter distribution<br />

gives a good approximation to a three-parameter one up to<br />

T : 100 and that it can give more sensible results, even<br />

though it may <strong>not</strong> produce quite as good a fit to <strong>the</strong> annual<br />

senes.<br />

(iii) N > 20<br />

V/ith a flood record of 20 or more years in length, both<br />

two- and three-parameter distributions should be fitted to<br />

tbe annual series <strong>for</strong> <strong>the</strong> estimation of Qr ' A visual inspection<br />

of <strong>the</strong> goodness-of-fit of <strong>the</strong> distributions to <strong>the</strong> series<br />

should <strong>the</strong>n be made and a distribution chosen <strong>for</strong> estimating<br />

Qr . When it is difficult to decide between two or more<br />

fitted distributions, <strong>the</strong> Q.¡ estimate should be determined<br />

by averaging <strong>the</strong> estimates given by <strong>the</strong>se distributions.<br />

In applying frequency analysis methods to estimate a design<br />

flood peak Qt, c<strong>are</strong> should be taken to ensure that<br />

<strong>the</strong>y <strong>are</strong> <strong>not</strong> grossly extrapolated. For example, if N < 20<br />

and <strong>the</strong> two-parameter EVI distribution is fitted to <strong>the</strong> annual<br />

series, its extrapolation past T : 100 years <strong>for</strong> catchments<br />

in some of <strong>the</strong> eastern regions, e.g' South Canterbury,<br />

may lead to an under-estimation of Q1.<br />

It is recommended that <strong>the</strong> fitted distribution should <strong>not</strong><br />

be extrapolated beyond a return period T : 5N' This limit<br />

is less stringent than those often recommended in o<strong>the</strong>r<br />

tests (e.g. a limit of T : 2N is suggested (ICE 1975) <strong>for</strong> <strong>the</strong><br />

NERC (1975) study) and extrapolation beyond it is unwise<br />

on <strong>the</strong> basis of present evidence. The safest course of action<br />

when T exceeds <strong>the</strong> extrapolation limit is to use <strong>the</strong> regional<br />

curve, or <strong>the</strong> appropriate generalised curve when T exceeds<br />

<strong>the</strong> upper limit of <strong>the</strong> regional curve.<br />

Finally, when <strong>the</strong> record length N is sufficiently great to<br />

warrant <strong>the</strong> per<strong>for</strong>ming of a frequency analysis, <strong>the</strong> resulting<br />

Q1 estimates should be comp<strong>are</strong>d with that using <strong>the</strong> regional<br />

(or generalised) curve, with Q being calculated from<br />

<strong>the</strong> annual series. A, decision must subsequently be made as<br />

to which estimate to accept <strong>for</strong> design. This may involve<br />

taking a weighted average of <strong>the</strong> estimate from <strong>the</strong> frequency<br />

analyses of <strong>the</strong> site data and <strong>the</strong> estimate obtained<br />

using <strong>the</strong> regional curve, and this procedure is suggested<br />

when T > 2N. In making this decision on <strong>the</strong> final Q1<br />

value it should be lemembered that variations <strong>are</strong> inherent<br />

in all flood records, especially small ones, so that <strong>the</strong> trend<br />

in <strong>the</strong> probability plot should <strong>not</strong> be over-emphasised, even<br />

though it may depart significantly from <strong>the</strong> regional one.<br />

Instead, <strong>the</strong> emphasis should be placed on <strong>the</strong> regional<br />

curve, <strong>for</strong> it represents <strong>the</strong> trend of all <strong>the</strong> flood peak data<br />

<strong>for</strong> <strong>the</strong> region and its construction involved <strong>the</strong> averaging<br />

out of <strong>the</strong> variations in <strong>the</strong> individual flood records.<br />

5.3.3 Estimation of 01<br />

(i) N


Year<br />

1958<br />

1959<br />

1960<br />

l96r<br />

t962<br />

1963<br />

t9&<br />

r 965<br />

1966<br />

1967<br />

1968<br />

Pe¡k (m¡ls)<br />

2238<br />

562<br />

1506<br />

702<br />

1552<br />

1644<br />

2201<br />

2859<br />

2689<br />

I 802<br />

1082<br />

Year<br />

t969<br />

t970<br />

t91l<br />

1972<br />

1913<br />

1974<br />

1975<br />

t976<br />

1977<br />

1978<br />

Peak (m3ls)<br />

6t3<br />

2387<br />

20t9<br />

t9u<br />

t094<br />

1357<br />

1690<br />

l3l I<br />

865<br />

2875<br />

The following four examples estimate <strong>the</strong> 100_year flood<br />

peak Q,oo and <strong>the</strong> corresponding 68,3g0 confidence limits<br />

lor <strong>the</strong> site, assuming that:<br />

(¡) no flood record is available;<br />

(ii) only <strong>the</strong> first 3 years of record, from l95g to 1960, <strong>are</strong><br />

available;<br />

(¡iD l¿ years of record from 1958 to l97l <strong>are</strong> available;<br />

(iv) <strong>the</strong> full length of record from I 95g to I 97g is available.<br />

5.4.1 Example 1: N:e<br />

e estimated from <strong>the</strong> regional<br />

Figure 4. 10, <strong>the</strong> catchment lies<br />

ellEast Cape flood region and<br />

a = 2. 18 x l0-? AREA o ó1 MARAIN ,3!<br />

Substituting <strong>the</strong> values <strong>for</strong> AREA and MARAIN as given<br />

above produces:<br />

a = 2.18 x l0-? X 13930 64 X 2550, 13<br />

= l94O m'/s<br />

(b) The regional curve ordinate should now be obtained.<br />

The site is in <strong>the</strong> North Island East Coast flood frequency<br />

region, i.e, Region 3 in Figure 3.6, and hence, lrom Table<br />

3.4, <strong>the</strong> regional curve ordinate is:<br />

Q'oo/Q = 2.89<br />

. Alte^rnatively, Q,oolQ can be computed from <strong>the</strong> equa_<br />

tion of <strong>the</strong> regional curve in Table 3.4:<br />

Q/Q = 0.762+0.469y<br />

For T = 100, y given by Equation 3.16 is<br />

y : -ln(-ln(l- I ) )<br />

= 4.60<br />

100<br />

(This result could also have been obtained irom Table 3.1.)<br />

Substituting <strong>for</strong> y in <strong>the</strong> regional curve equation gives<br />

Q'oo/Q : 0.726 + 0.469 x 4.60<br />

: 2.88<br />

(The difference of 0.01 is due to rounding effecrs.)<br />

(c) Combining <strong>the</strong> estimates <strong>for</strong> Q and e,oole produces<br />

Q'oo.<br />

Thus Q,oo = 1944. x 2.89<br />

= 5607 m3,/s<br />

(d) The corresponding standard error of estimate is ob_<br />

tained from Equation 3.25, namely<br />

var(Qr) = E(Q),. var(ea/Q) + E(er/Q),. var(e)<br />

The RHS terms of this equation <strong>are</strong> estimated as follows:<br />

E(Q)<br />

-- l9¿lo<br />

From Equation 3.26<br />

var (Q1/Q) : (Cr .<br />

Qt )'<br />

o<br />

where, from Table 3.9<br />

CF<br />

(_t.zs + 5.74 tnT)/100<br />

= 0.25<br />

Thus var (Qr/Q) = @.25 x 2.89), = 0.522<br />

Also E(Q'/Q) = 2.89<br />

]tr9.ti1a!<br />

term var (Q) is obtained from rhe p estimates in<br />

Table 4.12. lf p is assumed to be 0.5, Cp : b.¡Of <strong>for</strong> <strong>the</strong><br />

Northland,/Coromandel,/East Cape flood- region. Since, by<br />

definition,<br />

cË = uar (Q)/Q'<br />

.'. var(Q)= C'..Q,<br />

: (0.301 x t940)'<br />

= 3.410 x l0'<br />

Reverting to Equation 3.25<br />

var (Q'oo) = 1940'z x 0.522 + 2.89, x 3.410 x 105<br />

= 4.813 x 10.<br />

There<strong>for</strong>e <strong>the</strong> standard error of estimate of e,oo is<br />

Se (Q'oo) = (4.813 * 1gc¡t/z<br />

= 2194 m,/s, which is 39Vo of e,on<br />

Figure 5.2 Location of <strong>the</strong> Motu catchment above Houpoto.<br />

1435 ml/s<br />

Water & soil technical publication no. 20 (1982)<br />

80<br />

5.4.2 Exampte 2: N:3<br />

(l) W¡th N = 3 = Nu, Q should be estimated from both<br />

<strong>the</strong> flood record and <strong>the</strong> regional equation. Using <strong>the</strong> flood<br />

record:<br />

Qobs %Q238 + 562 + 1506)


Using <strong>the</strong> regional equation<br />

Qest<br />

1940 m'ls, as in Example I<br />

Combining <strong>the</strong>se estimates from <strong>the</strong> record and regional<br />

equation, using a weighting factor of 0.5 <strong>for</strong> both (see section<br />

5.2.2), gives<br />

a = 0.5x1435+0.5x194O<br />

1688 m',/s<br />

(b) As N< 10, <strong>the</strong> regional curve should still be applied to<br />

estimate Q,oo. The curve ordinate is unchanged at<br />

Q,oolQ : 2.89<br />

(c) Combining <strong>the</strong> estimates of Q and Q,oolQ results in<br />

Q,oo 1688 x 2.89<br />

= 4878 m!/s<br />

(d) In obtaining <strong>the</strong> standard error of estimate, <strong>the</strong> RHS<br />

terms in Equation 3.25 changed from Example I <strong>are</strong><br />

E(Q) = 1688 m3,/s<br />

and <strong>the</strong> variance of Q estimated from <strong>the</strong> flood record is<br />

given by<br />

E(Q)<br />

and<br />

var(Q)<br />

1704 m'ls<br />

(cu.Q)'<br />

N<br />

= (0.54 x 1704)' = 6.048 x 10.<br />

t4<br />

There<strong>for</strong>e, from Equation 3.25<br />

var(Qroo) l1M' x 0.522 + 2.89' x 6.048 x l0'<br />

= 2.021 x 106<br />

Thus<br />

Se(Q'oo) : (2.021 x106)v,<br />

1422 m3/s which is 2590 of Q,oo<br />

5.4.4 Example 4: N:21<br />

(a) As in Example 3, Q can be estimated directly from <strong>the</strong><br />

annual series.<br />

var(Qo6) - (Cn'Qou')'<br />

2t<br />

N<br />

i]r<br />

where C" :<br />

The Cn <strong>for</strong> <strong>the</strong> 0.54 from<br />

2l years of record is 0.43, which comp<strong>are</strong>s<br />

Figure 4.12<br />

well with <strong>the</strong> regional estimate of C" : 9.54<br />

Thus<br />

var(Qo6) : (0.54 x<br />

(b) Since T ) 5N and N > 20, frequency analyses may be<br />

1435)' : 2.002 x l0'<br />

per<strong>for</strong>med on <strong>the</strong> annual series using two- and three-parameter<br />

distributions. The EVI distribution fitted by <strong>the</strong><br />

3<br />

The variance<br />

maximum<br />

of<br />

likelihood method gives<br />

Q estimated from<br />

a good fit to <strong>the</strong> data<br />

<strong>the</strong> regional equation is<br />

<strong>the</strong><br />

and yields<br />

same as in Example l, i.e.,<br />

var(QesJ = 3.410x105<br />

Q'oo<br />

: 4l7O m'/s<br />

and an approximate standard error of estimate of 800 m',/s.<br />

From Equation 4.10, <strong>the</strong> variance of <strong>the</strong> combined estimate (This<br />

of Q is<br />

standard error is based on a <strong>for</strong>mula used by NERC<br />

(1975, p. 170), assuming Cu : 0.54).<br />

l:l+l<br />

(c) The corresponding estimate using <strong>the</strong> regional curve is<br />

var(Q) var(Qo') var(Q.r¡) 2.002 x l0r Q,oo 1665x2.89:4812m3/s<br />

and <strong>the</strong> associated standard error of estimate is obtained<br />

+<br />

from Equation 3.25 as<br />

3.410 x l0r<br />

var(Q,oo) 1665' x 0.522 + 2.8g'z x<br />

(0'54 x 1665)'z<br />

so that var(Q) = 1.261 x 105<br />

2l<br />

Hence from Equation<br />

1.769 x loó<br />

3.25<br />

so that<br />

var(Qroo) 1688' 0.522 + 2.89'? x 1.261 x 105<br />

: 2.541 x Se(Q'oo) 1330 m3,/s which is 2490 of<br />

106<br />

Q,oo<br />

and<br />

Se(Q,oo) = (2.541 x l0ó)/z<br />

1594 m!/s, which is 2890 of Q,oo<br />

5.4.5 Results Summary<br />

Table 5.2 summarises <strong>the</strong> estimates of Q and Q'oo obtained<br />

in <strong>the</strong> four examples using <strong>the</strong> RFE method.<br />

5.4.3 Example 3: N: 14<br />

The reduction in <strong>the</strong> standard error of estimate in Table<br />

(a) As N > N"( = 3), Q can be estimated directly from <strong>the</strong> 5.2 with increase in record length illustrates <strong>the</strong> value of increasing<br />

lengths of flood record. In Example 4, a second<br />

annual series.<br />

Hence<br />

estimate of Q,oo : 4l7O m'ls (by frequency analysis of <strong>the</strong><br />

l4<br />

2l years ofrecord) is available and a designer would choose<br />

a = I a weighted mean of <strong>the</strong> two.<br />

I ei =1704m',/s<br />

It will be seen that <strong>the</strong> estimate of Q in <strong>the</strong> second example,<br />

obtained by combining <strong>the</strong> estimates from <strong>the</strong> re-<br />

14 i-: I<br />

gional equation and <strong>the</strong> three years of record, is closer to<br />

(b) Applying <strong>the</strong> regional curve produces<br />

<strong>the</strong> Q estimate using <strong>the</strong> full flood record than that in Example<br />

3 which is based on 14 years and, as a consequence,<br />

Q'oo :1704 x2.89<br />

= 4925 m3/s<br />

<strong>the</strong> corresponding Q,oo estimate is also closer to <strong>the</strong> Qroo<br />

estimate determined from <strong>the</strong> full record. Although this<br />

may be a chance result it does emphasise that even a short<br />

(c) The new RHS terms in Equation 3.25 <strong>are</strong><br />

flood record is useful.<br />

Water & soil technical publication no. 20 (1982)<br />

81<br />

a<br />

2t<br />

= I )- Qi:1665m'/s


The estimate of Q from <strong>the</strong> regional equations is as<br />

accurate as an estimate from about three y€ars of record<br />

(Table 4. l2). If <strong>the</strong> typical variability is checked by drawing<br />

samples from <strong>the</strong> Motu data listed earlier, or by considering<br />

<strong>the</strong> standard error of <strong>the</strong> regional equation, it will be seen<br />

that this particular estimate from <strong>the</strong> regional equation is<br />

<strong>for</strong>tuitously close to <strong>the</strong> estimate from 2l years of record.<br />

Table 5.2 Summary of selected results from <strong>the</strong> RFE method.<br />

Example<br />

number<br />

1<br />

2<br />

3<br />

4<br />

Length of<br />

recor.d<br />

(yrsl<br />

o<br />

3<br />

14<br />

21<br />

Estimate<br />

ofO<br />

(m3/s)<br />

39<br />

28<br />

25<br />

24<br />

82<br />

Water & soil technical publication no. 20 (1982)


6 Summary<br />

In New Zealand little progress has been made in flood<br />

estimation techniques over <strong>the</strong> last 25 years despite an upsurge<br />

in <strong>the</strong> amount of streamflow data that has been col-<br />

Iected over this period. This study has attempted to improve<br />

this situation by<br />

al flood frequency<br />

analysis procedu<br />

<strong>the</strong> available<br />

annual and historical flo<br />

I catchments'<br />

The procedure, known as <strong>the</strong> Regional Flood Estimation<br />

(RFË) method, is applicable to both gauged and ungauged<br />

iural catchments which in general <strong>are</strong> greater than 20 km'<br />

in <strong>are</strong>a. Since <strong>the</strong> method was developed by averaging <strong>the</strong><br />

sampling variation that exists in individual flood records, it<br />

should provide a more reliable design flood peak estimate<br />

than that determined by fitting a frequency curve to a relatively<br />

short record.<br />

The RFE method comprises a set of eight regional flood<br />

frequency cu<br />

vs T, and a set of<br />

niné regionat<br />

when <strong>the</strong>re is little<br />

or no flood ¡<br />

S <strong>the</strong> T-Year flood,<br />

and Q is <strong>the</strong> mean annual flood. The most important independent<br />

variables in <strong>the</strong> equations <strong>are</strong> catchment <strong>are</strong>a<br />

and an index of <strong>the</strong> catchment rainfall.<br />

The regional curves may be used up to <strong>the</strong> 200-year return<br />

period to estimate a design flood peak, except in <strong>the</strong><br />

Otago-Southland region where <strong>the</strong> upper limit on return<br />

period is restricted to 100 years because of <strong>the</strong> limited data<br />

in this <strong>are</strong>a that were available <strong>for</strong> analysis. The curves <strong>are</strong><br />

defined by <strong>the</strong> straight-line extreme value type I (EVl) distribution<br />

<strong>for</strong> all but two of <strong>the</strong> regions <strong>the</strong> Bay of Plenty<br />

-<br />

and South Canterbury regions, where <strong>the</strong> extreme value<br />

type 2 (EV2) tlistribution was found to give a better definitión<br />

of <strong>the</strong> regional trend in <strong>the</strong> data. Although <strong>the</strong> general<br />

extreme value (C<br />

gional curves, th<br />

of <strong>the</strong> log-Pears<br />

tion tests carried<br />

that <strong>the</strong> LP3 distribution may well have given an equally<br />

good description of <strong>the</strong> curves.<br />

It is evident, both from <strong>the</strong> regional mass probability<br />

plots and from <strong>the</strong> standard error equations derived <strong>for</strong> <strong>the</strong><br />

iegional curves, that <strong>the</strong> variability in <strong>the</strong> regional Qr/Q<br />

data is well within acceptable limits. A quantitative indication<br />

of <strong>the</strong> confidence that may be placed on values of<br />

Q1/Q estimated fiom a regional curve is obtainable from<br />

<strong>the</strong> standard error equations which give estimates comparing<br />

very favourably with those given by <strong>the</strong> equivalent<br />

NERC (1975) equation.<br />

A feature of this study is <strong>the</strong> dependence of <strong>the</strong> results on<br />

climate. This is illustrated by <strong>the</strong> regions, which <strong>are</strong> partially<br />

consistent with recognised climatic boundaries, and<br />

by <strong>the</strong> difference in slope of <strong>the</strong> western and eastern regional<br />

curves. The latter curves have greater slopes, which<br />

ãre uttributable to <strong>the</strong> greater variability in <strong>the</strong> flood peak<br />

data <strong>for</strong> <strong>the</strong> eastern regions where <strong>the</strong> climate is drier and<br />

<strong>the</strong> antecedent conditions more variable. Fur<strong>the</strong>r indication<br />

of <strong>the</strong> climatic influence is given by <strong>the</strong> regional equations<br />

<strong>for</strong> estimating Q . ¡.lo physical characteristics, o<strong>the</strong>r than<br />

catchment <strong>are</strong>a, <strong>are</strong> included in <strong>the</strong> equations, <strong>the</strong> only<br />

o<strong>the</strong>r important parameters being catchment rainfall estimates.<br />

This suggests that climate may be <strong>the</strong> dominant factor<br />

affecting flood peaks with magnitude equal to or<br />

greater than <strong>the</strong> mean annual flood. O<strong>the</strong>r factors often<br />

considered important, such as geology and topography,<br />

have been accounted <strong>for</strong> to some extent in <strong>the</strong> regionalisation<br />

of <strong>the</strong> country.<br />

The country is divided into two sets of regions' one set<br />

<strong>for</strong> estimating Qr/Q and one <strong>for</strong> estimating Q. <strong>These</strong> <strong>are</strong><br />

very similar<br />

t<br />

tempts were<br />

e<br />

purposes, b<br />

t<br />

regions is a<br />

a<br />

Q1/Q and Q.<br />

The application_of <strong>the</strong> method to a catchment <strong>for</strong> <strong>the</strong><br />

estimation of Q1/Q and<br />

ted<br />

in Chapter 5 with four<br />

<strong>the</strong><br />

advantage, when only a<br />

of<br />

combining <strong>the</strong> estimates<br />

uation<br />

and <strong>the</strong> flood record to obtain a weighted average<br />

"best" estimate of Q . t¡e precision of each equation is expressed<br />

of record and,<br />

àepend<br />

estimate of Q<br />

from a<br />

he error of estimating<br />

od record. Thus<br />

when an important waterway project is being considered, a<br />

recorder should be installed as soon as possible to record<br />

<strong>the</strong> flood peaks.<br />

In addition to <strong>the</strong> regional curves of Q1/Q which extend<br />

up to a maximum of 200 years, generalised curves, one <strong>for</strong><br />

<strong>the</strong> west and one <strong>for</strong> <strong>the</strong> east, <strong>are</strong> given. <strong>These</strong> curves were<br />

derived from all <strong>the</strong> flood peak data collected <strong>for</strong> this<br />

study, excluding four extreme flood events, and <strong>the</strong>y can be<br />

applied from beyond <strong>the</strong> limit of <strong>the</strong> regional curves up to<br />

<strong>the</strong> 1000-year return period. Of interest is <strong>the</strong> marked similarity<br />

of <strong>the</strong>se curves with those derived by Stevens and<br />

ing too many regions. lt is envisaged that as more flood<br />

p.ãk dut" become available, revisions and refinements will<br />

te made to <strong>the</strong> RFE method' especially <strong>for</strong> <strong>the</strong> estimation<br />

of Q.<br />

In all cases, we recommend that o<strong>the</strong>r methods <strong>for</strong> estimating<br />

design flood magnitude also should be used and <strong>the</strong><br />

results comp<strong>are</strong>d be<strong>for</strong>e a final figure is selected'<br />

Water & soil technical publication no. 20 (1982)<br />

83


Water & soil technical publication no. 20 (1982)


References<br />

Adamson, P.T. 1979: Probability distributions of best fit<br />

to South African flood data. Water S.A. 5 (2):70-6.<br />

Aitken, A.P. 1975: Hydrologic investigation and design of<br />

urban stormwater drainage systems. Australian<br />

Vl/ater Resources Council, Technical Paper No. 10.<br />

140 P.<br />

Beable, M.E. 1976: A simulation method <strong>for</strong> predicting<br />

hydrological effecls of land-use change. PhD Thesis<br />

(unpublished). Department of Civil Engineering,<br />

University of Canterbury. 160 p.<br />

Beard, L.R. 1974: Flood flow frequency techniques. Center<br />

<strong>for</strong> Research in Waler Resources, University oÍ<br />

Texas, Austin, Technical Report CRWR-|19.<br />

Guidelines <strong>for</strong> determining flood flow frequency.<br />

US Water Resources Council, Bulletin No.<br />

I7A ol <strong>the</strong> Hydrology Committee.<br />

-19]7: Benham, A.D. 1950: The estimation of extreme flood discharges<br />

by statistical methods. Proceedings of <strong>the</strong><br />

N.Z. Institulion of Engineers 36: 119-65.<br />

Benson, M.A. 1962a: Evolution of methods <strong>for</strong> evaluating<br />

<strong>the</strong> occurrence of floods. US Geological Survey<br />

Water Supply Paper 1580-4.<br />

-1962b<br />

: Factors infl uencing <strong>the</strong> occurrence of fl oods<br />

in humid regions of diverse terrain. US Geological<br />

Survey lltaler Supply Paper 1580-8.<br />

Factors affecting <strong>the</strong> occurrence of floods in<br />

<strong>the</strong> southwest. US Geological Survey Water Supply<br />

Paper 1580-D.<br />

Blom, C. 1958: Statistical Estimates and Trans<strong>for</strong>med<br />

-|964:<br />

Beta variables. John Wiley, New York.<br />

Burns, M.M. 1977: (Chairman) Report to <strong>the</strong> New Zealand<br />

Government of "The Fact Finding Group on Nuclear<br />

Power".<br />

Campbelt, A.P. 1959: Revision of technical memorandum<br />

No. 6l: provisional standard <strong>for</strong> determination of<br />

peak flows in small catchment <strong>are</strong>as. In Hydrology.<br />

Proceedings of a meeting of design engineers<br />

employed on hydrological works. Soil Conservation<br />

and Rivers Control Council, Wellington. pp.2-l to<br />

2-t2.<br />

Flood estimation and channel scour. 1n<br />

Hydrology and Land Management. Soil Conservation<br />

and Rivers Control Council, Wellington. pp'<br />

-1962:<br />

94-100.<br />

Chapman, T.G.; Dunin, F.X. 1975: Prediction in catchment<br />

hydrology. Proceedings of <strong>the</strong> National Symposium<br />

on Hydrology. Australian Academy of<br />

Sciences, Canberra.<br />

Chow, V.T. 1964: Handbook of Applied Hydrologv.<br />

McGraw-Hill, New York.<br />

Clarke, R.T. 1973: A review of some ma<strong>the</strong>matical models<br />

used in hydrology, with observations on <strong>the</strong>ir calibration<br />

and lse. Journal of Hydrology l9: l-20'<br />

Coulter, J.D.; Hessell, J.W.D. 1980: The frequency of high<br />

intensity rainfalls in New Zealand, Part Il, Point estimates.<br />

Meteorological Service Miscellaneous<br />

Publication ^/Z 162.<br />

Cunnane, C. 1915 Proceedings of Flood Studies Conference.<br />

Institution of Civil Engineers, London. pp.<br />

43-6.<br />

Unbiased plotting positions -<br />

a review.<br />

Journal oÍ HYdrologY 37:205-22-<br />

Dalrymple, T. 1960: Flood frequency analyses. Manual of<br />

-1978:<br />

Hydrology: Part 3 -<br />

Flood-flow techniques' US<br />

Geological Survey Water Supply Pøper 1543-4.<br />

French, R.; Pilgrim, D.H.; Laurenson, E.M. 1974: Experimental<br />

examination of <strong>the</strong> rational method <strong>for</strong> small<br />

rural catchments. Transaclions of lhe Institution of<br />

Engineers, (Australia) CE I6 (2):95-102.<br />

Gilbert, D.J. 1978: Calculating lake inf'lows. Journal of<br />

Hydrology (NZ) 17(l): 39-43.<br />

Gringorten, I.L. 1963: A plotting rule <strong>for</strong> extreme probability<br />

paper. Journal of Geophysical Research 68(3):<br />

813-4.<br />

Gumbel, E.J. l94l: The return period of flood flows..4nnals<br />

of Ma<strong>the</strong>matical Statistics 12: 163-90.<br />

On <strong>the</strong> plotting of flood discharges. Trarsoctions<br />

of <strong>the</strong> American Geophysical Union 24(2);<br />

699-719.<br />

-1943:<br />

Statistical <strong>the</strong>ory of extreme values and<br />

some practical applications. US Bureau of Standards,<br />

Applied Ma<strong>the</strong>matics Ser¡es 33: l5-16.<br />

Hardison,<br />

-1954: C.H. l97l: Prediction error of regression estimates<br />

of streamflow characteristics at ungauged<br />

sites. US Geological Survey Professional Paper<br />

750-C. pp. C228-C236.<br />

Heiler, T.D. 1974: Rational method of flood estimation <strong>for</strong><br />

rural catchments in peninsular Malaysia. Hydrological<br />

Procedure No. 5, Drainage and lrrigation Division,<br />

Ministry of Agriculture and Fisheries, Kuala<br />

Lumpur.<br />

Data and methods involved in predicting<br />

flood flow. NZ Engineering j0: 302-5.<br />

Heiler, T.D.; Chew, Hai Hong. 1974: Magnitude and frequency<br />

-1975:<br />

of floods in peninsular Malaysia. Hydrological<br />

Procedure No. 4, Drainage and lrrigøtion Division,<br />

Ministry of Agriculture and Fßheries, Kuala<br />

Lumpur.<br />

Henderson, F.M. 1966: Open channel flow. Macmillan,<br />

New York. 522p.<br />

Hoffmeister, G. 1976: Accuracy of syn<strong>the</strong>tic unit hydrographs<br />

derived from representative basins. Research<br />

Report No. 76/7, Department of Civil Engineering,<br />

U niversity oJ' Canterbury.<br />

Ibbitt, R.P. 1979: Flow estimation in an unstable river illustrated<br />

on <strong>the</strong> Rakaia River <strong>for</strong> <strong>the</strong> period 1958-1978.<br />

Journol of Hydrology (NZ) I8(2): 88-108.<br />

Institution of Civil Engineers 1975: Flood Studies Conference<br />

Proceedings. Institution of Civil Engineers,<br />

London, 7-8 May. 106 p.<br />

Irish, J.; Ashkanasy, N.M. 1977: Flood frequency analysis.<br />

In Australian Rainfatl and Runoff. Chapter 9. The<br />

Institution of Engineers, Australia.<br />

Jenkinson, A.F. 1955: The frequency distribution of <strong>the</strong><br />

annual maximum (or minimum) values of meteorological<br />

elements. Quarterly Journal of Royal Meleorological<br />

Society 87: 158-71.<br />

Jowett, I.G.; Thompson, S.M. 1977: Clutha power development,<br />

flows and design floods. Appendix 2 of<br />

Environmental impact report on design and construction<br />

proposals, Clutha Valley Developments,<br />

Ministry of Vy'orks and Development, Wellington.<br />

Leese, M.N. 1973: The use of censored data in estimated<br />

T-year floods. Proceedings of <strong>the</strong> Madrid Symposium,<br />

Design oÍ Water Resources Proiects with Inadequate<br />

Data, Vol. 2. June 1973. UNESCO-WMO'<br />

IASH. pp.563-75.<br />

Linsley, R.K.; Kohler, M.A.; Paulhus, L.H. 1975: Hydrotogy<br />

<strong>for</strong> Engineers. McGraw-Hill, New York.<br />

McGuinness, J.L.; Brakensiek, D.L. 1964: Simplified techniques<br />

<strong>for</strong> fitting frequency distributions to hydrologic<br />

data. US Agriculturol Handbook No- 25. 42 p.<br />

Maguiness, J.A.; Blackwood, P.l-.; Broome, P.; Beable'<br />

M.E. (In prep a) A report on FRAN, a computer<br />

program <strong>for</strong> <strong>the</strong> frequency analysis of extremes. Min-<br />

Hydrology of flow control. Section 25-l In<br />

Handbook of applied hvdrologv (Edited by V.T.<br />

Chow). McGraw-Hill, New York'<br />

Draper,<br />

-1964:<br />

N.R.; Smith, H. 1968: Applied regression analysis.<br />

John WileY, New York. 407P.<br />

istry of Works and Development, Wellington.<br />

Water & soil technical publication no. 20 (1982)<br />

85


Maguiness, J.A.; Blackwood, P.L.; Beable, M.E. (ln prep<br />

b) A report on FRANCES, a computer program <strong>for</strong><br />

<strong>the</strong> frequency analysis of a censored sample. Ministry<br />

of Works and Development, Wellington.<br />

Matalas, N.C.; Gilroy, E.J. l9ó8: Some comments on regionalisation<br />

in hydrologic studies. Journal of Water<br />

Resources Research 4 (6): 136l-9.<br />

Ministry of Works 1970: Re¡resentative Basins of New<br />

Zealand. llater ond Soil Division, Miscellaneous<br />

Hydrological Publication No. Z. Minisrry of Works,<br />

Wellington.<br />

Ministry of Works and Development 1979: Code of practice<br />

<strong>for</strong> <strong>the</strong> design of bridge waterways. Ministry oÍ<br />

Works and Development, Civil Division publication<br />

CDP 705/C (Prep<strong>are</strong>d by Water and Soil Division).<br />

72 p.<br />

National Water and Soil Conservation Organisation 1975:<br />

Metric version of technical memorandum No. 61.<br />

Ministry of Works and Development, Wellington.<br />

Index to hydrological recording stations in<br />

New Zealand 198O. lVater & Soil Mßcellaneous<br />

Publication No. 18. Ministry of Works and Development,<br />

Wellington.<br />

-¡9El:<br />

NERC 1975: Flood Studies Report, Vol. l. Natural Environment<br />

Research Council, London.<br />

Neill, C.R. 1973: Guide to Bridge Hydraulics. published<br />

<strong>for</strong> Roads and Transportation Association of<br />

Canada by University of Toronto press.<br />

Newson, M. 1975: Mapwork <strong>for</strong> flood studies, part I : Selection<br />

and derivation of indices. Report No. 25, Institute<br />

oÍ Hydrology, Walling<strong>for</strong>d.<br />

Pilgrim, D.H. 1966: Storm loss rates <strong>for</strong> regions with limited<br />

data. Proceedings of <strong>the</strong> American Society of<br />

Civil Engineers 92 (Hy 2): 193-2-06.<br />

Pilgrim, D.H.; Cordery, l. 1974: Design flood estimation<br />

- an appraisal of philosophies and needs. Reporl<br />

No. 140, Vl/ater Research Laboratory, University of<br />

New South Wales.<br />

Robertson, N.G. 1963: The frequency of high intensity<br />

rainfalls in New Zealand. NZ Meteorological Service<br />

Miscellaneous Publication I I 8.<br />

Rosenbrock, H.H. l9ó0: An automatic method of finding<br />

<strong>the</strong> greatest or least value of a function. The Computer<br />

Journal 3: 175-84.<br />

Sangal, B.P.; Kallio, R.W. 1977: Magnitude and frequency<br />

of floods in Sou<strong>the</strong>rn Ontario. Technicol<br />

Bulletin Series No. 99, Inland Waters Directorote,<br />

Waler Planning and Management Branch, Fßheries<br />

and Environment, Canadø.<br />

Schaake, J.C.; Geyer, J.C.; Knapp, J.W. 1962: Experimental<br />

examination of <strong>the</strong> rational method. Proceedings<br />

of lhe American Society of Civil Engineers 93<br />

(Hy 6): 353-70.<br />

Schnackenberg, E.C. 1949: Extreme flood discharges. proceedings<br />

of <strong>the</strong> NZ Institution of Engineers 35<br />

376-427.<br />

Soil Conservation and Rivers Control Council 1957:<br />

Floods in New Zealand, 1920-53. SCRCC, Wellington.<br />

Stevens, M.J.; Lynn, P.P. 1978: Regional growth curves.<br />

Report No. 52, Institute of Hydrology, llalting<strong>for</strong>d.<br />

Thomas, D.M.; Benson, M.A. 1970: Generalisation of<br />

streamflow characteristics from drainage basin characteristics.<br />

US Geological Survey lüater Supply<br />

Paper No. 1975.<br />

Toebes, C.1972l. The surface water resources of New Zealand.<br />

Paper presented at Xll NZ Science Congress,<br />

Palmerston North.<br />

Toebes, C.; Palmer, B.R. I969: Hydrological regions of<br />

New Zealand. Water and Soil Division, Miscellaneous<br />

Hydrological Publication, No. 4. Minisrry of<br />

Works, Wellington.<br />

Tomlinson, A.l. 1980: The frequency of high inrensity rainfalls<br />

in New Zealand, Pact l. Water & Soil Technical<br />

Publication /9. Ministry of Works and Development,<br />

Wellington.<br />

Water & soil technical publication no. 20 (1982)<br />

86


Appendix A : Tests with frequency distributions<br />

4.1 Introduction<br />

The General Extreme Value (GEV) distribution is detailed<br />

in Chapter 3. The Gamma distribution, a<strong>not</strong>her general<br />

distribution from which several o<strong>the</strong>r specific distributions<br />

derive, is outlined below. Then a computer program<br />

(FRAN) is described. This program was developed to<br />

enable an evaluation of different lrequency analysis methods<br />

on New Zealand flood data. It was found that <strong>the</strong> extreme<br />

value type I (EVl) distribution fitted by <strong>the</strong> Jenkinson<br />

method generally fitted <strong>the</strong> data well, but that in many<br />

cases <strong>the</strong> EVI distribution l'itted with Gumbel's method of<br />

leasl squ<strong>are</strong>s also gave satisfactory results.<br />

4.2 Gamma distribution<br />

The three-parameter Camma distribution is <strong>the</strong> same as<br />

<strong>the</strong> Pearson Type 3 distribution. It has <strong>the</strong> pdl<br />

f(x) : I (x-xo¡r-le-(x-xo)/li .....A.1<br />

0rr(r)<br />

which is defined <strong>for</strong> x > xo,<br />

where xo<br />

ù_<br />

l)-<br />

I'(r):<br />

a location parameter,<br />

a scale parameter,<br />

a shape parameter, and<br />

<strong>the</strong> Gamma function, equal to ("y- 1)! <strong>for</strong><br />

positive integer values of -y.<br />

lf "y : ¡, (x) describes an exponential distribution; and if<br />

xo = 0, f(x) describes a two-parameter Gamma distribution.<br />

Like <strong>the</strong> CEV distribution (section 3.1.3), Equation A.l<br />

describes a tämily of distributions, with each member characterised<br />

by <strong>the</strong> value of <strong>the</strong> shape parameter, in this case 7.<br />

This parameter is inversely related to <strong>the</strong> skewness of <strong>the</strong><br />

variate, and as <strong>the</strong> skewness gets smaller, "y increases and<br />

Equation A.l tends to <strong>the</strong> Normal distribution (NERC<br />

1975). When <strong>the</strong> skew is zero <strong>the</strong> symmetrical, two-parameter<br />

Normal distribution applies, with <strong>the</strong> pdf<br />

f(x) : I s- /tl(x- pl/ol'<br />

"F<br />

where ¡,r : a location parameter, and<br />

o : ascaleparameter.<br />

A2<br />

The parameters ¡,t and o <strong>are</strong>, in fact, <strong>the</strong> population mean<br />

and standard deviation, respectively, of <strong>the</strong> variate x.<br />

An analogous situation to that described above applies<br />

tbr <strong>the</strong> three-parameter log-Gamma distribution. This distribution<br />

is <strong>the</strong> same as <strong>the</strong> log-Pearson Type 3 (LP3) distribution<br />

and has a pdf of <strong>the</strong> <strong>for</strong>m<br />

f(x) : I (l'nx- xo)?- I e-(r)nx-xo)/B ..... 4.3<br />

x0zf(r)<br />

which is defined <strong>for</strong> x > e"n.<br />

Like Equation A. I, Equation 4.3 describes a family of<br />

distributions, with each member being described by a particular<br />

value of 'y. When <strong>the</strong> skewness of <strong>the</strong> variate is zero,<br />

<strong>the</strong> two-parameter log-Normal distribution applies, with<br />

<strong>the</strong> pdf<br />

f(x) : I s-<br />

xoF<br />

/,1 (t'nx- p\/ øl'<br />

A4<br />

which is defined <strong>for</strong> x > 0. The parameters p and r <strong>are</strong> now<br />

<strong>the</strong> population mean and standard deviation of <strong>the</strong> natural<br />

logarithms of <strong>the</strong> variate x.<br />

The df <strong>for</strong> Equations A.t to 4.4 must be calculated numerically.<br />

A.3 Methods used<br />

The GEV distribution described in section 3.1.3 and <strong>the</strong><br />

Camma distribution outlined in section 4.2 have up to<br />

three parameters: a location, a scale and a shape parameter.<br />

<strong>These</strong> parameters must be estimatcd in <strong>the</strong> fitting ol a distribution<br />

to a data sample. The various techniques of parameter<br />

estimation, toge<strong>the</strong>r with <strong>the</strong> choice of <strong>the</strong> p<strong>are</strong>nt distribution<br />

that may be used, give rise to <strong>the</strong> dilferent frequency<br />

analysis methods that <strong>are</strong> available.<br />

This study considered seven different frequency analysis<br />

methods. They were chosen on <strong>the</strong> basis of being <strong>the</strong> most<br />

common or <strong>the</strong> most useful, and <strong>the</strong>y were incorporated in<br />

a computer program FRAN (Maguiness ef a/. in prep. a).<br />

(A<strong>not</strong>her computer program FRANCES (section 3.1.7) was<br />

developed <strong>for</strong> use where historical in<strong>for</strong>mation was available<br />

(Maguiness e! al. in prep.b).) The methods used in<br />

FRAN were <strong>the</strong> lollowing:<br />

(1) <strong>the</strong> three-parameter log-Camma or LP3 distribution<br />

fitted by <strong>the</strong> method of moments;<br />

(2', -<br />

<strong>the</strong> three-parameter log-Gamma or LP3 distribution,<br />

with an adjusted coefficient ol skew fitted by <strong>the</strong><br />

method of moments'<br />

-<br />

(3) log-Normal distribution -<br />

fitted by <strong>the</strong> maximum<br />

likelihood method;<br />

(4) GEV distribution -<br />

fitted by <strong>the</strong> maximum likelihood<br />

method;<br />

Water & soil technical publication no. 20 (1982)<br />

(5) EVI distribution fitted by <strong>the</strong> maximum likelihood<br />

-<br />

method;<br />

(ó) EVI distribution -<br />

fitted by <strong>the</strong> least squ<strong>are</strong>s method;<br />

(7) EVI distribution -<br />

using <strong>the</strong> Jenkinson (1969)<br />

method.<br />

Each of <strong>the</strong> methods is briefly described below with reference<br />

to an annual series. In <strong>the</strong> case of methods I and 2,<br />

<strong>the</strong> distribution involved is subsequently referred to as <strong>the</strong><br />

LP3 distribution. For a detailed explanation of <strong>the</strong> seven<br />

methods, refer to <strong>the</strong> report on FRAN by Maguiness e/ a/.<br />

(in prep. a).<br />

Method I This method was recommended by <strong>the</strong> United<br />

States Water Resources Council (1967) to be uni<strong>for</strong>mly<br />

adopted in that country as <strong>the</strong> standard method <strong>for</strong> flood<br />

frequency analysis. The method in effect applies <strong>the</strong> threeparameter<br />

Gamma (Pearson) distribution (Equation A.l)<br />

to <strong>the</strong> logarithms of <strong>the</strong> annual series. The resulting frequency<br />

curve is a flexible one; it can plot concave upwards<br />

or downwards on log-Normal probability paper. It also incorporates<br />

<strong>the</strong> two-parameter log-Normal distribution,<br />

which plots as a straight line on <strong>the</strong> same paper.<br />

The fitting technique is <strong>the</strong> method of moments, which<br />

involves <strong>the</strong> calculation of <strong>the</strong> mean, standard deviation<br />

and <strong>the</strong> coefficient of skew of <strong>the</strong> logarithmically trans<strong>for</strong>med<br />

series. <strong>These</strong> statistics <strong>are</strong> <strong>the</strong>n used in <strong>the</strong> following<br />

equation to obtain <strong>the</strong> desired flood estimate.<br />

log'oX1 : X +K.S<br />

A5<br />

where X1 : flood estimate <strong>for</strong> return period T,<br />

X : mean of <strong>the</strong> trans<strong>for</strong>med series,<br />

S : standard deviation of <strong>the</strong> translormed<br />

series, and<br />

K : afrequencyfactor.<br />

87


The liequency factor K is a function of <strong>the</strong> coefficient of<br />

skew and <strong>the</strong> return period and may be obtained from<br />

tables (e.g., Harter 1969; USWRC 1967). The <strong>for</strong>m of<br />

Equation 4.5, which is based on <strong>the</strong> use of a frequency factor,<br />

is preferred to <strong>the</strong> more <strong>for</strong>mal type of LP3 equation<br />

(e.g., Equation A.3) <strong>for</strong> <strong>the</strong> method of moments fitting<br />

technique, as it makes <strong>the</strong> computations very much easier.<br />

The frequency factor idea has heen propounded by Foster<br />

(1924) and Chow (1951), and <strong>the</strong> derivation of <strong>the</strong> factor<br />

<strong>for</strong> <strong>the</strong> LP3 distribution is explained by NERC (1975, pp.<br />

39-40) and Kite (1976, pp. 198-204,2291.<br />

Method 2 This method is <strong>the</strong> same as Method l, except<br />

that an adjustment is made to <strong>the</strong> computed skew coefficient.<br />

An adjustment is warranted because <strong>the</strong> computed<br />

skew value is likely to be unreliable <strong>for</strong> a data sample of<br />

typical size. Indeed, it has been suggested (Beard and Frederick<br />

1975) that at least 100 sample items <strong>are</strong> needed to obtain<br />

a skew value that is representative of <strong>the</strong> population<br />

statistic. Since most hydrological data samples <strong>are</strong> much<br />

smaller than this, various ef<strong>for</strong>ts have been made to improve<br />

<strong>the</strong> reliability of <strong>the</strong> computed skew value through<br />

<strong>the</strong> use of generalised skew coeflficients (Beard 1977). One<br />

example is <strong>the</strong> use of a regional skew value taken from isolines<br />

of computed skew values.<br />

ln <strong>the</strong> early stages of this New Zealand study, computed<br />

skew values lbr flow stations in <strong>the</strong> top half of <strong>the</strong> South<br />

Island were plotted on a map to determine if <strong>the</strong>re was any<br />

pattern in <strong>the</strong> skew coefficient. None was evident and,<br />

hence, <strong>the</strong> possibility of using generalised skew coefficients<br />

in this study was <strong>not</strong> pursued. Instead, <strong>the</strong> following tactor<br />

Fu, recommended by Bobée and Robitaille (1975), was used<br />

to adlust <strong>for</strong> <strong>the</strong> bias in <strong>the</strong> skew value that is due to <strong>the</strong><br />

length of <strong>the</strong> data sample.<br />

Fo=<br />

where CS = <strong>the</strong> computed skew coefficient, and<br />

n : <strong>the</strong> number of sample items.<br />

The adjustment is made by multiplying <strong>the</strong> computed<br />

skew coefficient by Fu, but only when Equation 4.6 is<br />

applicable i.e., <strong>for</strong> samples with 20 or more items.<br />

Mefhod 3 This method is often referred to as <strong>the</strong> log-<br />

Normal method and uses <strong>the</strong> two-parameter log-Normal<br />

distribution, as distinct from <strong>the</strong> three-parameter one (see<br />

Kite 1976). The method has long been advocated <strong>for</strong> use in<br />

hydrological frequency analysis (e.g., Hazen l9t4), and appeals<br />

because of its simplicity <strong>the</strong> fitted frequency distribution<br />

plots -<br />

as a straight line on log-Normal probability<br />

paper.<br />

The application of <strong>the</strong> method involves <strong>the</strong> same computations<br />

as <strong>for</strong> Method l, except that <strong>the</strong> coefficient of skew<br />

of <strong>the</strong> logarithms of <strong>the</strong> series is set to zero.<br />

Method 4 This uses <strong>the</strong> maximum likelihood (ML)<br />

method to fit <strong>the</strong> CEV distribution to a data sample. This<br />

method of fitting is generally recognised as <strong>the</strong> most efficient<br />

<strong>for</strong> estimating <strong>the</strong> distribution parameters, and its use is<br />

recommended when <strong>the</strong> design events must be extracted<br />

from a small or irregular series (WMO 1969). However, <strong>the</strong><br />

ML method involves equations that have no explicit solution.<br />

The solution is complex and requires <strong>the</strong> use of an<br />

iterative numerical scheme, and is only worthwhile attempting<br />

with <strong>the</strong> aid of a computer.<br />

Method 5 Although <strong>the</strong> GEV distribution incorporates<br />

EVI as a special case, only r<strong>are</strong>ly will <strong>the</strong> application of<br />

Method 4 result in <strong>the</strong> EVI distribution being fitted to a<br />

data sample. To ensure that a fit was obtained with <strong>the</strong> EVI<br />

distribution, this distribution was fitted separately (by <strong>the</strong><br />

ML method) to <strong>the</strong> sample by setting <strong>the</strong> shape parameter k<br />

in <strong>the</strong> CEV distribution to zero.<br />

88<br />

¡ 16-11- *ry i.i,*<br />

.Tì"... ou<br />

Method ó This method is often called <strong>the</strong> "Gumbel<br />

method" after Gumbel (1941, 1954) and is probably <strong>the</strong><br />

one most commonly employed in hydrology. lt has had<br />

wide use in New Zealand and was <strong>the</strong> method adopted by<br />

<strong>the</strong> New Zealand Meteorological Service (Robertson l9ó3)<br />

when determining rainfall depth-duration-f'requency relationships<br />

from New Zealand data.<br />

Melhod 7 This method follows <strong>the</strong> procedure devised by<br />

Jenkinson (1955, 1969) and also described by Samuelsson<br />

(1972). The method emphasises <strong>the</strong> extreme part of annual<br />

series and as shown by Samuelsson, it can be applied as <strong>the</strong><br />

standard one to extreme values which belong to several different<br />

kinds of frequency distribution. A larger series of<br />

S-year maxima is produced from <strong>the</strong> annual series by considering<br />

all possible combinations of items of five in <strong>the</strong><br />

original series. The EVI distribution is <strong>the</strong>n fittcd to rhe<br />

series of 5-year maxima by <strong>the</strong> ML method.<br />

If an annual series is used in a lrequency analysis instead<br />

of a series of 5-year maxima, it is quite possible that <strong>the</strong><br />

series may be non-homogeneous in that, <strong>for</strong> example, <strong>the</strong><br />

smaller items may belong to one distribution (e.g., EV2)<br />

and <strong>the</strong> larger ones to a<strong>not</strong>her (e.g., EV3). Fur<strong>the</strong>r, it can<br />

be shown ma<strong>the</strong>matically (WMO 1969) that <strong>the</strong> lower parr<br />

(37V0) of <strong>the</strong> series may <strong>not</strong> even belong to <strong>the</strong> extreme<br />

value distribution as it is defined. The advantage of <strong>the</strong> Jenkinson<br />

method is that it generally overcornes this problem<br />

of non-homogeneity of data. The use of 5-year maxima can<br />

be thought of an increasing by fivefold <strong>the</strong> degree ol independence<br />

in <strong>the</strong> data, so that <strong>the</strong>se maxinra should <strong>the</strong>n<br />

<strong>for</strong>m a homogeneous set of data that confbrms to EV<br />

<strong>the</strong>ory.<br />

4.4 Evaluation of <strong>the</strong> frequency analys¡s<br />

methods<br />

4.4.1 General<br />

Prior to <strong>the</strong> development of <strong>the</strong> regional curves, two<br />

evaluation tests were carried out on 42 flood records altoge<strong>the</strong>r,<br />

using <strong>the</strong> seven frequency analysis methods described<br />

in section 4.3 and contained in <strong>the</strong> computer program<br />

FRAN. The purpose of <strong>the</strong> tests was twofold:<br />

(¡) to observe, and to indicate to users of FRAN, <strong>the</strong> relative<br />

merits of <strong>the</strong> seven different methods on individual<br />

New Zealand flood records;<br />

(ii) to assist in <strong>the</strong> selection of a frequency distribution<br />

that would adequately describe <strong>the</strong> regional curves.<br />

This section describes <strong>the</strong> tests and discusses <strong>the</strong> results<br />

obtained.<br />

4.4.2 Evaluation criteria and method<br />

Most studies that have attempted to discriminate between<br />

frequency analysis methods have relied, at least to some extent,<br />

on objective goodness-of-fit indices. Recent examples<br />

of such studies <strong>are</strong> those carried out by Benson (1968),<br />

Beard (1974), Kite (1976) NERC (t975), Kopiuke ef ø/.<br />

(1976) and Bobée and Robitaille (1977). However, as is generally<br />

acknowledged (e.g., Benson 1968), <strong>the</strong> classical<br />

goodness-of-fit indices such as Chi-squ<strong>are</strong> and Kolmogorov-Smirnov<br />

<strong>are</strong> <strong>not</strong> sufficiently sensitive or powerful<br />

enough, because of <strong>the</strong> small samples found in hydrology,<br />

to distinguish between <strong>the</strong> worth of different frequency analysis<br />

methods. Moreover, NERC (1975) found that o<strong>the</strong>r<br />

goodness-oi-fit indices had major weaknesses and concluded<br />

that, because of <strong>the</strong> deficiencies ol goodness-of-fìt<br />

indices, a visual inspection must be made of <strong>the</strong> probability<br />

plots. The judgement on <strong>the</strong> per<strong>for</strong>mance of a method is<br />

<strong>the</strong>n a subjective one, "... but <strong>the</strong> objective tests that <strong>are</strong><br />

available <strong>are</strong> so ineffective that <strong>the</strong>ir objectivity alone is insufficient<br />

to recommend <strong>the</strong>m" (NERC 1975).<br />

In <strong>the</strong> evaluation tests, much more emphasis was placed<br />

on <strong>the</strong> probability plots than on <strong>the</strong> Chi-squ<strong>are</strong> value,<br />

which <strong>the</strong> computer program calculated. F-ollowing an ex-<br />

Water & soil technical publication no. 20 (1982)


amination of <strong>the</strong> probability plots <strong>for</strong> each station, <strong>the</strong> perlormance<br />

of each frequency analysis method was classified<br />

into a good, reasonable or poor category according to <strong>the</strong><br />

following four criteria:<br />

(i) <strong>the</strong> frequency curve should fit <strong>the</strong> whole of <strong>the</strong> series<br />

well, but particularly <strong>the</strong> upper half of <strong>the</strong> series;<br />

(¡i) <strong>the</strong> frequency curve should <strong>not</strong> necessarily pass<br />

through <strong>the</strong> very largest items in <strong>the</strong> series, since <strong>the</strong>re<br />

is a far larger sampling variation with <strong>the</strong>se items;<br />

(¡¡¡) <strong>the</strong> frequency curve should appear to produce a good<br />

estimate of <strong>the</strong> 10O-year flood peak;<br />

(iv) <strong>the</strong> Chi-squ<strong>are</strong> value should <strong>not</strong> be abnormally high.<br />

Criterion (iii) needs some explanation. Although a<br />

method could per<strong>for</strong>m well under criterion (i), it could <strong>not</strong><br />

be automatically assumed that <strong>the</strong> method <strong>the</strong>re<strong>for</strong>e gave a<br />

sensible estimate oI <strong>the</strong> 10O-year flood peak. Because of <strong>the</strong><br />

small-sample effect with some of <strong>the</strong> samples used, a method<br />

could produce an extremely good fit to a data sample<br />

but a 100-year value that was only minimally greater (e.9.,<br />

less than l-290) than <strong>the</strong> 2O-year value. One hundred years<br />

was chosen as <strong>the</strong> return period <strong>for</strong> <strong>the</strong> flood peak estimate<br />

on <strong>the</strong> basis of it being <strong>the</strong> most commonly used maximum<br />

value in bridge waterway design (MWD 1979). It follows,<br />

<strong>the</strong>re<strong>for</strong>e, that <strong>the</strong> subsequent evaluations of <strong>the</strong> methods<br />

<strong>for</strong> fitting individual station data <strong>are</strong> with reference to this<br />

maximum return period and <strong>the</strong>y should <strong>not</strong> be interpreted<br />

as being applicable beyond <strong>the</strong> 100-year return period.<br />

Afler <strong>the</strong> classification of <strong>the</strong> per<strong>for</strong>mances of <strong>the</strong><br />

methods <strong>the</strong>y were <strong>the</strong>n quantified, by allotting a score of 2<br />

<strong>for</strong> each good fit, I lor each reasonable fit and 0 <strong>for</strong> each<br />

poor fit.<br />

A.4.3 F¡rst test<br />

The first evaluation test was made midway through <strong>the</strong><br />

data collection phase when all <strong>the</strong> annual flood peak data<br />

had been collected <strong>for</strong> <strong>the</strong> South Island stations. The results<br />

of this test were presented and discussed by Maguiness et al.<br />

(1977). Of <strong>the</strong> 50 stations <strong>for</strong> which data were available, 28<br />

stations were selected <strong>for</strong> <strong>the</strong> test (see Table A. I <strong>for</strong><br />

details). <strong>These</strong> stations were considered to have reasonably<br />

reliable streamflow records and each flood record was l0 or<br />

more years in length. Altoge<strong>the</strong>r <strong>the</strong>re were 377 station<br />

years of rccord, giving an average length of 13.5 years per<br />

station.<br />

The per<strong>for</strong>mance of <strong>the</strong> different methods is summarised<br />

in Table 4.2, which shows <strong>the</strong> number of times each<br />

method gave a good, reasonable and poor per<strong>for</strong>mance. It<br />

also shows <strong>the</strong> final score <strong>for</strong> each method after <strong>the</strong> per<strong>for</strong>mances<br />

were quantified. The adjusted LP3 method is<br />

<strong>not</strong> included in <strong>the</strong> table, since in only one case was <strong>the</strong> record<br />

length long enough (20 years or greater) <strong>for</strong> an adjustment<br />

to be made to <strong>the</strong> coefficient of skew using Equation<br />

4.6.<br />

As can be seen from Table 4.2 <strong>the</strong> Jenkinson method<br />

per<strong>for</strong>med best, scoring 52 out of a possible 56. lt produced<br />

Table 4.1 Deta¡ls of <strong>the</strong> f low stations used in <strong>the</strong> first evaluation<br />

test.<br />

Site No.<br />

56901<br />

57502<br />

60110<br />

60114<br />

621 03<br />

621 05<br />

64301<br />

64602<br />

64606<br />

65104<br />

65107<br />

69302<br />

69506<br />

69614<br />

6961 I<br />

6962 1<br />

71 103<br />

71116<br />

71129<br />

7'l 135<br />

93203<br />

93204<br />

93205<br />

93206<br />

93209<br />

93211<br />

93212<br />

93217<br />

Flow Station<br />

Catchmenl Record<br />

<strong>are</strong>a, km' Length,<br />

Years<br />

Riwaka at Moss bush 48 10<br />

Wairoa at Gorge 464 15<br />

Waihopai at Craiglochart 744 16<br />

Wairau at Dip Flat 505 25<br />

Acheron at Cl<strong>are</strong>nce 997 18<br />

Cl<strong>are</strong>nce at Jollies 44O<br />

'l 3<br />

Conway at Hundalee 47O 12<br />

Waiau-uha at Marble Point 1980 14<br />

Waiau-uha at Malings Pass 74-6 10<br />

Hurunui at Mandamus 1 O7O 1 I<br />

Hurunui at Lake Sumner 342 1 5<br />

Rangitata above Klondyke 1495 10<br />

Orari at Silverton 52O 15<br />

Opuha at Skipton 456 12<br />

Opihi at Rockwood 412 12<br />

Rocky Gully at Rockburn 22.4 10<br />

Hakataramea at M.H. Bridge 899 13<br />

Ahuriri at South Diadem 557 12<br />

Forks at Balmoral 13O<br />

'l 1<br />

Jollie at Mt Cook Station 1 39 10<br />

Buller at Te Kuha 6350 14<br />

Buller at Berlins 5960 16<br />

Buller at Woolfs 4560 11<br />

lnangahua at Land¡ng 1000<br />

'l 3<br />

Maruia at Falls 980 1 1<br />

Matakitaki at Mud Lake 857 13<br />

Mangles at Gorge 284 16<br />

Glenroy at Blicks 198 1 1<br />

377<br />

what were considered good fits on 24 occasions (or more<br />

than 8590 of <strong>the</strong> time) and, significantly, gave no poor fits.<br />

Next in order of per<strong>for</strong>mance were <strong>the</strong> LP3 and <strong>the</strong><br />

Gumbel methods, scoring 4l and 39 respectively. The <strong>for</strong>mer<br />

method gave only slightly more good fits than <strong>the</strong> latter,<br />

and both produced only a minimal number of poor fits.<br />

At <strong>the</strong> lower end of <strong>the</strong> per<strong>for</strong>mance rankings were <strong>the</strong><br />

EVl,log-Normal and GEV methods. Little distinction can<br />

be made between <strong>the</strong> EVI and log-Normal methods, with<br />

both giving on average about <strong>the</strong> same per<strong>for</strong>mance. In<br />

comparison, <strong>the</strong> CEV method gave fewer poor fits, but at<br />

<strong>the</strong> same time produced only three good lits -<br />

less than<br />

half <strong>the</strong> number achieved by each of <strong>the</strong> o<strong>the</strong>r two<br />

methods.<br />

The flood records used in this first test were relatively<br />

small samples. Although each record was at least l0 years<br />

long, this is <strong>the</strong> minimum acceptable length <strong>for</strong> a flood frequency<br />

analysis. The average record length of 13.5 years is<br />

only a marginal improvement on this and is still less than<br />

<strong>the</strong> minimum length of l5-20 years recommended by some,<br />

Table 4.2 Summary of <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> methods ¡n <strong>the</strong> f¡rst test.<br />

Method<br />

Per<strong>for</strong>mance<br />

Categories<br />

No. 1<br />

LP3<br />

No. 3<br />

Log-Normal<br />

No. 4<br />

GEV<br />

No. 5<br />

EV1<br />

No. 6<br />

Gumbel<br />

No. 7<br />

Jenkinson<br />

Good<br />

Reasonable<br />

Poor<br />

Number Score Number Score Number Score Number Score Number Score Number Score<br />

16 32<br />

99<br />

30<br />

Total Score:<br />

4'l<br />

27 26<br />

Note: Score calculated as 2 <strong>for</strong> good fit, 1 <strong>for</strong> resonable, O <strong>for</strong> poor fit.<br />

Maximum possible score: 2 x 2a :56<br />

8<br />

'l 6 3 6 11 22 13 26 24 48<br />

11 11 20 20 7 7 13 13 4 4<br />

9 0 5 0 10 0 2 0 0 0<br />

Water & soil technical publication no. 20 (1982)<br />

89


e.9., Linsley et ol. (1915); lrish and Ashkanasy (1977).<br />

There was, in fact, only one station with more than 20 years<br />

of record. However, <strong>the</strong>se relatively small samples reflect<br />

<strong>the</strong> situation <strong>the</strong> design engineer is often faced with<br />

- having<br />

to estimate design figures from records of b<strong>are</strong>ly adequate<br />

length.<br />

Most of <strong>the</strong> findings of <strong>the</strong> test could only be regarded as<br />

preliminary ones pending fur<strong>the</strong>r investigation with larger<br />

samples and covering a great'Jr part of <strong>the</strong> country. The<br />

findings <strong>are</strong> a guide to <strong>the</strong> design engineer using a small<br />

sample in flood frequency analysis, but <strong>the</strong> test itself was<br />

<strong>not</strong> very helpful in <strong>the</strong> choosing of a distribution <strong>for</strong> <strong>the</strong> regional<br />

curves. A second test was <strong>the</strong>re<strong>for</strong>e carried out at <strong>the</strong><br />

end of <strong>the</strong> data collection phase using larger data samples.<br />

4.4.4 Second test<br />

The second evaluation test used annual series data from<br />

14 stations with 20 or more years of record. Details of <strong>the</strong>se<br />

stations <strong>are</strong> listed in Table 4.3. As shown in <strong>the</strong> table, <strong>the</strong>re<br />

was a total of 366 station years of record, giving an average<br />

record length of 26.1 years per station, almost double <strong>the</strong><br />

figure <strong>for</strong> <strong>the</strong> first test.<br />

The per<strong>for</strong>mances of <strong>the</strong> different methods on <strong>the</strong> second<br />

set of data were evaluated in exactly <strong>the</strong> same manner<br />

as tbr <strong>the</strong> first test. The results of <strong>the</strong> evaluation <strong>are</strong> summarised<br />

in Table A.4.<br />

Table A.4 shows that <strong>the</strong> Jenkinson method again per<strong>for</strong>med<br />

best, but this time <strong>the</strong> Cumbel method gave a pertbrmance<br />

that was almost as good. Notably, nei<strong>the</strong>r<br />

method gave any poor fits to <strong>the</strong> data. At <strong>the</strong> second level<br />

of per<strong>for</strong>mance were <strong>the</strong> GEV and LP3 (unadjusted and<br />

adjusted) methods, all with <strong>the</strong> same score of 22. The per<strong>for</strong>mances<br />

of <strong>the</strong> unadjusted and adjusted LP3 methods<br />

were indistinguishable and <strong>the</strong> two methods <strong>are</strong> collectively<br />

referred to as <strong>the</strong> LP3 method. Last were <strong>the</strong> log-Normal<br />

and EVI methods. Both methods gave good fits at least<br />

5090 of <strong>the</strong> time, but also a <strong>not</strong>iceable percentage (2190) of<br />

poor fits.<br />

As in <strong>the</strong> lirst test, <strong>the</strong> Jenkinson method per<strong>for</strong>med <strong>the</strong><br />

best ot'<strong>the</strong> methods, and in this second test could r<strong>are</strong>ly be<br />

faulted. ln <strong>the</strong> one instance where it gave o<strong>the</strong>r than a good<br />

per<strong>for</strong>mance, its frequency curve still fitted <strong>the</strong> data well<br />

and produced a realistic 100-year flood peak estimate.<br />

However, its per<strong>for</strong>mance was reduced because of its Chisqu<strong>are</strong><br />

value, which was high and more than twice that <strong>for</strong><br />

any of <strong>the</strong> o<strong>the</strong>r methods. Some allowance was always<br />

made <strong>for</strong> a higher Chi-si¡u<strong>are</strong> value with <strong>the</strong> Jenkinson<br />

method, but in this particular case <strong>the</strong> value was excessively<br />

high. The higher values <strong>for</strong> <strong>the</strong> method <strong>are</strong> caused by <strong>the</strong><br />

fact that <strong>the</strong> frequency curve does <strong>not</strong> always fit <strong>the</strong> lowest<br />

four items in a series, since <strong>the</strong>se items clo <strong>not</strong> <strong>for</strong>m part of<br />

<strong>the</strong> generated 5-year maxima to which <strong>the</strong> method fits <strong>the</strong><br />

EVI curve.<br />

The Cumbel method improved on its first test ranking<br />

giving an overall per<strong>for</strong>mance almost <strong>the</strong> same as <strong>the</strong> Jenkinson<br />

method. However, a surprising aspect in both tests<br />

Tabþ 4.3 Details of <strong>the</strong> flow stations used in <strong>the</strong> second evaluation<br />

test.<br />

Site No.<br />

Flow Station<br />

Catchment Record<br />

<strong>are</strong>a, km' Length,<br />

yeafs<br />

14614 Kaituna at Te Matai 958 21<br />

1551 1 Waimana at Waimana Gorge 44O 25<br />

1 5514 Whakatane at Whakatane 1 557 20<br />

29201 Ruamahanga at Wardells 637 22<br />

29202 Ruamahanga at Waihenga 2340 21<br />

29224 Waiohine at Gorge 183 22<br />

32502 Manawatu at Fitzherbert 3916 48<br />

32503 Manawatu at Weber Road 713 22<br />

32514 Oroua at Almadale 312 24<br />

32526 Mangahao at Ballance 266 24<br />

32529 Tiraumea at Ngaturi 734 24<br />

601 14 Wairau at Dip Flat 5O5 25<br />

92216 Buller at Lake Rotoiti 195 26<br />

93213 Gowan at Lake Rotoroa 368 42<br />

366<br />

was <strong>the</strong> difference in per<strong>for</strong>mance between <strong>the</strong> Gumbel and<br />

EVI methods. Both fit <strong>the</strong> same distribution (EVl) to a<br />

series yet <strong>the</strong> EVI method did <strong>not</strong> per<strong>for</strong>m as well, presumably<br />

because <strong>the</strong> ML fitting technique, in comparison with<br />

<strong>the</strong> least-squ<strong>are</strong>s technique, puts relatively greater weight<br />

on <strong>the</strong> smaller items in a data series (Gumbel 1966). Consequently,<br />

if <strong>the</strong> upper half of a series exhibited a different<br />

trend. to that <strong>for</strong> <strong>the</strong> lower half, <strong>the</strong> EVI method, especially,<br />

did <strong>not</strong> always produce a good fit to <strong>the</strong> upper half<br />

and its per<strong>for</strong>mance suffered accordingly. In addition, <strong>the</strong><br />

visual inspection of <strong>the</strong> goodness-of-fit of <strong>the</strong> frequency<br />

curves may have given <strong>the</strong> Gumbel method an unfair advantage<br />

over <strong>the</strong> EVI method, since curve-fitting by eye can<br />

be considered as a least-squ<strong>are</strong>s fit (Chernoff and Lieberman<br />

1954, 1956). Thus, although <strong>the</strong> results may indicate<br />

that <strong>the</strong> Gumbel method may be a worthy substitute <strong>for</strong> <strong>the</strong><br />

Jenkinson method when a computer is unavailable, <strong>the</strong><br />

evaluation may have been weighted unfairly in favour of<br />

<strong>the</strong> Gumbel method.<br />

The methods using three-parameter distributions, i.e.,<br />

<strong>the</strong> LP3 and <strong>the</strong> GEV methods, displayed <strong>the</strong>ir greater flexibility<br />

over <strong>the</strong> two-parameter methods by always producing<br />

a curve that fitted <strong>the</strong> data particularly well. However,<br />

occasionally this was to <strong>the</strong>ir detriment, because <strong>the</strong><br />

resulting 100-year flood peak estimate was sometimes <strong>not</strong><br />

very realistic. For example, in <strong>the</strong> case where <strong>the</strong> LP3<br />

method gave a poor per<strong>for</strong>mance, <strong>the</strong> curve fitted <strong>the</strong> data<br />

very well; so well in fact that it was almost horizontal at <strong>the</strong><br />

high return periods. The difference between <strong>the</strong> 20 and<br />

10O-year flood peaks estimated from <strong>the</strong> curve was less than<br />

0.690, indicating an implausible 10O-year flood peak estimate.<br />

Table A.4 Summary of <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> methods in <strong>the</strong> second test.<br />

Method<br />

Per<strong>for</strong>mance<br />

Categories<br />

No. 1<br />

LP3<br />

No. 2<br />

Adjusted<br />

LP3<br />

No. 3<br />

Log-Normal<br />

No. 4<br />

GEV<br />

No.5<br />

EV1<br />

No. 6<br />

Gumbel<br />

No. 7<br />

Jenkinson<br />

No Score No. Score No, Score No. Score No. Score No. Score No. Score<br />

Good<br />

Reasonable<br />

Poor<br />

9 18 I 18 9 18 8 16 7 ',t4 12 24 13 26<br />

44442266442211<br />

10103000300000<br />

Total Score<br />

22<br />

22 20 ?2 18 26<br />

27<br />

Note: Maximum possible score = 28<br />

Water & soil technical publication no. 20 (1982)<br />

90


In <strong>the</strong> first test <strong>the</strong> GEV method was often affected in<br />

this manner, producing many curves that fitted <strong>the</strong> data<br />

very well but giving 100-year flood peak estimates that were<br />

<strong>not</strong> always sensible. For example, <strong>the</strong> trend in <strong>the</strong> lower<br />

half of <strong>the</strong> series would cause <strong>the</strong> GEV curve to flatten off<br />

at <strong>the</strong> top end, impþing that <strong>the</strong>re was a limit to flood<br />

peaks of about twice <strong>the</strong> mean annual flood. While <strong>the</strong>re<br />

may be an upper limit to flood magnitude, it is certainly<br />

more than <strong>the</strong> figure implied (see Tables 3.3 and 3.6).<br />

In comparison, <strong>the</strong> straight-line fits of <strong>the</strong> Gumbel and<br />

EVI methods were often a good approximation to <strong>the</strong> data<br />

and gave more sensible 100-year flood peak estimates.<br />

However, this better per<strong>for</strong>mance by <strong>the</strong> t$'o-pa¡ameter<br />

methods can be attributed to <strong>the</strong> small samples used<br />

(NERC 1975; pp. 159-60). The fact that <strong>the</strong> Gumbel<br />

method still per<strong>for</strong>med better than <strong>the</strong> GEV method in <strong>the</strong><br />

second test suggests that <strong>the</strong> samples in this test may also<br />

have been small. However, it is also likely that <strong>the</strong> leastsquÍues<br />

fitting technique of <strong>the</strong> Gumbel method influenced<br />

<strong>the</strong> evaluation test in <strong>the</strong> method's favour.<br />

The two-parameter log-Normal method also gave good<br />

approximations to <strong>the</strong> data at times, producing a reasonable<br />

proportion of good fits. However, <strong>the</strong> method assumes<br />

that <strong>the</strong>re is no skew in <strong>the</strong> logarithms of <strong>the</strong> series, an<br />

assumption which was r<strong>are</strong>ly true. Hence <strong>the</strong> method did<br />

<strong>not</strong> per<strong>for</strong>m as well as o<strong>the</strong>rs in <strong>the</strong> test, including its p<strong>are</strong>nt<br />

method, <strong>the</strong> three-parameter LP3.<br />

A.4.5 Gonclusions<br />

The evaluations in <strong>the</strong> two tests involved a good deal of<br />

subjective judgement, but this typifies <strong>the</strong> present situation,<br />

with <strong>the</strong> objective goodness-of-fit indices <strong>not</strong> providing rigorous<br />

enough criteria <strong>for</strong> discriminating between different<br />

frequency analysis methods.<br />

From <strong>the</strong> findings of <strong>the</strong> tests, <strong>the</strong> following conclusions<br />

were reached:<br />

(¡) <strong>the</strong> Jenkinson method was <strong>the</strong> superior method in both<br />

tests and should be used in flood frequency analysis,<br />

especially when <strong>the</strong> sample is small;<br />

(iÐ <strong>the</strong> Gumbel method improved in per<strong>for</strong>mance with increase<br />

in sample size, and should be a satisfactory alternative<br />

to <strong>the</strong> Jenkinson method on <strong>the</strong> larger sam-<br />

Ples;<br />

(ii¡) <strong>the</strong> GEV and LP3 methods were more flexible than <strong>the</strong><br />

two-parameter methods, with <strong>the</strong>ir frequency curves<br />

geneially following <strong>the</strong> trend in <strong>the</strong> data extremeiy<br />

well;<br />

(iv) on small samples, in particular, <strong>the</strong> straight-line fits<br />

from <strong>the</strong> two-parameter methods can give good approximations<br />

to <strong>the</strong> data and sometimes more sensible<br />

results than those obtained from <strong>the</strong>ir p<strong>are</strong>nt threeparameter<br />

methods;<br />

(v) on small samples <strong>the</strong> LP3 method appears to per<strong>for</strong>m<br />

better than <strong>the</strong> GEV method, being influenced less by<br />

<strong>the</strong> trend in <strong>the</strong> lower part of a series;<br />

(vi) on larger samples <strong>the</strong> GEV and LP3 methods can produce<br />

similar shaped curves and give a comparable per<strong>for</strong>mance.<br />

<strong>These</strong> conclusions apply <strong>for</strong> individual records and up to<br />

References<br />

Beard, L.R. 1974: Flood flow frequency techniques. Center<br />

tor Research in Water Rnources, Univercity of<br />

Texas, Austin, Technicøl Report CRVR-|19.<br />

1977: Guidelines <strong>for</strong> determining flood flow frequency.<br />

U.S. Water Resounaes Council, Bulletin No.<br />

I7A of <strong>the</strong> Hydrologlt Committee.<br />

Beard, L.R.; Frederick, A.J. 1975: Hydrologic frequency<br />

analysis. .In Hydrologic Engineering Methods <strong>for</strong><br />

Water Resources Development Vol. 3. The Hydrologic<br />

Engineering Center, U.S. Army Corps of Engineers,<br />

Davis, Cali<strong>for</strong>nia.<br />

Benson, M.A. 1968: Uni<strong>for</strong>m flood-frequency estimating<br />

methods <strong>for</strong> federal agencies. Water Resources Reæørch<br />

4(5):891-908.<br />

Bobée, B.B. Robitaille, R. 195: Correction of bias in <strong>the</strong><br />

estimation of <strong>the</strong> co-efficient of skewness. Wøter Resources<br />

Research I I (6): 841-4.<br />

1977: The use of <strong>the</strong> Pea¡son type 3 and Log-<br />

Pearson type 3 distributions revisited. lfoter Resoutces<br />

Research I 3(2): 427 -41.<br />

Chernoff, H.; Lieberman, G.J. 1954: Use of normal probability<br />

paper. Journøl of <strong>the</strong> Americøn Stotisticol<br />

Associotion 49: 778-85.<br />

1956: The use ofgeneralised probability paper <strong>for</strong><br />

continuous distributions. Annals of Ma<strong>the</strong>moticol<br />

Statistics 27:806-18.<br />

Chow. V.T. l95l: A general <strong>for</strong>mula <strong>for</strong> hydrologic frequency<br />

analysis. Tronsactions of <strong>the</strong> Americøn Geophysicol<br />

Union 32(2): 231-7.<br />

Foster, H.A. l9A: Theoretical frequency curves and <strong>the</strong>ir<br />

applications to engineering. Tronsactiotts of <strong>the</strong><br />

American Society ol Civil Engineen 872 142-73.<br />

Gumbel, E.J. l94l: The return period of flood flows. ánnols<br />

of Ma<strong>the</strong>motical Stotistics 12: 163-X).<br />

1954: Statistical <strong>the</strong>ory of extreme values and<br />

some practical applications. US Bureou of Slondards,<br />

Applied Ma<strong>the</strong>motics Series 33l. 15-16.<br />

l!Xó: Extreme value analysis of hydrologic data.<br />

In Statistical Methods of Hydrology. Proceedings of<br />

Hydrology Symposium No. 5, McGill University,<br />

Canada, Z,-25Februw. pp. 147-69.<br />

Harter, H.L. 1969: A new table of percentage points of <strong>the</strong><br />

Pearson Type III distribution. Technometrics Il(l):<br />

177-81.<br />

Hazen, A. l9l4: Storage to be provided in impounding reservoirs<br />

<strong>for</strong> municipal water supply. Transøctions of<br />

<strong>the</strong> American Society of Civil Engineers 78:<br />

1539-641.<br />

Irish, J.; Ashkanasy, N.M. 1977: Flood frequency analysis.<br />

I¿ Australian Rainfall and Runoff. Chapter 9' The<br />

Institution of Engineers, Australia.<br />

Jenkinson, A.F. 1955: The frequency distribution of <strong>the</strong><br />

annual maximum (or minimum) values of meteoro-.<br />

logical elements. Quorterly Journal of Royal Meteo'<br />

rological Society 87: 158-71.<br />

Statistics of extremes. Iz Estimation of<br />

Maximum Floods. Chapter 5. VMO Technicql Nole<br />

No.98. pp.193-227.<br />

-1969:<br />

Kite, G.W. 1976: Frequency and risk analyses in hydrology.<br />

Inland Waters Directorate, Water Resources Branch,<br />

Dept. of E<br />

Kopittke, R.A.;<br />

e, K.S. 1976: Fre"<br />

quency an<br />

in Queensland. Ia<br />

tion of Enginæn,<br />

Hydrology<br />

Austroliq, Notionsl Co4ference Publication' No.<br />

76/2. pp.2È4.<br />

Linsley, R.K.; Kohler, M.A.; Paulhus, L.H. 195: Hydrology<br />

<strong>for</strong> Engineers. McGraw-Hill, New York.<br />

Water & soil technical publication no. 20 (1982)<br />

9l


Maguiness, J.A.; Blackwood, P.L.; Broome, P.; Beable,<br />

M.E. (In prep. a): A report on FRAN, a computer<br />

program <strong>for</strong> <strong>the</strong> frequency analysis ofextrernes. Ministry<br />

of lVorks and Development, lVellin$on.<br />

Maguiness, J.A.; Blackwood, P.L.; Beable, M.E. (In prep.<br />

b): A report on FRANCES, a computer program <strong>for</strong><br />

<strong>the</strong> frequency analysis of a censored sample. Ministry<br />

of Works and Development, Wellington.<br />

Maguiness, J.A.; McBride, G.B.; Beable, M.E. 1977:<br />

FRAN a computer program <strong>for</strong> <strong>the</strong> frequency analysis<br />

of extremes. Presented at <strong>the</strong> New Zealand Hy-<br />

-<br />

drological Society Annual Symposium, Christchurch,<br />

November. l6p.<br />

Ministry of Works and Development 1979: Code of practice<br />

<strong>for</strong> <strong>the</strong> design of bridge waterways. Ministry o!<br />

Works and Development, Civil Dìvision publìcatíon<br />

CDP 705/C (Prep<strong>are</strong>d by lVater and Soil Division).<br />

72p.<br />

NERC 195: Flood Studies Rcport Vol. l, Hydrological<br />

Studics. Natural Environmental Resea¡ch Council,<br />

London.<br />

Robertson, N.G. 1963: The frequency of high intensity<br />

rainfalls in New Zqland. New Z¿stand Meteorologicol<br />

Semiæ, Misællaneous publicotion II8.<br />

Samuelsson, B. lï12: Statistical interpretation of hydrometeorological<br />

extreme values. Nordic Hydrologlt<br />

3(4): 19D'-213.<br />

US\VRC 1967: A uni<strong>for</strong>m technique <strong>for</strong> determining flood<br />

flow frequencies. Hydrologt Committee, US llater<br />

Resources Councí|, Eulletin JVa 15. 15 p.<br />

IVMO l%9: Estimation of Ma¡rimum Floods. llorld Meteorologicol<br />

Organisøtion Tæhnicøl Note No. 98.<br />

92<br />

Water & soil technical publication no. 20 (1982)


APPENDIX B<br />

Summary of Flood Peak Data used in <strong>the</strong><br />

Regional Flood Frequency Analysis.<br />

CONTENTS<br />

Nor<strong>the</strong>rn North Island Data<br />

North Island West Coast Data<br />

Manawatu-Rangitikei Data<br />

Sou<strong>the</strong>rn North Island Data<br />

Bay of Plenty Data<br />

North Island East Coast Data<br />

Central Hawke's Bay Data<br />

South Island West Coast Data<br />

South Island East Coast Data<br />

South Canteibury Data<br />

Otago-Southland Data<br />

Prge<br />

93<br />

94<br />

96<br />

97<br />

98<br />

I<br />

100<br />

l0l<br />

103<br />

104<br />

105<br />

NOTE: The rules mentioned <strong>for</strong> some stations concerning<br />

<strong>the</strong> rejection of data refer to those given in Section<br />

3.2.2.<br />

1A. NORTHERN NORTH ISI.AND DATA<br />

srtr 350 6<br />

ClrCÍilll rRE^. s0 t(É =<br />

¡trlEEl o? rf,[urL PEtÍs =<br />

tllB PEr( tElR<br />

1958 q7. S 195c<br />

1912 r¡C.9 l97l<br />

1976 5q.6 197?<br />

iElI =<br />

PEIK<br />

38.9<br />

56. C<br />

36. 6<br />

57. B sTD. Dtlv. =<br />

ntuNGAprRERÍrÀ R IT TynFzs Fonn<br />

11. 1 ilÀP REFEFtT¡CE<br />

1T PEAIOD OP PNC.<br />

YEIR PFTK<br />

1970 69.3<br />

88 . c<br />

19"r¡<br />

YEÀR<br />

1971<br />

197s<br />

¡t l: 39 1555<br />

1968-77<br />

PE¡ K<br />

69. 6<br />

?0. 1<br />

17.0 coFF. oF sXE¡ = C.3?66<br />

S IlE 9101 rÀITOI P TT IISTI(¡HOFO DRIDGF<br />

CtrcElElll lEEt, SQ Kll = 433 llÀP BßPEFDfct = tl53:082804<br />

fUlEE¡ 0P t[Xnrl PEtrS = 17 PEATOD OP PrC. = 1952-6Ê<br />

ts¡R PEÀK TEÀR PEÀK IEAR PBTI( tEÀR PEIX<br />

1952 25.1 t9S3 t¡6.C, rc 5¡ 68.0 1955 20.6<br />

I 956 q1.7 1957 38.5 1958 26.2 t959 22.Ã<br />

I 960 58.0 1961 9q. i '1962 05.0 1C53 10.n<br />

t 96tt 29.5 196s 52,6 1966 11.5 1961 47" 0<br />

1 969 qB.2<br />

IEli =<br />

q3.6 srD. DEV. = 19.5 CoEF. oF SKU¡ = 1.4380<br />

IOTES:<br />

1. îßE 1961 PLOOD Ptf,t( ÍÀS ÎÀKElt THE I.ÀPGEST rI THP<br />

Pfnron 1908-7?-<br />

^S<br />

SITE 9118<br />

Prtio ! À1 38tfl80lo tolD<br />

CÀlcHllPlll ÀREl' s0 l(lt = 528 llP FEIEREtIcE r57:005700<br />

l{UllBER oP riÍûtL PEt(S = 17 PERIOD 0F REc. = 1953-69<br />

YEIR PEÀI fE¡R PBT¡ tEÀ8 PEÀf, YUIN PI¡f<br />

1953 r 1 3.8 195¡t 12,7 1955 35.5 1956 100.9<br />

1957 l¡c,8 19t9 1 33.5 1959 38.1 1960 265.0<br />

1961 295.6 1962 I 28.3 1963 19.6 196¡ 71.2<br />

1965 8f,2 1966 143.2 '1961 2 13.5 1968 10f.0<br />

1969 15,2<br />

IiEt[ = 120,0 STD. DEV. 16.7 cogl. o! sß¿9 = 1. l9l5<br />

¡otEs:<br />

1. THE 1C6I PLOOD PEÀK ¡ÀS ÎÀf,EN ÀS ÎR' LIRGEST ¡' 1¡I<br />

PFnton 1908-77.<br />

SITE 9203<br />

ctTcññEIÎ t8P^, SQ Kll = 1606 ËrP REFEBE¡cr = 153: ll¡9tz<br />

lgIBER oP ¡ùr0ÀL PEÀKs = 1a PTRIoD 0P REc. ¡ 195È76<br />

IETR PTÀi YEÀF PETK YF¡R PBIR rEr¡ Ptlr<br />

t 958 611 1959 652 1960 920 196t 330<br />

1962 637 1 96 I 32C 1964 184 1965 397<br />

1 966 595 1967 283 t968 tr87 1969 290<br />

1 970 260 191 1 397 1912 3¡8 1973 2a1<br />

1974 291 1913 330 1976 736<br />

ñt:Àl¡ = 450 sTD. DEV. =<br />

:1113:-:-!1-::ï-::i::<br />

2C0 COEP. OF SXtl - 0.7068<br />

tolEs:<br />

1. TffE'1960 PLOOD P?Àr ¡àS TrKEll 15 lEE L¡RGn5î rl lEl<br />

PERTOD 1929-76.<br />

sI?t<br />

38 19<br />

TTIHÄRIKEXP R ÀT |ILIOI BIIIi<br />

5II E<br />

OIIIf,ÈIORT R 11 CRITEIIOT II<br />

cÀTcRlE[T rBEr, SQ K11 =<br />

IUÉBER oP tflN0ÀL PElKs =<br />

IEIS PF.AK IPÀ R PEÀK<br />

t968 201.0 1969 6?.5<br />

1912 115. 1 l97l ?4.0<br />

1916 97. 0 .t911 81. 0<br />

tEtr = 1c7,3 sîD. DEV, =<br />

srTE<br />

q901<br />

IBT¡ PETÍ IBTE PE¡Í<br />

1910 31 . 6 1971 69, rl<br />

1 9tr 62.6 1975 121 .5<br />

lBll = 83.9 sTD. DEv. =<br />

srts 5S09<br />

229<br />

1a<br />

llAP REPERtI¡cE = ll1:,:52936]<br />

PliRIoD oP FFc. = 1968-77<br />

YEIR SEÀK YEIR PEÀ¡<br />

1970 54, s 1971 163.5<br />

197tt 1t!2.5 1915 11 . O<br />

47.7 COEP. OP sÍE¡ = 0.9620<br />

IIGUIIGORTI 8 TT DÛGIIORES ROCX<br />

cÀrcñ;Exr ÀREr, s0 I(ll = 12.5 rAP REFBREIICE = r20:9q2120<br />

IftãBER OP tr¡0ÀL pElÍS = I PESIoD oF FEc. = 1910-11<br />

IEÀR PETK ÍETN PEIK<br />

'1972 4a.1 1913 I 13.0<br />

1916 I 31 . 1 1911 94. 6<br />

36.5 coEP. oP sKE¡l E -0.0788<br />

Tï:ï1_:_1I_ l::::11-l9ll<br />

CttCEüELl tBEt, S0 [i = 16.2 llÀP REPEREIICP<br />

v20.a279a2<br />

f0rBr8 oF lrlotl PEÀÍS = 10 PERIoD 0F FEC. = 1958-6"<br />

IITE PTIÍ I?IR PEÀ¡ rltR PEtx YE¡N PEÀX<br />

1958 73.3 1959 4C.2 1960 113.9 19n l 66.5<br />

1962 63,1 t96l 23.6 1964 16.8 1965 14,6<br />

1966 146.7 1961 87.5<br />

iE¡i = 64.6 ST¡. DEl. = tr3'3 COEP. oP SrEr = 0.6302<br />

TOT'S:<br />

1. lEE t956 ¡LOOD PEltr OP 210 cÛllEcs<br />

LI¡GEST Ir TEE P9RroD 1850-1967.<br />

sITt 8501<br />

rts Tl(E[ rs TflE<br />

TIIROÀ R À1 ¡EIR<br />

CtTCriEIl tREt, sO lá 12.6? rlP REPEFPTICB X4€:631301<br />

roqrtn oF r¡roir, p¡rrs = 15 PERToD oP REc' = 1960-74<br />

T!À¡ PEIi TETR PET( YETR P8¡K II'TR PE¡X<br />

iioo 37.q 1961 3o.s 1962 33.2 1963 21,1<br />

ti¡c 33.8 1965 26.r ß66 5?. I 196? 15.4<br />

1968 19.5 1969 11.9 1970 J2-'t 1"11 9' 6<br />

1972 1 3. 6 1,9ai 22-5 1914 36.6<br />

iBtI = 31.2 sfD. DEl. = 17.0 COEP. oF SKEI - l'l'382<br />

ctT:ñtEl¡T tBE[, sQ Kll =<br />

ll0liBEF 0P t[¡Uf,L PEtXs =<br />

IEIR PSTK<br />

195rr 619<br />

1959 656<br />

1963 300<br />

1968 538<br />

lEÀI = 112<br />

308<br />

1l<br />

ütP BB?EREÍcs = I53: ttt95t<br />

PERIoD 0! 8Ec. - t95l-68<br />

fEtt PElf rt¡t Pllr<br />

r 9 5? ?.55 1950 515<br />

l96t c56 1962 501<br />

1966 592 1967 33¡<br />

taoTEs:<br />

1. lEE 1036 FLOOD FElr, ESlrllllED T0 BE e9? CUiECS, l¡5<br />

lIKEII ÀS TF¡ LTRGEST III TIII PESIOD 18?5-196E.<br />

2. [O DrTr CÀS tVArttALE P5R 1955 lltl 1951'<br />

sfrE 9211<br />

IETN PPTK<br />

'1951 218<br />

1961 112<br />

1965 120<br />

196 9 rrTd<br />

197 3 ?o5<br />

IBÀf, =<br />

r¡l5<br />

fEI R PEIÍ<br />

1956 53F<br />

1 96 ! 52tt<br />

1965 31q<br />

STD. DEY. =<br />

cÀÎctillEflT ÀREr, S0 Kll<br />

rauü8ER oF rù[[ÀL PEtKS<br />

YEIR<br />

195I<br />

1962<br />

19 66<br />

1 I'C<br />

= :87<br />

PTIIK<br />

q63<br />

50c<br />

67C<br />

184<br />

STD. ftnv. = 1? 1<br />

loTEs:<br />

1. îfiF 1916 FLOoD PEAK OP 9r¡C C0ñECS<br />

LtFGESî rÙ lHE FERTOD 1875-1977.<br />

srlE 9221<br />

crlcElllfl rall, s0 rl =<br />

¡olBlR oF lliûlL Pltf,S =<br />

Water & soil technical publication no. 20 (1982)<br />

IEIB PETtr IEI R PETi<br />

196q 10 1965 130<br />

1968 124 1969 12C<br />

1972 14¡ 19711 142<br />

trlt . t53 sro. oÉs. =<br />

98q<br />

12<br />

130 CO!F. OP sßll = -0.1680<br />

oHrrPinF¡ n lr f,t¡llGlllil<br />

itP Rf,PgFrtacE = Ã5322OA922<br />

PFFIoD ol RqC. = 1951-73<br />

YEIR PEÂT IEIS<br />

1959 61¡ i960<br />

1 96f 2c0 t 961<br />

1967 336 1968<br />

rq? r 6'11 1912<br />

coEr. oF srE¡ = -0.0389<br />

cls TlÍEx ts TnE<br />

PtlI<br />

¡50 g0<br />

650<br />

357<br />

cttEou R rT s8ÀPlFsBt¡Rt<br />

lÀP RErBnlXc¡ I57:263663<br />

PERIOD OP REc. = 1960-76<br />

TEÀR PE¡X TEÀR PETf,<br />

1966 l?C t967 200<br />

1970 16C 1971 155<br />

1975 135 t976 200<br />

28 COE!. oP sl(P¡ = 0.7875<br />

tolBs:<br />

t. î[t t960 PLOOD PEIK 0l 250 C0llECS l¡S TIXEN rS T¡rE<br />

LIBGESÎ Il llB PESTOD 1960-1976.<br />

2. to t¡¡otL PEtÍ 9¡S ItlrLÀBLE FOR 1973,<br />

93


sltt 930 t [rûltRÀict ¡ l? s;¡tts S IlE q66 25 IIfr¡rltcI ¡ ¡1 rrro-Írrot¡tsI<br />

cl?cttttl rllt, sQ ft<br />

tuiDt¡ o? l¡fnll PEris '<br />

ttln Pttf Il¡¡ pt¡(<br />

t959 598 1960 533<br />

t96l 8?6 t96r 213<br />

t96t 759 '1968 151<br />

tgtt 507 1972 1t5<br />

t9?5 5¡8 1976 623<br />

lltf - 087 sîD. D?t, -<br />

lolls:<br />

'122<br />

t8<br />

ItlP ¡E?lRlIcE ! f¡9:088235<br />

ÞEIIOD o? Flc. - l95q-76<br />

IB¡N PBIÍ ITTA PDIÍ<br />

1961 366 1962 120<br />

1965 355 1966 59C<br />

1969 284 1910 339<br />

1973 326 197¡ 259<br />

200 COEF. OP SßEÍ = 0.09¡5<br />

t, rtB 1936 PLOOD PAlf, Op 98C CtrrECS tts Trlrt ts TRE<br />

stcofD Llf,otlir rt îEE pEnroD 1899-1977.<br />

c¡lcctltf trEf,, sQ ft - 189 ltP ¡Et.!nBfCr Ê !19:553051<br />

tltfDtfF Ol lrloll Þulis . I P?¡IOD DP rtc. . t96l-60<br />

ttl¡ Prtr fElR PEtf( YBts Ptl¡ tlln Plri<br />

195 1 2.t3 1962 211 1963 113 r96t t?l<br />

I 965 212 1966 285 196t 27! 1968 2t5<br />

iltl = 222 sTD. DZu. = 6t colr. ol srP¡ - -0.5óll<br />

slrr 46612 fíl¡lPl¡t R lI st B¡ÍD6E<br />

CÀÎC¡liElT tREt¡ SQ Íll = t62 irP AEltEElCl - a20z102l92<br />

fúiBEn OP rll0ÀL PEtrS = 11 PE¡IOD Ot PUc, . t960-76<br />

:I::______::::l<br />

¡¡IttI B tî ioTtots IE¡R PETf, rglR PETI( IEÀ8 PETT ttl¡ Pt¡f<br />

1960 I 1r¡ 196 1 I 1¡ 1962 t28 t!t63 r05 ¡<br />

Cltctllll lRll, sQ Íi Ê<br />

196¡t â9 t965 1tt 1966 29t t967 103<br />

69.9 lllP ¡EIEFE¡cE<br />

l0llr¡ oÈ trl0rl, DE¡ßS .<br />

¡67:799¡30 1968 2t2 196 9 235 1970 111 l9r I 3t9<br />

r0 PEaIOD oF FPC. = t967-76 1972 15¡ I 973 370 197r¡ tr9 1975 159<br />

1976 ?50<br />

ttlt PEIR tBln PEtÍ IETR PETT IIIR PETX<br />

1967 58 1968 70 '1969 2g 1970 q6 lizll STD, DEf. -<br />

1971 30 1972<br />

= 184<br />

97 cogl. oP sREt - 0.6lll<br />

36 l9?3 25 t97rt 38<br />

1975 38 1976 55<br />

ill!. ¡13 sfD. Dll. . 16 CO8F. OP SÍE¡ . 0.?¡65<br />

sIlE 4666C<br />

PUtrElO¡OT R ¡T PTÍITI'TOT<br />

ClTcñtlElll<br />

s¡!t<br />

tR?1, s0 Ãll<br />

PIPIIIIRT 2.08 llÀP BEP?REllc?<br />

& = f19:5830(2<br />

T1 SE BIIDGE ItrllBER ol tllfttll PE¡I(S = 12 PERIOD Op REC, . f965-76<br />

IE¡R PETI( YBI R<br />

CltC[lltl llltr<br />

PBT( TETR PEIX<br />

S0 f,i ¡<br />

I!¡¡ PBIÍ<br />

51 ãlP nElraEIct I<br />

f 965 9.77 I 966<br />

rûill¡ 8.rr7 1961<br />

OF lllorL Pl¡Ís .<br />

t¡?:¡23382<br />

10.75 t96B ¡,70<br />

PEnIoD oF R?c. = 1970-77 1969 1,18 't 9"0 17,28 t9?t 5.72 1972 8.76<br />

t 973 6. Ê5 I 97q 1<br />

tll¡ Itlr tE¡R<br />

1.65 t9?5<br />

Pttß<br />

15.81 1976 9.05<br />

lEtn ÞEÀr IE¡F PETT<br />

I 970 ¡9.8 't971 ¡1.9 1912 35.0 1973 2¡.<br />

15.t<br />

I lElI<br />

t975 95.0<br />

' 9,72 STD. DEv. .<br />

I 97r<br />

3,7< COBF. OP sXEc<br />

1976 ¡6.5<br />

= 0.912t<br />

1977 11.2<br />

iBll - 39.9 sTD. Dtv. - 26.3 coBp. o! sßEr . 1.317¡<br />

!t152'l<br />

0Pr8r R rî Poffi<br />

srrt t5702 ¡lrrSIIt R ÀT Dollt S¡lDOr<br />

cllc¡il¡Î tREt, s0 Í! - 8.03 nrp REFEAE¡CE - ¡3q:tt?209<br />

l0;¡l¡ ot llfltll P!¡fS t l0 PERIOD Op aEc, = 196¡-?7<br />

fEl[ PEtÍ tBta Pllß IEIN PETR tEf,R DETK<br />

t968 27,70 1969 29,35 r9?0<br />

1972 tt2.60<br />

21.35 19"1 St, tto<br />

1973 2a.20 197¡1 8. 80 1975 38.20<br />

1976 67,r0 1977 26.60<br />

tllf . 32,73 STD. DPl. = 15.7¡t coFp, oF sKE¡ ' 0.936ß<br />

torts ?<br />

l. LttD ûst cEltgtD It 19?¡ ?ROr cB¡Ss 10 Exorlc loRasl<br />

ottt rBo0l 601 o? TE? c¡ÎC8iErt, lBB EptRCI O! TEÉ<br />

PO¡ISÎ 0f Tf,t ?Lot ?toÁ 191tt-77 ¡Às ltoT cofsIDERFD<br />

10 Et slctl?IcrrT,<br />

Cllc8it¡T tREl, sQ ft¡ = 10.6 ñtp FE?EFEIICE =<br />

IlrllBER oP t¡lltÀL PPÀXS = 12 pErIoD ,p iEc. .<br />

il5:2 313¡E<br />

1966-71<br />

IEÀR PETÍ fEI R PEIT IETR PEÀß<br />

'1956 lEtn Pttr<br />

t63.3 146? 4q,5 t968 51. r t969 10.5<br />

1970 28.9 tg?l 2r¡,5 1912 25,9 1971 10.9<br />

t97¡ lq. c 1975 56. I 1976 26.1 ,t971 19. 5<br />

lEttl = r¡1.9 STD. DEv. É 41ì, I CO?p. OF Sßpt - 2.7595<br />

ÙoTES:<br />

l. THE 1q66 pLOoD nEltr ta¡s Io? pLoTlEfì ol|DÌp nûLE xo.2,<br />

BÛ1 rts IÙcLttDpD II îHE !ìEFM'IIOI CF lEn GttlRtl,rsDD<br />

CUEÍE POR îNE I8PI.<br />

18. NORTH ISI-AIID WEST COAST DATA<br />

slrr 166 I 1<br />

f,¡rEo R rT Gotcr slrt 3310t<br />

cEltGrEEt F t1 ñÀütIcÀRo¡<br />

cllc¡lltT r¡lr, Se rr = r16 årp REI9EEXCE . rt9:206912<br />

lolBtn Ot rtfoÀL PE¡ÃS E I pE¡toD op Frc, ¿ lg?,Û-'7<br />

ÍEIS PEIK IEÀR PITI(<br />

1972 203.3 r9?3 151.4<br />

1976 100.0 1911 1 0?.5<br />

ll¡¡ PEt[ tBt¡ PEIR<br />

19rO 181.6 1971 138.3<br />

t97r 65.3 1975 89.3<br />

iltr ¡ 139,6 STD. DEy. . ¡l¡,8 COEF. OF SiEt = -0,¡271<br />

totts:<br />

l. tEE t962 ?¡,OQD pElK Or 303 CLËECS CtS ltxEi tS TíE<br />

LTRCZSI ¡f TflE PERTOD ß61-77.<br />

c¡lclr8lî ¡nl¡. s0 ri . 19rt<br />

lútBtl o? ttfttÀL pzrÍs - ß<br />

tzt8 PEt[ IIIE PE¡Í<br />

1970 467 t971 ¡8¡<br />

t97t 6¡8 t9?5 640<br />

llll ¡ q85 STD. DE..<br />

l¡P BEPEREIICE . tr1:lF:?9087q<br />

PE¡IoD 0F REc. - 1970-77<br />

IEIR PEIß TETR PE¡r<br />

1912 326 1973 t3e<br />

t976 558 1971 316<br />

127 COP,?. OP 'sREr - -0. 0f95<br />

totts:<br />

l. t¡t t96t FLq)D pE¡r Op l¡08 coiEcs tls ÎÀKEI tS<br />

în? LÀrcEsT r¡ Îf,E PttIOD 1936-?7.<br />

sITt 466 18 itf,crKl¡trt R lt €olBt srrr 33103<br />

TÍI|G¡EIII' R ÀT SN .ì BRII'GE<br />

cr?cHiEùr r8Dr, sQ Kt =<br />

luiBPn oP rftotl PPtK:i =<br />

IEIR PEIÍ<br />

1961 0¡7<br />

1965 40t<br />

t969 48?<br />

1 9?3 2A9<br />

'1977 3tt2<br />

iBtL = ll5 J<br />

rBt n<br />

1962<br />

1q56<br />

19rC<br />

l97q<br />

PPIÍ<br />

961<br />

808<br />

395<br />

378<br />

246<br />

11<br />

¡rP REFERTICT f19s366077<br />

PPRfoD 0F REC. = 1961-71<br />

YEIR PEIi IttE Ptlf<br />

1963 2r7 19ór tó8<br />

196t 190<br />

19?t 382 .1972 t968 ¡t6<br />

t29<br />

1975 643 19t6 t80<br />

sTD. DEl. = 21\ coEP. oP srtt . l.ttt¡<br />

lolBs:<br />

l. ?n9 t962 ?L(þD pEÀf, tls T¡f,Ef ts 1[r L¡8GESÎ<br />

If TID PERÍOD 1959-77.<br />

94<br />

CllcBllll tllt, sQ ri s t968 l¡P AEPIRE|CE . ìrr¡3:689t76<br />

ll¡lll¡ Ol Àrrt¡L PEIIS = 7 PE¡IOD ol REc. = 19?0-?6<br />

tlt¡ Pllt IP¡N PEÀK IEÀR EETT IBTR PEÀtr<br />

t9?0 50t 1971 rt56 7972 3t1 r9?3 ¡33<br />

19?t 680 r9?5 722 197ó 5û9<br />

lEtl ! 522 SîD. DEt. = t¡3 coBr. or strE¡ E 0.1212<br />

tolts i<br />

1. lrt 1961 tLooD pt¡tr op 1168 ctiEcs rts TtrE[ ts<br />

lil LrnçtsÎ tt lEl p!ÌIoD t935-77. otDla BûLE ro.1<br />

otlt t[¡3 ptlt tot T¡¡s stTE ¡ls oslD tt lEr<br />

¡to¡ottL PLor ¡lD It ?Et DERITÀTIOi Ot ÎñE<br />

cErlttl¡stD ct¡tD tot rEB lnBr,<br />

Water & soil technical publication no. 20 (1982)


stlt 33101<br />

crtcltttr<br />

lûtBlD Ol<br />

t¡El, s0 Ír<br />

llfoll. PEIf,S<br />

=<br />

=<br />

539 tÀP RA?ÊRE¡CB = rlll:?78308<br />

13 PERIoD 0F REC. r 19ó3-75<br />

SIlE 3l3lr<br />

CEI|GIEXI' I TT ÍIRIOI 3f109<br />

CrICE;llÎ r¡lr' sQ rl =<br />

fltltl¡ oF lft0ll Pll[S =<br />

q92 ItlP ¡EFEREICt = I131:965389<br />

10 PEnIOD oP REc. = 1963-76<br />

tll¡ Pg¡f, rtla PElf fEÀR PBTÍ IBIA PBIT IU IR PlTÍ<br />

196¡ 83.80 r96¡ t20.35 1965 112.19 1966 97. ¡9<br />

t96r 't21. 35 1968 86.8e r969 65.06 1970 82.84<br />

t97t 93,90 1976 r01.50<br />

tlll = 96.54 SlD. DEr. - 17.93 colP. or srEt = -0.0964<br />

::::--_-- _::: ll<br />

I|ITGICNPEO R IT ORB ORE<br />

tt¡t PEtr<br />

t963 r{9.35<br />

7967 296.00<br />

19?t 208.00<br />

t9t5 345.00<br />

llrr = 2¡0.28 stD, DBY, =<br />

:r::_-____::1::<br />

CtlCElErT lEtr' S0 I! 63.5<br />

lolDl¡ Ol llllt¡l Pltfs = 9<br />

IITD PBTtr fE¡R PEIK<br />

t968 5.69 t969 3. ¡9<br />

1972 5. t0 1973 3.39<br />

t976 4.O7<br />

lll¡ = 4, t8 SÎD. DEv. =<br />

srtt 311 15<br />

IEIR PEIß<br />

t964 207.00<br />

1968 162.00<br />

1972 153.36<br />

CItCE;llT tBBt, 50 frll 33.2<br />

fltlBEl oF tltttll, PPÀrS = B<br />

ftl8 PEtÍ rEI¡ PETK<br />

1969 9.2tt 1970 I 8. C0<br />

f9?1 1¡-49 1970 22.97<br />

iEtf = 19.68 S?D. DSV. =<br />

srtt<br />

3lt t7<br />

¡IITÀXGI R TT TIIGIÍII<br />

C^TCEitlll rREf,r 5Q Kú =<br />

ItiBFR OP tittÀL PÞt[s =<br />

c¡lcnllExî tREt, s0 Ktr =<br />

¡I'IIB?R OF TT[UÀI, PETKS =<br />

TEIR PT¡T YEI R PE¡K<br />

SIÌT 333 16<br />

c¡TcftfFlt? rREÀ, SQ Kü =<br />

IIUiBPR OP ÀÙXI'ÀI, PEIÀS =<br />

tu ÀR P9Âf<br />

PETK<br />

1962 3tt¡.66 'EIR 1963 168,88<br />

1965 zit.92 1957 393.39<br />

1970 27A.57 1911 31q.71<br />

197q 365.00 1975 3s6.00<br />

lEtX = 324.77 sTD. DEv. =<br />

J32<br />

15<br />

it¡€tlol-o-Tz-to E lt ¡!¡¡ortt<br />

ll¡P RE?ERrlcE t12't.72t621<br />

PEnIoD oP nEc. = 1962-76<br />

YEIR PEIÍ IITR DIII<br />

19611 463.47 1965 q10.35<br />

1968 317.57 t9ó9 r93.t8<br />

1912 266.59 19?3 2t.t.90<br />

1976 332,00<br />

82.61 COPP. OP sil¡ ! -0.2315<br />

IBTR PETf, lBln PErr(<br />

668<br />

1965 256.00 1966 204.00<br />

l5<br />

r969 1t5.75 r9?0 29 3. 00<br />

1973 112.21 1974 362.00<br />

YPÀR PEIÍ<br />

1962 .251,61 r96l 190,87 19 ó4 402. r¡8<br />

r 966 229 .',10 1961 20C .7C 1968 259.79<br />

8r¡.73 CoEF. OP StrEr -- 0.2112 t9?0 213.35 19a1 233.1¡ 1912 233.10<br />

1914 239. R3 1975 130.22 1916 207.25<br />

ËE¡il = 268.21 SlD. DEv. -<br />

ËlP nEIERZùcr = t1222011811<br />

PERToD 0P R¡c. - 1968-76<br />

IEIR PEIÍ IETR PEÀK<br />

1970 3.75 1971 {. rl<br />

197q 3.74 19?5 3.90<br />

0.77 coEF. OP sÍEI = f.1780<br />

lllxct?ToRot a tT scflool<br />

lÀP ABPEREIICE = Xl21:743458<br />

PERIoD OF REC. = 1969-76<br />

YEÀR PEIX<br />

PEìß<br />

1911 20.01 'PIR 1912 13.52<br />

1975 28,32 t976 30.50<br />

7.35 COEP. oP sf,E¡ = 0.2075<br />

ñÀKOlI'TÛ R IT SB II9T BRIDGF<br />

CllcEiE¡î rRPl, S0 ri = 21,8 ttlP RETERB|CI = X121:83rt547<br />

IolBlE OP t[X0lL PPI(S = I PEIIOD 0P FEc, = 1969-76<br />

tllB PEri IE¡R PEIX rEtt PllK IETR PETT<br />

1 969 1 8.63 1970 26.49 1f171 21.46 1972 1 8. 50<br />

1973 15. ¡t 't 974 33. 05 1975 16.24 1976 30.8n<br />

lEti = 25.12 sTD. DEg. = ?.70 ConF. OP sR¡r = 0.221q<br />

19n3 412<br />

1967 2!A<br />

1 971 1C6<br />

1975 32tt<br />

ãElL = 259<br />

r7t 8<br />

196 tr<br />

196n<br />

191 2<br />

197 6<br />

oE0m R lr Îofo¡Itì<br />

r¡P iEFEFB¡cE - lt0r:556097<br />

PERIoD OF PEC. ' 1962-76<br />

tEtB Pt¡t<br />

1965 ¡09.2f<br />

1969 t85.2¡<br />

'r973 r 1t.62<br />

80.r¡1 coEP. of sfE¡ = 1.0021<br />

otctRrrE P l1 tl8ltc¡iúlo<br />

1C?5 t1ÀP nBPIREÍCE = tt01:751165<br />

1l¡ PEPIOD CF REC. = t953-76<br />

PEÀf,<br />

24t<br />

224<br />

284<br />

245<br />

STD. D¡9. =<br />

YEIN PEIi YE¡R PIIi<br />

1965 330 1966 2ta<br />

195c 162 1970 21A<br />

1913 21 J 1974 212<br />

6¡ CoEF. oF sf,EÍ = 1.0385<br />

lÌolEs:<br />

1. 1H!'t9r¡0 FLOOD pE¡K OF 525 Cril'ECS CIS IIXFI tS lEE<br />

SECONT, I,ÀPGF5T IlI TIIF PîRIOD IAO5-"".<br />

srtt 3332c IETTIPÄPT R IT POOTBRIDGF<br />

C¡lCBfBlT tBEl¡ sQ Ãl = tBt¡ llÀP RtFPRFI¡CE = N111:960859<br />

ÍtlBER OF Àfi0ÀL gEl¡s = 11 PERIOD oP REc. = l96C-76<br />

IETI PBTi<br />

P?AK TEÀR PETK YEÀF PETÑ<br />

1960 26tr.61 'EI[ 1961 419.05. 1962 296.25 t963 369.56<br />

196¡ ¡63.39 1965 563.00 1966 446.93 t967 532.3¡<br />

't968 ¡12.19 1969 3r8.0C '1970 246.68 1971 5q2.40<br />

1972 417. t4 1971 2q5.J5 19?q 230. 15 1975 259.68<br />

,1976 399.6¡<br />

Illt = 382.08 sTD. DEY. = 108.03 coEP. oP strEI = 0.1963<br />

torts:<br />

1. ¡O COITECS ETS BEEI TDDED 1O ETCE PETK TFTFR 1972 10<br />

IILOT POI lNE EF'ECIS OP lNE ÎOIGTRTRO PO9EE PNOJECT.<br />

31301 ctlctilol R lT Elt?lfl<br />

clfcfillEIT ÀREÀ, 50 Kll =<br />

NUll8rìR oF ÀI¡tttL PEÀKS =<br />

YETR PEÀf<br />

PEÀI<br />

66lll<br />

t9<br />

1958 3960 'BIA 1959 1q80<br />

1962 2330 1963 11?C<br />

1 966 20F0 1957 2610<br />

1910 1r¡80 1971 2390<br />

197t¡ 3100 1975 318C<br />

Ittll = 23!7 sTD. DEÍ. =<br />

ËlP REFEFETc! lt38:56?055<br />

PERIoD 0P FEC. = 1958-?6<br />

PBIf,<br />

PBIÍ<br />

'EIF. 1960 1830 'IIR t96t 22AO<br />

196{ 29 30 1965 33¡0<br />

f968 2840 1969 1040<br />

1912 t8t0 r97! 2630<br />

1975 19ß0<br />

?76 coEr, o! srtl t 0. t601<br />

IOTES:<br />

l. 4C CUIECS 8lS BtEt tDDEt, lo ercn Ptli rPftl 19?0 IO<br />

TLIOU 'OB<br />

TEB EPIBCTS O? lNE ÎOIIGIRIRO POÍBB PI(NIC?.<br />

333 30 ltlcr¡of R lr ËrTtPr¡fl<br />

CrrcEllrf t8lt¡ SQ f,ã 911 ¡¡P RBFEFEHCP 1t101:81510(ì<br />

rotDrB OF tilfrtl PBtf,S = I PDBIoD oP FEc' = 1965-?2<br />

IETi PPIÍ YDIÀ PEÀI( TEIS PETf, tEÀ8 PATÍ<br />

1965 862.95 r966 693.73 196? 659.?9 1968 407.93<br />

1969 258.95 1970 372.06 1911 s71.26 1972 591.26<br />

lErt - 552.99 sTD. DEY, = 196.31 co?P. oP sÍE¡ - -0'0130<br />

IOçt5:<br />

1. ÎÍE ',l9r¡o PL(þD PEtÍ OP 1628 COIBCS ¡ÀS rÀRFr ÀS TfiF<br />

LrRGrSl Ir TEI PIRIOD 1905-77.<br />

2. l0 cùrPcs Rls B9B¡ tItDBD 10 fnE 1972 P?li 10 TLLOY<br />

lOB ÎE' ITTECîS OP TEE IOíGIRIBO POÍEN PBOJBCT.<br />

13t02<br />

srfc¡fot n ¡l 1l lllll<br />

cÀ¡CElE¡r rREÀ, sO Íü 2212 lttP RETEBETCE lt0ls?050ó7<br />

¡lttBEB oP rlt0rL PU rls = 14 PERfoD ot RBc. - 196Þ76<br />

fE¡B PEÀ¡ IEIR PETÍ YEIR PErr ttll Plll<br />

1963 ?l¡9 1964 1160 1965 1213 1966 t00l<br />

196? 869 1968 7q6 f969 r42 l9t0 619<br />

1977 851 1912 7tt9 1973 871 t97a 560<br />

't9?5 843 1916 679<br />

It Eli = 818 sTD. DEv. = 221 co'l. o¡ Sitr . 0.5176<br />

LOTEs 3<br />

1. 40 CUãPCS ÍÀS BEZX ¡DDED 10 E¡Cñ PE¡f, rPrER 1971<br />

?o trlor PoR 188 t?PtClS OP TEIÌ lolclnrRo Poltl<br />

PROJECl.<br />

2. lHE 1940 FLOOD PEltr OF 2294 CtlEcS ¡lS TrfEI lS lll<br />

LÀRGESÍ TT THE PIRTOD 1905-77.<br />

:Iï-____::991<br />

Water & soil technical publication no. 20 (1982)<br />

POIPHI' R ¡T PIEI;T<br />

C¡ÎCEÉtlT ¡BEt, S0 ßl = 29.5 útP BE"EFEIICB Nl28:5C7187<br />

lúlBtn Ot Àttltll PEIIS = I PERIOD o? REc. = 1910'17<br />

ttl¡ PBtf IETS PB¡K IEIA PEIÍ Y¡ÂR PEIÍ<br />

r 9?0 25.3 1971 33.5 1912 21 -3 19''3 l?. 1<br />

t9?¡ 26,7 19?5 ?9.0 1916 64,8 1971 111.8<br />

Íl¡l . 39. 5 STD. DEt, - 2't ' 6 coE?. oP Strt = 1.1{41<br />

¡otts:<br />

1. tSrs sllllol ¡ls rol t¡sED I¡ luB Rlsrortl. lllÀLlsls<br />

BlclttsB ol Drslrlcr 0P¡tRDs cttRYllûnB rÙ 1ÍA<br />

PiOEIBILITÍ PLOÎ, ¡ TREÍD iTBKEDLI DIF'E8EIT TO TEE<br />

RBCTOiTL OlS. r1 tls ûllcll?lr8 lÉETllPR Tñrs l^s ¡<br />

RrlL DIPFEREÍCE, TXD îtrBEEPORE POSSIBLI I¡DICITIVE<br />

ot TEE riPr.ttB¡cE oF lT, Ecloll, on sIiPLr TIR<br />

ttsûLr oP osllc I sroRl RFCoRD-<br />

95


3950't<br />

flrlÀRt R tr îlt¡Ît<br />

;tP RIFEFEICE . Il09:92t805<br />

PlSIoD oP Fle. = 1969-76 stlt 3r801<br />

"ar""r"rn ttrl¡ sQ ßt . 725<br />

tlttt¡ o? trtotl. Pzlks - I<br />

rtlt PEtß ttlR PEIÍ IBTR PETtr TEIB PEIÍ<br />

t969 ¡51 19?0 q90 197 t 9q4 1912 t¡10<br />

l91t 5?8 r97{ 59t 1915 568 1976 114<br />

llll . 593 STD, DEl. = r70 CoEr. oP siEr = t.3ltto<br />

tolt3:<br />

T. ?EI T97I PLOOD PITÍ TI5 TÀilX 15 THF Lf,EGESl<br />

rt iE¡ PErroD 1900-76.<br />

Cl?CElEll l¡El, Sg Íi t 80<br />

IûlBll Ol lllltlt. PBlrs - 12<br />

ttl¡ Pgrf tElR PPIÍ<br />

7962 110.97 1963 16r.09<br />

1966 rf5,7¡ 1961 236,97<br />

t970 203,66 19"1 2tr0.23<br />

llr¡ . 17q.57 sTD. DEv. =<br />

srrE<br />

l¡343-1<br />

cÀlcRiEIT ÀREt, S0 KË =<br />

tolBEA OP ÀIl¡UtL PEÀXS =<br />

YEÀ8 PFTtr<br />

1 970 587<br />

I 9?q 3{0<br />

lEtx = 41?<br />

srrE 43015<br />

TET F<br />

t97t<br />

t9a5<br />

SlD. DEÍ. -<br />

2826<br />

PETT<br />

332<br />

370<br />

cÀlCRlrIT ÀREt. S0 [i = 137<br />

úllllBER oP rñ¡UtL PEÀI(S = 13<br />

IEIR PETK IEI¡ PEÀK<br />

1965 43.9 1966 46.6<br />

1969 25.9 r9"f 55.1<br />

¡973 10,8 r9t0 35.9<br />

1977 55. s<br />

iElf, = q5,2 STD. DtlV. E<br />

F<br />

::t:llT-r_lr_lIII]_::ll<br />

ntP REITREtlcE . ¡10q:0¡3?27<br />

PERIOD 0P lEc. = 1962-13<br />

tFtR PSIß<br />

196q 137.6C<br />

'1968 113.62<br />

1912 141.24<br />

YETP PFTF<br />

r 965 2 69.9 I<br />

rc69 1 33.61<br />

't9?3 78.0c<br />

55.10 COEP. OP SKEI - 1.1907<br />

fllPr ¡ lT tttllttllt<br />

ËlP RETEBE¡CE ' 165:5ó¡¡56<br />

PERIoD oF FEc. ' 1970-77<br />

YE¡N DEIX I'IE ÞI¡f<br />

1972 4t6 f9?3 tS2<br />

1976 576 1977 362<br />

104 coEF. OP SÍEB a 1.2112<br />

lC. IUIAÍTAWATU-RANGITIKEI DATA<br />

c\rcrlrrr t¡rl, so rt -<br />

301<br />

18<br />

lotDtB o? ttttttl. pElfs .<br />

tBr¡ PEtf tEra PEIß<br />

f958 tt25 t959 1t3C<br />

'1962 1360 1963 65r<br />

t956 558 1967 t¡?0<br />

t970 59¡ 1973 991<br />

r9t6 1250 1917 690<br />

lElf . 970 srD, I,EY. =<br />

tolls:<br />

o?lrr I rr rotPtft<br />

ilP lErgBttct 11512119192<br />

PERIOD 0P REc. = 1958-77<br />

IEIR P'Itr IEIP PE¡Í<br />

1960 t0t0 1961 1130<br />

196tt 1 r90 1965 1580<br />

1968 1090 1969 1020<br />

197tt 615 19?5 711<br />

339 COt?. O? sfPl = 0.0865<br />

1. rltu¡¡. tlooD Pstf,s poR tlrE GoRGt srÎE,3t80l, crRE usED<br />

tol lit ÞtRtott 1950-??.<br />

2. 18t t955 pLæD PElf Op 25¡0 C0;ECS lts TrrEi tS ltP<br />

LltGBSl rl ÎfiE PEnIOD 1920-17.<br />

3. lo tr¡oÀL PrtÍs ¡BFE rvrILrBLB roR t971-72.<br />

srtt 32502 itft¡tÎû R l1 FrrzHERBEnl BA<br />

Crlciil¡l lglr, S0 Rl . 3916 ñlP REPERE¡CE x1¡9:115331<br />

IEIEE¡ Ot tflûr'. Petls = 49 PE¡ÎoD oF FEc. = 1929-71<br />

tBt¡ gElf lEli PErß tErR PErt rEln Ptlf<br />

1929 1655 t930 1450 1931 tr50 1932 1795<br />

t933 t 4 t0 1930 1280 1935 1850 1936 2580<br />

t937 755 1938 1625 1939 1850 1940 t280<br />

l9lr 3260 1942 2090 t90l l?t5 190t t2q0<br />

t9¡5 2335 19¡6 1700 1947 2580 19t¡8 2000<br />

t9r9 2'35 1950 2045 195'1 1110 7952 t¡to<br />

1953 r5¡5 t95¡ 1284 1955 1810 t956 3t85<br />

t95? 1565 r95B tq90 1959 1715 t960 950<br />

t96r 2110 1962 950 1963 12¡0 196rt 2580<br />

t965 33¡5 1966 1110 1961 t765 1968 t380<br />

1969 560 1970 1060 19?1 2235 19a2 r33o<br />

t97t 930 t97q 1380 1975 t4t0 1916 2380<br />

1977 1260<br />

cttPtPt I lcl¡otl lolD ll¡l - l7¡8 SÎD. ItEf. = 7¡¡6 COEP. OF SIEÍ = 1.50¡¡2<br />

¡otts:<br />

lltP ¡EltRElcE = tgls 15t820 l. rtt t953 rl(xtD PErf op r¡5rr5 cnãEcs cts TÀfEf ts Tf,E<br />

PEIIoD 0P ¡Ec. ' 1965-77 Lltersl Ir In¿ PBBIOD t88t-1977.<br />

2. t¡t t902 rL(þD PllK ot ttotr cuitcs rts rlrE¡ rs 1ñg<br />

rEÀR PEIÍ rtlR Ptlt stcotD LlteBsr<br />

1967 55.5 t96g<br />

It 181 Pt¡tor, 1881-t977.<br />

31.5 3. llru¡l.<br />

1971 5q. q<br />

?LooD PEtf,s FoE ?f,E<br />

1972 rr.2<br />

¡olflrfE slnEEl SITE<br />

(fo?325801 9ERE oSlD toR TRE<br />

1915 58.5 1976 51.3<br />

pERrOtr 1912-77.<br />

11.2 coFP. oF sßE¡ - -0.1091<br />

srr! 32503 IttlftTrr R À1 IEBES Rotrl<br />

s1îE<br />

r0ql427<br />

CtTCllñPlÎ rREÀ¡ SQ (l =<br />

TOiBER OP TTXf'ÀL PEIKS -<br />

IETR PETI( IEIR<br />

t96q 62. r 1965<br />

1968 58,3 1969<br />

1972 11.A 1973<br />

1976 51. 9 ',1911<br />

iErI -<br />

IAIIGTÍIf,O R TT DTÍLOI IOID<br />

373 ñÀP REPERgIIcE = f8t!22l7tl<br />

'14 PEBIOD 0l AEC. - 196U77<br />

PETÍ tETR PETT<br />

51. 8 1966 6¡. q<br />

Ir1.? 1970 69.0<br />

53,2 197q ¡9.2<br />

65. C<br />

tll¡ Dtlf<br />

196? tl.0<br />

197 I ¡7.3<br />

1975 ót.5<br />

CIlCE¡lfT lRBt¡ SQ Íl * 713 ilP ¡BllREIct = fl50:5?3q91<br />

f0llll ol Àlt0ll EEÀIS . 22 PERIoD Ol REc. . 1955-7?<br />

Ilr¡ PEIK IBI R Etlf ISIR PIIK IEÀ.B PIIÍ<br />

t95s 905 1956 960 1957 ¡95 t958 395<br />

1959 625 1960 255 t96t 560 1962 550<br />

t963 ¡60 196¡ t?5 1965 6t5 1966 530<br />

1967 ¡75 1968 Slao 19?0 225 1971 1015<br />

1912 520 19?3 315 r9?4 ?40 t9?5 320<br />

r9t6 ¡70 1977 4t0<br />

llll - 539 gTD. DlY, = 23¡ coE?. oF sxE¡ = 0.5673<br />

rofts:<br />

1. ¡O lt¡tttl PE¡t ¡rs rtÀILtBLr loR 1969.<br />

srrE 1C03461 lOfEÀRfRO R IT TPPII DI'<br />

3251t¡<br />

OEOTII R ÀT ILIIf,DILE<br />

c¡rcHlBll rAEÀ, S0 Ktl = f7À ¡¡p RB?EREICE - 1112a23672O<br />

llollBFR OP t¡ltt^L PEIÍS . 17 PERIOD Ol RBC. ! 1960-?6<br />

Prtf IEIF PEIT YEII PEri ttll Ertf<br />

198 1951 134 1962 198 t96l 222<br />

350 1965 228 1965 292 19ó? ¡81<br />

1{0 1969 246 1970 260 r97l 252<br />

't32 1973 108 t97¡ 264 1975 224<br />

264<br />

I EÀA<br />

1960<br />

I 964<br />

t 968<br />

1912<br />

1916<br />

IBlt =<br />

241<br />

STD. DEY. = tl cosP, oF s[E¡ - 0.3ó96<br />

cttc¡tttl rtlt, s0 tt =<br />

lplllr Ol llllttl. PBlfs =<br />

tt¡¡ PBrÍ ttrR Pr¡f<br />

t95¡ I t0 1955 155<br />

1958 125 1959 135<br />

1952 t70 t963 225<br />

'1966 190 1967 260<br />

t9?0 215 r97t 220<br />

197a 100 1975 250<br />

ñlll.<br />

lgl STD, DEl. =<br />

293 itP REI'REIICE = f,100:148573<br />

2I PEEToD or PFc. - 1954-77<br />

IEIN PEAT TETR PET¡<br />

1956 32C 195? t45<br />

1960 70 196 r 100<br />

t964 55 re65 325<br />

1969 225 1969 r05<br />

1912 t80 t9?3 135<br />

19?6 17C 1911 r15<br />

89 COEF. oF SKEI . 0.95¡8<br />

srlE<br />

rc43(65<br />

grrfloÍoffr R tT DBsttt lorD<br />

ct?cBiE[Î tRst, s0 ßË = F8 rlÀP RE?ERElcE = t112r221715<br />

¡lliBER Ol t¡rrtÀL PBIÍS - '14 PERToD 0P ¡r:c. . 1962-76 cllc[ll¡Î rlEÀ¡ SQ fl = 266<br />

Iolll¡ Ol llloll PE¡[s = 24<br />

I ttR l,ETÍ TBTR PEII( rErR PnÀÍ tÄn Pllt<br />

t962 46.0 1963 10.2 1965 09.3 1966 37.5 lltl P'If IEÀR PEAK<br />

I 96? 55.1 'to68 ¡r9.9 1969 1973 53.8 19?0 7t0 1955 26.4<br />

39.0<br />

1 95¡<br />

152C<br />

1971 62 5 1972 q6.8<br />

t9?¡ 28.9 I 950 385 1959 1305<br />

1975 53.6 tq?6 63. q 1962 705 1953 685<br />

1 966 580 1961 720<br />

iBli = l¡7.5 STn. ÞPY. . 11.8 COPF. Ot SfSl - -0,5\22 t 9?0 a20 1971 7ss<br />

I 97r 730 1975 600<br />

IOlES !<br />

I. TO ITf,UÀL PETi TTS ÀVAILÀBLE IOR 196I¡.<br />

lllf. 719 SrD. DEr. =<br />

96<br />

srll<br />

t2326<br />

Water & soil technical publication no. 20 (1982)<br />

IÀIIGIEÀO R ÀT BILL¿¡CD<br />

ItlP REI¿REICE lt49:2?0251¡<br />

PE¡IoD Op RÌC. = io54-77<br />

PETÍ YgTR PETÍ<br />

'E¡R 1956 235 1957 620<br />

1960 89C 1961 305<br />

1964 10!C 1965 60n<br />

1968 FlS r96q 6?0<br />

1972 9tC l9t3 110<br />

1976 7U5 1911 ¡¡50<br />

29d coEP. oP srB¡ = o'961R


SIlE 12 5 2!ì frRÀotll R ¡1 tc¡lnt¡r 3270ß RÀIGIITTEf B AT SPRTIGVALE<br />

cÀÎcñlu¡l tR?I, s0 Kr =<br />

xutlEFR 0P À[ilúIL PErxS =<br />

P¡ÀK TEIE<br />

IETR<br />

l95r¡<br />

1 95€<br />

1962<br />

t 966<br />

1 9?0<br />

1 974<br />

ItEIX =<br />

734<br />

PEII<br />

1rr5 1955 310<br />

250 t959 315<br />

160 1q63 195<br />

265 1967 325<br />

295 191'1 350<br />

315 1975 295<br />

262 sTD. DEY. =<br />

IttÞ REP?8EICE . l1¡9:392215<br />

PEIIOD oF ¡Sc. = 195¡-t7<br />

IEÀR PETI ttlR Ptlf<br />

1956 10 1957 155<br />

1960 s5 r961 610<br />

196ra ¡30 't965 335<br />

1968 215 1969 75<br />

1912 t50 1973 2ts<br />

1916 370 1971 310<br />

128 coEF. O? SKEÍ . 0.3?¡8<br />

cltcÍlBllT t[EÀ¡ SQ fl = 583 lllP EEPEREIICE , [123:50?q16<br />

rttBlB oP Àittttl PEtfs = t0 PBEIOD 0P RFc. = 1964-71<br />

IIIR PEIf, TEIR PEIÍ IEIR PEIX YEIR PEIII<br />

t96q 530. r0 1965 30f.0û 1966 382.20 1967 rr3?.31<br />

19ó6 249.2A 1969 203. Í5 1910 30 t. 01 1911 284.66<br />

1972 3r0.58 t97l r9?.33<br />

lBrf = 322.6? stD, DEv. = torr.24 cotP. OP SÍlc = 0.79?¡<br />

srtt 32723<br />

rro¡cÀRrûPr R rf Pont¡t RotI)<br />

2\<br />

rll¡<br />

s Ilr<br />

325f1<br />

ClrCEiE[1 rREÀ' SQ Kl tt52<br />

ùlrlBER oP rxIûll ÞElf,S = 24<br />

IETR PP¡I( YETR PEÀK<br />

1954 Cr¡o 19,


S ITI 29202 RuNttiltcl I ¡t tllEttet<br />

cllcE;!¡I tnEl, S0 fi È 23qC rtP REtERFtCt r t16t:91¡t29<br />

llu;Bl¡ O? lfllttL PEIßS ! 2l PPRIOD OF REC. . lt57-71<br />

IETR PEIÍ IEIN P'TÍ YEÀR Ptf,f tllt ?tlt<br />

195? 630 1958 1025 1959 765 t960 lr0<br />

1961 t050 1962 82C 1961 7¡5 t96t rt!0<br />

t965 1075 1966 tllC 1967 850 t960 r00<br />

1969 .585 1970 t02C 1971 1 r80 1972 97J<br />

1973 6q0 r97q 935 r9?5 980 1976 965<br />

1971 t t60<br />

ñEltl = 896 sTD. DEv. = 211<br />

CorF. OP Sßlr . -0.619¡<br />

2.<br />

stll<br />

BAY OF PITTTY OATA<br />

It6t0<br />

crtcEllt¡Î t¡tÀ, sQ fi l0llDlF ot llloll PE¡fs .<br />

tEl¡ PPtx frt¡<br />

r960 r1.58<br />

1972 18.2r<br />

1976 27,35<br />

iEll. 2C.10<br />

PEtf<br />

1969 13.95<br />

t 973 r 3.85<br />

SrD. Dtl. .<br />

57<br />

9<br />

nllrtlrt ¡ lt s¡5 ¡ttDel<br />

ñtP ¡EttRttcl . 176t71O032<br />

PERIoD Ct l;C. = 196;-76<br />

YglR P;lf rrll ztll<br />

197C 21 .18 1971 23.t2<br />

1974 35. ¡6 t9t3 t3. t¡<br />

7.81 cOtF. O? 3ßlr . 0.r0t6<br />

s rlE<br />

2922r<br />

CtlcEllllÎ rEEl, S0 Íi . 183<br />

XttrBER oP rrlútl PEtrS = 22<br />

IBIR<br />

1 955<br />

'1959<br />

r963<br />

1967<br />

197 1<br />

1975<br />

ñE¡I =<br />

P¡|IK<br />

PIÀÍ<br />

223 'E¡B 1956 81r<br />

?30 1960 42tt<br />

'.37 tq64 ¡71<br />

110 1968 555<br />

42t4 197? 322<br />

400 1976 566<br />

532 STD. DEc. E<br />

srrr 29231<br />

¡troBrtE ¡ ¡1 €otel<br />

lltP REPEnEtcE I161:90?508<br />

PEFIOD Ot REC. . 1955-76<br />

ÍPÀR PBrtr tt¡t Ptlf<br />

1957 156 1958 l9r<br />

1961 ¡¡56 t962 68t<br />

1965 531 1966 7r0<br />

1969 537 t970 r?3<br />

19?3 662 197¡ ¡56<br />

'147 coEP, ot StrEt . 0. 1738<br />

T¡OERO R IT ÎN TIRIIîT<br />

s¡1t l¡6 r¡<br />

ctlciltf? rMr s0 Ít ¡<br />

tüllB¡ Ot ¡ltorl PEIÍS B<br />

tEtB PEtf ttt¡ Pt¡¡<br />

958<br />

21<br />

ftrlllr¡<br />

R rt tl tlttl<br />

ilP ¡trt¡ErcE . t67ttt2¡59<br />

P'BTOD o? tEc, . 1956-76<br />

frl¡ PEtt( ttlt ¡lll<br />

1956 22a 1957 69 t958 t'r 't93' l?a<br />

1960 102 196 r 98 1962 368 1963 77<br />

t96¡ 12 1965 96 1966 86 1967 27O<br />

196e 116 1969 12C 1970 187 19?t r!0<br />

1912 150 19?3 12 r97¡r 122 tyts 96<br />

1975 r r0<br />

lllt - ll9 STD. DEt. È 74 coEl. oF SÍEl . 1.t:mt<br />

toÎts:<br />

l. TtE OüÎttî pBOi Lr[t ¡o10r1l rs 38,8Ri opslrrlr.<br />

CllC8ltfl tllr¿ SQ lf -<br />

r¡t{llr Ot tlloll PIIIS .<br />

tttt Pll¡ IEIR<br />

t9t0 r15.0 191 I<br />

'19?¡t 211.0 1975<br />

.llll ' 156.0<br />

sttr 29212<br />

STD.<br />

PIÀÍ<br />

3?3 llP REItREIIcE = ll62:239578<br />

I PERIoD 0P FEc. - 1910-'11<br />

YETS<br />

203.0 1972<br />

t?t. c 1916<br />

Pttf<br />

41.9<br />

173.0<br />

;trGoREr¡ R rT slúrDtlJ tllt<br />

IETR PE¡I<br />

t973 87.9<br />

19?7 225.0 c¡lcÍill ¡Elr sQ fl ¡ 179 rllP lltlPBlcE . 167r8l6¡ta<br />

¡ltlBtR Ot ltl0ll PE¡fs = 9 PrRfoD or ¡Ec. - 196ç76<br />

ttl¡ PEtf fB¡n PETf tt¡R PEt( rtll Pt¡¡<br />

t969 292,0 1969 86.0 r9?0 t57.0 1971 86.0<br />

1972 10¡.5 19?3 53. 0 r97¡ rç0-0 1975 12t.0<br />

t976 222.0<br />

rll¡tlrtflt R rT iÎ Eo¡,DStORlt llt¡ Ê l¡6.5 sTD. Dtt. ¡<br />

76.7 COll. oP sfll . o.totl<br />

ctlclltfÍ rr!t, S0 fi c 38.8<br />

l0ilE¡ O? ¡lf[rl PSIIS q<br />

=<br />

ttll ?ltf ttlR PEtÍ<br />

ttó? 63.9 '1968 r0.5<br />

r9?1 76.8 1972 t 55.2<br />

t975 173.2<br />

rl¡l .<br />

srtr 292¡f<br />

89.0 Sllr. DlV. r<br />

cllclittT r¡ll, s0 tt .<br />

tltl¡t¡ o? ltfoll. Pr¡3s.<br />

36. 3<br />

9<br />

lt¡t tEtf tttt PBI¡<br />

t968 2t.20 1969 7. {9<br />

1972 2t.80 1973 ?9. 80<br />

19t6 2a.29<br />

Itll . 27.56 srD. D!t. .<br />

itP BIFEREICE = !158:022696<br />

PEI¡OD oP ¡lc. . 1967-75<br />

ttr¡ PEtr YtlR<br />

1969 62.5 t9t0<br />

1913 6¡. t t974<br />

¡3.9 COE'. Ot SÍll -<br />

PETi<br />

84. I<br />

50. 6<br />

1. ¡687<br />

¡f,¡.¡GttEo I tÎ ¡lIRl<br />

l¡P REllEExcE r158:25577lt<br />

PE¡IoD oP aEc, . 1968-76<br />

tEtB Ptlf ll¡R PEltr<br />

1970 25.20 1971 ¡7. ¡0<br />

197¡ 29.60 1975 39.30<br />

11.25 COEP. O! sÍtl. 0.lt6t<br />

5r1l 15008<br />

ctrctlltll rREÀ, sQ fl llg¡<br />

IolBt¡ oP t¡f0tl, PEr[s . 28<br />

IDIR PETi IEII PEII<br />

t9{9 3t.8 t950 19.t<br />

1953 3a,2 195tr 26.0<br />

1957 27.3 r9s8 58,5<br />

r96t 21,0 1962 ¡7.9<br />

1965 63.8 t966 ¡9.0<br />

1969 3C.9 1970 60,9<br />

197! 26.8 19?¡ 36.¡<br />

ñEtl r ¡r.6 SrD, DEt. ..<br />

slrt<br />

r5¡1?<br />

RlrGIlÀ¡f,I ¡ lt tot¡tlt¡<br />

itP tarBBatct<br />

PII¡OD OF REC.<br />

?tlR Pttñ<br />

1951 2r.6<br />

1955 26.8<br />

1959 ¡9.8<br />

1963 3?.5<br />

196? t2r. I<br />

19?t ¡6.5<br />

t975 36.8<br />

¡ tl6: ll!51¡a<br />

. t9l!F76<br />

tllt PItr<br />

1952 ¡9.O<br />

1956 a2.7<br />

t960 29.9<br />

196¡ rO.0<br />

1968 15.6<br />

1912 36.7<br />

r9t6 56.2<br />

20.2 colP. oF srBl. 2.6gla<br />

¡oTts:<br />

l, ÎÍE tq67 TLOOD PEIK r¡s rE! FESULÎ Or CICIO¡E DItl[ ltD<br />

rls TtrBx Às llrF Ltnctsr r¡ î88 pERIoD 19¡0-77.<br />

8[rGIlÀIfI B tî 1r ttto<br />

c¡tclllr? lrll, sg ¡! 89.8<br />

lu¡lll Ot rllull. Pllf3 . 9<br />

ftll Pllr rllt PtlÍ<br />

1968 38r t969 28r<br />

1972 329 1913 15'l<br />

1976 255<br />

Ittf ¡ ?Sa sTD. Dlt. .<br />

rrrr 298 18<br />

tm? R tÎ Í¡r10Ítt<br />

ilP lE?ltgrcl . 1t61r71630?<br />

gIllOD ot ¡lC, . t9ó0-7ó<br />

llln Prtr tät Pt¡[<br />

't9t0 19t r9tt 327<br />

197¡¡ 20r 't975 171<br />

8l COll. ol sfEl ! 0,2¡¡l<br />

H011 R l? ttlctttltt<br />

cllc¡illT rIEt, sQ ll = 2091 ltP EEPEREICE = l7?:2aâ153<br />

¡ltltllR ot ÀIfolL PE¡Ís ! t6 PEsroD oF lEc. . l95t-66<br />

llt¡ PErfr fErR PEIß rDrn Þtrk ttl¡ Dtlt<br />

t95t 309 1952 t9t 1953 33 I 195¡ tt9<br />

1955 t89 1q56 212 1931 370 r95t 3t9<br />

t959 219 1960 t9t 196t 235 1962 37t<br />

1963 190 196¡ 272 1q65 595 19ó6 2t;<br />

Ilrl . 293 SîD. DEl. . tl1 Co!t, or slEs - 1.62¡2<br />

torBs:<br />

l. TÍE 19tq pLOOD pttr op 784 CUiBcs rts Ttfli rs T8r<br />

IIFC'ST tX |!|llB D?RloD 1925-66.<br />

2. T[tS S1¡lrol fls tot rsED Ir TRt 8lcrotÀL rtrLtsls,<br />

BECÀûS! TEERE tnF SIGirPfCtIl ptRrs o? THp crîc[;?tÎ<br />

III BOTII IEÌ: BIT OP PLT¡ÎY IID XOBfB :SLIFD EIST COAS'<br />

RFGIOilc, ttlD !H!: lBEilD rX Tfi! pROSrBtllûy pLoT ¡,lt<br />

lx-EETrEEr TÍOS! PoR ÎñE lfo B'GIOIS.<br />

cllctlltr rlll¡ 30 ri - 027 irP nErlnlrcl t r1ól!52r¡40<br />

l0llll ol ¡ltttll PtIIS ! 6 PB¡¡oD 0? ¡Ec. . l97t-76 slr! 33307<br />

¡llctiol R rr f,EtfrÍllBts<br />

t¡lt Ptlr rlt¡ Pl¡f IEf,f P?l[ rttt Pf,IT<br />

19?t t26 1972 636 197! 329 r97¡ 837<br />

19t5 39r r9t6 636<br />

Crlclllll rllr' S0 ñl - 81.3 llP nl?zRt¡cE - I1l2:0899q0<br />

f0lllt ot lfr0rl PEtrs . 1l PERIOD 0t REC, . 1960-10<br />

rl¡l . lto 51n. Dll. . t3¡ Cott. Ol Sfll - 0.6212 IEI¡ PEÀß I'I¡ PEII YI¡R PIÀi IETR PBTT<br />

tolrl:<br />

1960 ¡6.7 t961 ) 97.5 1962 32,a 1963 2a.2<br />

1. ltt t9¡t ?L(þD Dl¡f ot 1237 cortcs rts llrtr ¡s Ρt l96t ?1.8 t965' t¡2.8' t966 5T.8 196? 69. B<br />

l'llelst It ttr P¡¡loD 19¡0-77. ûrrlrR RnLE fo, I orlt 196t ¡r.9 1969 :16.6 r9t0 21.3<br />

ttrg Dt¡¡ ?o¡ tE¡s sÎll ll3 oslD li lFr BEGrollL Prol. il¡t - 09.7 STD. I'EY. . 22.2 coll, oP SFES É 1.0221<br />

98<br />

Water & soil technical publication no. 20 (1982)


sllt 333 2[ i¡[e¡TEPOPO I It rElEltfir 3. ÍIOßTH IsI¡ITD tr¡sT COAST DATA<br />

CÀtCEtElT rBEr, SQ fl = 31<br />

llliBER OF tffttll PEtfS r I<br />

I8¡8 PETf, TE¡R PEIf,<br />

1960 ¡9.79 1961 8{.9q<br />

t96¡ 35.42 r965 29.79<br />

il¡t = ¡1.56 s?D. DEv. =<br />

srlr 33307<br />

itP BEIERltcD = I1122062921<br />

PEBIoD cF FEC. - 1960-67 t54 t0<br />

IETB PE¡Í IBTR PPTI(<br />

1962 21.25 r 963 1 6.50<br />

1966 42.84 1967 51.97<br />

21.63 coPF, OF srEt = 1.0182<br />

¡IIGÀIUT R IT TB POAERE<br />

crfcEiEfT rntt, sQ rt = 28,2 lltÞ SElBlE¡CE - ¡112:087904<br />

l¡tlDlr ol rlfûrl PEÀÍS = 1n PBBIOD oP REC. . t967-?6<br />

rlt¡ PEtr<br />

PEIK<br />

IBIR PEIÍ<br />

1967 5A,O2 'EIR 1968 31.53 1969 26.20 t9?0 11.20<br />

1 971 r0. ¡9 1912 16.01 19?3 r¡9.39 1974 1R-22<br />

t 975 21.6t 1916 29.69<br />

lEtl . 30.86 SrD. DEY. = 14.33 coEP. oP slEr = 0.8759<br />

tE^n PEtß<br />

srtr 43112<br />

clTcFrgtT tBlt, s0 rr = 228 ItP REtEnE¡cl . f,85:r101680<br />

folBl8 Ot ll!ûÀL PEltrs = 16 PEnIoD oP RBc, = l'161-76<br />

rtlt PEtr tElR pElf, IETR PBIX TEIR PBIf IETR<br />

196r t6.2 1962 36.5 1961 11.4 t964 12. 1 I 967<br />

1965 33.5 1966 19.9 1967 1 1,2 1968 17.1 197 t<br />

t9ó9 19.1 1970 L2.7 191 t 21,9 1972 11.2 197 5<br />

t9?3 17.O 1974 26.2 1915 lq.3 1976 15. 6<br />

¡Etf{ =<br />

15.2 CoEF, OF sRE¡ = 2.1165<br />

llll = 2¡.8 sfD. DEv. =<br />

rotts:<br />

1. TEB 1967 PLOOD PPÀr 9ÀS rFE RESÛ¡,Î 0P CICLO¡E DrlÀft À¡D<br />

tÀs Tl[ut Às ?EE LtacEsr rx rtE PEBToD 1940-77.<br />

q48<br />

tl<br />

CIlcllllE¡T lnsl¿ SQ Il =<br />

X0lBß8 OP ltltrlL PBIÍS =<br />

IETR PEI( fE¡R<br />

1953 67.3 195C<br />

1957 r¡9.7 1959<br />

1961 27,t 1962<br />

1965 33C.0 1sC,6<br />

1969 59.7 1970<br />

1973 54.1 19"4<br />

1977 5?.0<br />

IrrorrPr R rr REPoBoÀ srtE 15¡32<br />

srrE t0¡34 19 POf,II¡ñEÙUT R TT PUKEÎIIROÀ<br />

cllc8lltl lf,Er, sQ Ki =<br />

ItlBES 0? ¡ftnÀL PEtÍs =<br />

IEIi PEIß IB¡R PEàK<br />

1951 20.0 t96s 62.3<br />

t968 12.7 1969 11.9<br />

1972 21.8 1973 18.3<br />

1976 33.7<br />

iB¡Í = 27.6 SID. DEV. =<br />

srlE 1003428<br />

--------ï-----<br />

IIIS PBTÍ<br />

1965 3¡.0 'EÀR 1956<br />

1969 31.2 t970<br />

1973 59.0 197tr<br />

CÀTCFÉEII! TRET, SQ RII =<br />

IUIBEF OP r¡fûrl. PE¡KS =<br />

lltP RE¡zREIICE = ¡75:213145<br />

PEEIoD oP REC. = 1964-76<br />

fEÀR<br />

19 66<br />

1 970<br />

19 74<br />

PETf, fÈTA PBÀK<br />

15,2 1967 41.6<br />

24.6 l9?t 32.0<br />

19,3 19?5 \0.7<br />

14.4 COPP. oF sßE¡ = 1.1932<br />

CllCSllrT lEll¡ SQ f{ll = 210 lltP FEPPREIICE = n85:54t802<br />

¡0!BER Ol Àltûrl PEIÍS = 12 PERIoD 0F REc. = 1965-76<br />

NOlES:<br />

1. lHS 1958 FLOOD PE¡Í I'¡S 18E ITRGZST III lFE PI¡IOD<br />

t870-1977. 11 ¡als EICLI'DED PROË TIE Àüf,LtSrS olDt¡<br />

R0Lt ¡o.3. 8tt1 ¡ts rfcLttDED rr r¡B DE¡lvlrro¡ ol<br />

r8E GEIIERILISED COFYE PCR 188 TREA,<br />

2. TRE 1964 FLOOD PEIK tts PROBIELI 1f,8 SECOID LlSCtS? fl<br />

üE¡OR!. IT ¡ÀS lttElr ÀS lnt SECOID LTRGEST l¡Oi 1905<br />

(¡flB[ TBE rtfE RFCORDES ¡ÀS TITSTILLED) TO 1977<br />

If,CLT'SIYE.<br />

53¡<br />

25<br />

¡EIRIrtiI I rr cllt:tl<br />

tlP BETBRI¡C! Ê 186:191C23<br />

PEnIoD 0F RBc. - 195Þt?<br />

PEIÍ TE¡R PEItr ÍITR<br />

64.9 1955 52.6 1936 'III 79.6<br />

211.1 1959 ?r.9 1960 5?.t<br />

113.2 1963 64.8 t96a t33.0<br />

183.1 1961 310.{ 1968 t3t.?<br />

306.9 t97t 1t7.3 1972 66.3<br />

.8ß.4 1975 65.1 .r9t6 tt6.0<br />

ËEt[ s 120.5 STD. DÊy. . 90.9 COEp. Ot S¡!¡ - 1.!rt8<br />

¡rrG¡r¡I¡I I ¡1 ¡ODûlt¡I<br />

CtrcllEf,T lREr. sQ Kll = 2318 irP altl8Efct . a862222A22<br />

NUIBEn oP lf¡ûÀL PEÀI(S = 10 PERIOD 0t lzc. r t96?-?6<br />

PEI (<br />

498<br />

325<br />

147<br />

260<br />

tEtF PSIX<br />

1968 185<br />

1972 112<br />

1976 339<br />

SÎD. DEÎ, =<br />

CÀTctrlllll¡ ÀlEt¡ SQ Kll =<br />

IIU;8ER OP ÀT¡OT.L PEIKS =<br />

I ETR PIIK TDTS<br />

jt<br />

951 262 1952<br />

1 955 272 1 956<br />

1959 283 1q60<br />

1963 1111 1964<br />

1967 !c9 1968<br />

1971 3F6 191?<br />

1 975 450<br />

ctlcBl!|Î ÀRErr sQ Il . 207<br />

llllDll O? tlto¡L P¡lf,S E I<br />

ttl¡ PEIR ttlB PEtr<br />

1969 327 1970 385<br />

1973 62 1970 rs5<br />

illl - 218 STD. DBY. =<br />

YEIR PElf rtlR tt¡l<br />

1969 9t 1970 t95<br />

1913 117 19t¡ 212<br />

148 coEl. oP sflÍ = 0.7157<br />

:11ïl-:_l:_::*:l_1:::<br />

l¡rl0 lÀP nEFEnElcE - ¡?8:17¡076<br />

25 PERIoD oP FEc. = r95t-75<br />

PEÀT IEÀR<br />

219 1953<br />

258 r95?<br />

136 196t<br />

616 1965<br />

289 t969<br />

1tt7 19?3<br />

PETK PII¡<br />

1 rto 'ETN t95¡ 2¡0<br />

160 1958 tt7<br />

3?C 1962 2t2<br />

19c 't 966 76a<br />

"?0<br />

t970 t93<br />

2c¡ t9?4 t2â<br />

TT8O8AÀTTRÀ F TT OEÀXfTRI R'ì IEII = ?Bt STD. DEV. = 234 coEF. oP sflB = 1,50t2<br />

PEII YEIR PFAI( IBII<br />

17.9 1961 F2.5 1968<br />

42.9 19"1 28,C 191?_<br />

ò8.6 1915 30.8 1976<br />

PEIf<br />

35. 0<br />

47. c<br />

54.1<br />

iEIl = q4.9 STD. DAg. = 15. 1 CoEF. oP sXEí '= 1.4881<br />

srrB 1C4345C TOIGIRIRo I l? ltttltcl<br />

112<br />

2C<br />

lilP ¡ElERPfCr . it02:30000¡<br />

PERToD oP REc. = 1937-76<br />

Pll¡<br />

280<br />

1225<br />

3t5<br />

r20<br />

J27<br />

IEIR PEIK ?BTR PEÀf, ÎETR PEIÍ I'I¡<br />

1957 2tt' 1958 1915 1959 245 1960<br />

1961 270 1962 345 1963 300 t96¡<br />

1965 54C 1966 r¡',t0 1967 826 1968<br />

1969 110 1970 457 1971 188 1972<br />

f973 230 1974 386 1975 :113 1976<br />

;BÀII = 497 sTD, DEv. . r¡07 CoEF. oP SklÍ . 2.735a<br />

srlE 1043460 loHclnrEo F rr Pûfll¡lltl<br />

SITI<br />

155tq<br />

8lIÀf,tTtÍE I t1 8ñtr¡?tIF<br />

C¡lClü811 lll¡r S0 Kll = 1557 llÀP nEF¿nEilCE =<br />

¡ltllgl O? ll¡t f,I. PEIKS = 20 PERIOD C! nEc, =<br />

flt¡<br />

I 957<br />

1961<br />

I 965<br />

1 969<br />

197:t<br />

ll78:43619¡¡<br />

't9 5t-76<br />

ÞETf IE¡8 PEAI YEÀR PB IR tElR PStü<br />

638 1958 1166 1959 367 r96C 657<br />

27t 1962 8',r6 1963 r¡90 1964 2110<br />

22\O 1 966 550 1967 r 711 1968 520<br />

620 19t0 2C6A 197t 1 289 1912 642<br />

350 197tt 580 1975 1t5 19?6 7¡0<br />

lEtl = 9¡3 SÎD. DDV. - 639 coEF. oF skrc = 1.2069<br />

sltt 15536<br />

¡¡I;ltrt I tT oGILtIts EnIDca<br />

rlP REFBREIICE = i8?:55r818'<br />

PEIÍOD 0P REC, = 1969-16<br />

PEÀT tIÀR PETR<br />

'BÀI 1971 196 1972 142<br />

r9?5 187 1976 251<br />

101 COEF. OF SKE9 = 0.334¡<br />

CtTCSllE¡î ìRBt, SQ Íll ll95 ttP BgFERBTCE - 1112:31i1910<br />

IUTBPA oP Àxtfttl. PEIßS = 11 PERIoD oP REc. á 1960-t6<br />

YEIR PE¡f<br />

PE¡i IEÀR PTTf, ttl¡ Elll<br />

1960 212 'EIR t96l 181 1962 2g I 1963 21'<br />

t 96{ 869 1965 619 1966 302 1961 ?09<br />

1968 261 196q 272 1970 370 1t71 2a9<br />

1972 3C6 1973 192 1914 3 19 tt?s 260<br />

1976 360<br />

lltf = 353 STD. DE!, - 19q coEP. o? sßlr ' 1.7tlg<br />

lrofES !<br />

r. ÎÍE 196¡ PLOOD PEIÍ f¡S îtßEr lS SECO|D Lrloltt ll lll<br />

p?Rron 1905-77 (SEE tOlPS POR Srft l0r¡3t59t.<br />

CllGllllr llllr SQ ftl =<br />

lûllll ot llt¡llL PEIrS =<br />

ttll Ptrtr tttR<br />

t95t 1068 1959<br />

t9n2 800 1961<br />

1956 555 1961<br />

1970 r î57 r97r<br />

t97l . 660 1975<br />

PEII<br />

256<br />

475<br />

2058<br />

705<br />

617<br />

llll - 920 SrD. DEl. .<br />

6q0 t9<br />

lÀlOERl R tT GoRCE C¡rBLBllr<br />

ItP BtPlFEllcB f?8:7 37921<br />

PERIOD oP RBc. = 1958-t6<br />

tPÀR PETÍ IETR PSIK<br />

1 960 6\2 196't 209<br />

1964 217A 1965 t0t5<br />

1968 5?6 1969 tr26<br />

1972 8r¡3 r9r3 342<br />

1976 920<br />

529 COPP. OF S¡Er = 1.6132<br />

Water & soil technical publication no. 20 (1982)<br />

99


ïI-'_____ ::19:<br />

lt¡IPt0r n À1 i¡¡lÍt¡lrt BF 4. CENTRAL HAWKE'S BAY DATA<br />

c¡lClllll t¡ll, S0 rl =<br />

totll¡ Ol lllotl' Pllfs .<br />

1580 itP sEPlaExcr t89:268623<br />

15 PERIoD oP REc. = 1960-7q<br />

PEItr IEII PETÍ<br />

1750 1963 568<br />

976 196? 11tt<br />

r 1t5 r97t r4¡5<br />

517<br />

llr¡ PElt ttrn PEr( rEtn<br />

1960 28s0 1961 tqts ß62<br />

t96t 550 1965 1820 1966<br />

t968 1100 t969 qt6 l97o<br />

1972 998 1973 t239 197tt<br />

llÀt . 1167 slD. DEv. = 6ql COEF. ot sf,E¡ = 1.2631<br />

¡otts:<br />

l. tt! 1876 ¡tD t9¡8 TLOOD pEtÍs OF 3058 trD 3172 C0iECS,<br />

¡lsPtctltl¿t.rERz ltftf ls lEp 1¡O LlncESr pBtÍs<br />

¡¡ TÍB Pr¡IOD't876-19?7.<br />

SITE<br />

23001<br />

cÀÎc8íEIT tREr, S0 Ktt = 193<br />

lluãBEF OP t¡¡UÀL PETKS = I<br />

IETR PETK fETs PE¡T<br />

1969 n5 1970 298<br />

1973 365 1914 f q I<br />

T0lrBÍ0RI R tÎ ÞrftllPo<br />

llP ¡ETERE;CE . t134:21t367<br />

PEAIOD 0P RBc. = 1969-76<br />

YEÀ8 PU ÀÍ<br />

1971 805<br />

19?5 771<br />

IETR PETÍ<br />

1912 250<br />

1976 811<br />

ItEÀtl = 47 2 STfi. f)Ey, = ?87 coEF. oP srEr = 0.2559<br />

sIll<br />

C¡qcllBft llEl¡ S0 il = 18t<br />

IOltlS or ll¡orl PE¡rS = 12<br />

trl¡ Ptt[ tE¡a PElr(<br />

r955 r9!.29 t966 117.60<br />

1969 95.33 r9?0 rq2.09<br />

1973 1t2.71 r97[ 175.73<br />

rlrt = 'l¡¡.01 STD. DE9. -<br />

r8¡REEOPII R ¡T ÑfLLTR¡EI<br />

llP REFEnEßCE = i97:061529<br />

PARIOD 3P REC. - f965-76<br />

YEAR PET(<br />

I 967 127 . 10<br />

1971 1¡1. c2<br />

1975 t¡3. 1 1<br />

tEta PEti<br />

1968 142,4t<br />

1912 90.38<br />

1976 226.20<br />

38.79 COEF. OF SkEg = 0.7724<br />

SIlE ?3C02 lOT¡EXÛRT I TT REDCLII?E<br />

cllcBlEìtT AnEÀ, S0 fl - 826.1 Ëtp RE?ERElcE ¡t3¡t:255320<br />

ttlBER oP tùtûf,L PETIS = 3t PERIOD f,p FEC, .t92¡-65<br />

=<br />

srtt<br />

t9711<br />

C¡lClllfT tlBr' S0 Íl = 171<br />

lúiDtR Ol tllltll PtlÍS =<br />

IETI PETT TETR PB¡R<br />

1965 335.?? 1966 138.51<br />

1959 103.64 19r0 336.01<br />

l97t tq8.62 1974 4e.22<br />

Í¡IiGIROIIII R TT lBRRTCF<br />

ËÀP aEPEBEICE 'tt [89:325746<br />

PERIoD oF nEc. = 1965-75<br />

IEIB PE¡T IETR PETtr<br />

1967 97. 00 196A 221 .9?.<br />

1971 285.61 1912 125.91<br />

t975 I 9.09<br />

lll¡ - 169.85 STD. DEg. . 1t0.92 COEP. ôp sßF¡ = O.¡q76<br />

218 íì I iontxÀ R tÎ nloPûfel<br />

C¡lCHllBlll tREt, S0 KË = 237î ðtp nEFEFEXCE = ¡tt5:5¡t2895<br />

NCüBnP oF llrutL PEAÍS = 19 pERtoD op FEc. = t95g-?6<br />

YETR PXÀX I?IF PEÀK IETR PEAR IEIR P'Ti<br />

195S 926 1959 ?16 1960 1229 t961 36ß<br />

1ç62 q35 t963 495 1964 450 1965 120<br />

1966 l1¡5 t967 14t9 1968 768 t969 ¡03<br />

1 970 6 t0 1911 163 1972 {01 1973 920<br />

1974 t 397 t9?5 4tO 1916 t¡48<br />

ItEl¡ È 818 STD. Dgs. = 167 coEP. oP sxEr . 0.¡t701<br />

TOTES:<br />

l rBB t93A FLOOD pFÀK rts FS?rrtî8D rT 5371 C0'DCS. r1 t¡s<br />

FICLTIDFD pROt lFp ¡tatLtsrs 0¡tDER Rtt¿E to.3, r;D ?BOtl lir<br />

DERIfIIIOII O! IIIP GEf,E¡II,IsED CITRYE POR T8E T¡lI.<br />

:l:_"______3ll 9:<br />

TIOHTßI E ÀT GLE'?ILLS<br />

cÀîcEÍEIÎ r¡Pr, S0 iñ = 9q7 ñtP nEPEREI¡CB 1114:072775<br />

lUlBFn oP Àf,IûIL PE^¡S = t3 PERIoD oP REC. = 1961-76<br />

PFIK IEI R PEÀT IEIR PPIX lErl Pl¡f<br />

q03 t96 5 tút2 1966 511 1967 6a2<br />

tc0 t 969 t3c 1970 62A 1971 290<br />

tF7 1 971 316 197¡1 606 1975 290<br />

q 34<br />

I ¡t8<br />

1 96¡<br />

t96B<br />

1912<br />

1976<br />

ItBt i =<br />

05 9<br />

22s02<br />

crScHÍEiÎ rREt, s0 Rt -<br />

LûlBF8 oF ttfutl PEtfS =<br />

rEta PEIX t?t¡ Prtß<br />

sTD. DA9. 240 COEr, Or SkBt - 0.7261<br />

25tt<br />

1l<br />

BSr R lr srlPutel trIDet<br />

FIP EE'ERBICB z t124.241523<br />

PE¡iOD oP REc. = t96t-?6<br />

rBrn PErÍ ttlR Pllf<br />

1966 125.21 r967 213.5t<br />

r970 126. 30 1971 372.06<br />

r974 rt99.98 1975 91.72<br />

't96¡r 27.Ctt 1965 2¡2. ¡6<br />

r968 528.90 1969 31. tq<br />

1912 q2. ?1 1973 1?0, ¡8<br />

1976 281.30<br />

lEtl = 215.63 sTD, DEr. E 164.90 cOtF. op sxrr E 0.06t6<br />

IOIES:<br />

l. lEt 1938 pL(þD pEt( ¡ls tSTrñtlED 10 BE tr Erclss o!<br />

1931 Ctrttcs. Iî 9¡s lxcLoDlD FBO! TßÌ tttltsrs ûtD!¡<br />

altlE fo.3, ttD ptot tÍB flERrttTror op tfp GBIEBILTSID<br />

contE ?ot rllP ¡REl.<br />

üEtI = 614 SÎD. DEV.


slrt 2¡201<br />

lOf,ITO(T R IT 8ED BRIDGE<br />

ioîûtRt F IT tooDsfocr(<br />

CllcÍlltr rBll¡ SQ Il =<br />

lúlBg¡ Ot rl!ûll. Pll¡s =<br />

tt¡t Pttf tE¡B PEIÍ<br />

1923 l\12 1924 1727<br />

1927 2265 1928 t 161<br />

1912 1tt12 1933 1172<br />

1936 2548 1937 I 161<br />

19¡7 931 19118 1897<br />

1951 þ3q 1952 1076<br />

'1955 1\12 1956 2237<br />

't960 1019 1961 1359<br />

195{ !l¡ 1965 1557<br />

1969 333 1910 1090<br />

r9t3 626 1911 2500<br />

iBll = 1380 sTD. DEv. '<br />

srlE 5690 1<br />

cÀlcfillEllT tREl, S0 fr =<br />

IIÛ;BER OP ¡XÍI'ÀL PEÀKS =<br />

IEÀN PEÀK YEIN<br />

1967 19 1 958<br />

197f ttl 1912<br />

1975 s3 1976<br />

59 SrD. DEY. '<br />

2380 q¡<br />

rÀP !E!EnZÍCE = Ít30:338119<br />

PEBIoD 3F PEc. = 1921-16<br />

IEIR PETT IETR PBIÍ<br />

1925 1112 1926 2432.<br />

1929 291f 1931 178ü<br />

193rt 1133 1935 198?<br />

't 9 38 2e13 19q4 8q9<br />

19q9 2898 19511 2690<br />

1953 1115 t95r¡ 1q16<br />

1957 1218 1959 1415<br />

1962 764 1963 't472<br />

1966 1tt1 1968 1695<br />

1971 2243 1972 5A2<br />

1915 1 585 1916 1244<br />

837 cOEr. oP SIE¡ = 0.ltlll5<br />

tolEs:<br />

t. tttotl Ptl(s mR TEE BLICi BRTDGE SÍTE([O.232i{21 íERR<br />

nsED POA Î[E lEl85 1923-60.<br />

2. TEt rlfûll FLOOD Pgrf,S POR 18S lEtns 1939-46(EXCLllDrllG<br />

191¡{l rtD 1958 ¡EBE f,to¡r rO BE LBSS T¡lt¡ 283 C0iECS<br />

(1OO0O CUSBCS¡ rrD 'EFE<br />

rSSBIED rO BE 255 C0iECS (9000<br />

c[srcsl. TIESE PBlfs IERE 0sED rf, T8E FRBogBrCt tl{lLYSrS<br />

POB lRE SiTE BI'T ¡OT III lII' BEGIOIIII ÞLOT.<br />

3. fo tirûll PEtßs ¡lRE lrtILIBLE FoR 1930 tfD 1967.<br />

t. TRS 1917 PLOOD PPtf, OF 3964 CUüACS lls TÀf,EÙ lS lRE<br />

LIBGBSÎ fr rñE PERTOD 1868-1976.<br />

srlE<br />

232Cq<br />

OTÀI¡E I Iî GLE'DOT<br />

c^TcftiSl¡T AREÀ,5Q (ü = 24.3 ürP nEPEFEÍCE . [141:015921<br />

Nlt;BER OP ÀilUnÀL PEAKS = 12 PEaIOD 0P ¡EC. = 1965-76<br />

YEAR<br />

1 965<br />

1 969<br />

1 973<br />

¡Etil = 1ñ.51 slD.0!Y. =<br />

SrrE<br />

PEÀT YEI R PEÀK ÍFTR PETß<br />

1.19 1966 15.0C 1961 6.89<br />

4. 11 1970 \.51 1971 16.5c<br />

7,86 1974 37,31 1975 7.06<br />

2321î<br />

IEIS PP¡K IEIR PEÀI(<br />

1966 43. t1 1967 r¡1.57<br />

1970 14.75 1911 95.53<br />

1974 115.40 19?5 24.88<br />

ItEtX = 48.71 STD. DEV. =<br />

IEIR PETI<br />

1968 9.68<br />

1972 1.53<br />

1916 8,32<br />

9.qq CoEP. oF srE¡ - 2.3603<br />

crTcfiiEìT ÀREt, 5Q KË 5q.{ rÀP BETEnENCB<br />

llUlBER 0P t¡|flûÀL PEIKs = 1C PEaroD ot REc.<br />

YEÀR PTiÀK<br />

1968 55.83<br />

1912 r9.87<br />

5. SOUTH ISLAND WEST COAST DATA<br />

srrE<br />

s2916<br />

CÀlCfltlEllT IREt, s0 Kl = 5C.8<br />

X0iBEF 0P ÀtlNoÀL PEIKS =<br />

B<br />

IEIN PEÀK ÍEIR PETK<br />

1969 61.7 1970 B3.q<br />

1911 110. 1 1974 15e.0<br />

oËIKERE r lT POSDlf,t<br />

= 1106:'l¡1751<br />

= 1966-75<br />

IEAR P'IR<br />

1969 31.8t<br />

t9?3 t¡.55<br />

t2.71 coEP. OP SKES - 1.2578<br />

coBE B lî TSILOtrlE<br />

lllP REFEREIICE = St3:020¡82<br />

PERÎoD oP R?c. = 196976<br />

reÀR Pfrx IEIE PEIÍ<br />

1911 98.0 1972 94.3<br />

1975 142,5 1976 131. 5<br />

lEÀX = 110.1 SÎD, DEV. = 32. q CoAP, oF SßB¡ = 0. l3lt<br />

ËDt¡<br />

sri¿<br />

s7009<br />

ctTcHl:IT À88À, SQ Kll =<br />

llUltBEn oP ¡.ù[0ÀL PFÀxS =<br />

P EÀÍ<br />

6tt<br />

46<br />

74<br />

ÌETF PEÀK YEIP PEIT<br />

1968 r¡13 t96q 255<br />

1972 392 19?3 112<br />

1976 163<br />

ËBrI =<br />

345 5T¡. D¿V. =<br />

t¡8<br />

tc<br />

163<br />

FrcrKt R lT toss BosB<br />

ItAP REEFRPIIçE = S13:307569<br />

PEnroD oF PBc. = 1961-76<br />

YEAR PEAR<br />

1969 60<br />

1913 19<br />

fttR PEli<br />

1970 6¡<br />

t9?¡ 4¡<br />

21 coEP. oF sFEc = -0.3054<br />

IIOTODKI R If GORGB<br />

irP REF F¡:{CE = 526:288863<br />

PERIoD 0F BEc. = 1968-?6<br />

YEÀR PDÀT ÍEIR PITÍ<br />

1910 16C 1971 ?00<br />

1a"4 95? 1915 233<br />

176 coEF. oP sKE¡ . 1.1262<br />

IOTES :<br />

1. TTIIS STITTOÙIS PSOBÀBiLIFY PLOT DTD ilOT COTFORII 1O TÍE<br />

SOUTH ISLÀND IEST COÀST REGIONÀL ?RPIID. I1 ÍAS O'TITID<br />

PFO| lHE DtRMÎlO¡¡ O? ?UE nEsIOIIL CT RVP lllD lls usaD<br />

INSTFÀD IO IiJEPTil' À ¡IELSON Sf'B-FFGIOI{.<br />

Crlc¡lttr lRElr sQ Kll =<br />

totBt8 0? l¡Í0ll, PEtrs =<br />

t¿t¡ PEtf tttn PEÀr<br />

1969 145 1970 ?99<br />

1973 1054 197t¡ 1 600<br />

lE¡l = l01B sTD. D!Y. =<br />

Srll 57101<br />

17 50<br />

I<br />

CllCElltT ÀRErr SQ Il = 60.7<br />

|UIIBEE OF lt¡lrÀL PEIÍS = l0<br />

PETtr IETB PEÀT<br />

ttl¡<br />

1967<br />

t 971<br />

1 975<br />

96 1968 95<br />

39 1972 toq<br />

29 1976 153<br />

llAP REPEF¡ilcF = s13:21232C<br />

PERIoD 0P REc. = 1969-76<br />

1EÀR<br />

r971<br />

1915<br />

PETK f?Tß PEAI(<br />

?83 1972 1223<br />

n81 1976 1062<br />

288 COEF, 0P Sf,Bt = 1.2661<br />

IOOÎE¡E N ÀT OLD HOÍISE ND.<br />

ilP BEPER!¡CB = s1l¡:37?347<br />

PBRIOD oF RPc. = 196?-76<br />

IE¡R PEÀX YEIR PEIT<br />

1969 9 1970 5.3<br />

1973 5 19711 18<br />

llll ' 68 SID. DEV. = ¡ú6 COEF, oP s[El = 0.2¡45<br />

toîts:<br />

1. r Dri ¡rs cotstRttcTBD oPslnBti oP ÎÍE sTrrrot r[ 1973<br />

801 I1 IS COtS¡DlBtD 10 ntVE FO SrCIrPrC¡ìfr EPFlCl<br />

ol lEB ttrtrt¡' FLooD PEtÍs.<br />

2. IEIS StttloÍis PB0BIBlLIlt PL01 DID lfol ColPoRli 10 Tñt<br />

so018 lsllft ¡Esr eolsT SEc<strong>for</strong>fÀL TBBnÞ. r! cls o;rTlED<br />

?RO' lEI DEBI'IIIOII OP ÎñE REGIO¡¡L CIIRY9 À[D ¡¡S ÛS?D<br />

I¡SIETD 1O DB?T¡T ¡ IELSOII SOB-REGIOII.<br />

3It! 51502<br />

I'ÀIROI R AT GOBGE<br />

cllctrEr? ltEr¡ sQ rr = ¡6¡¡ ilP SEtERE¡cE S20:¡93149<br />

tl¡tBll Ot lll0¡L PPÀf,s = t5 PERIOD oP REc. = 1962-16<br />

ttr¡ PEIf, rElt PEII IETR PEÀF IUIR PEI¡<br />

195 2 879 1 963 7527 1954 1016 1965 ¡¡t5<br />

I 966 7t3 1961 t002 1968 1 102 1969 720<br />

1970 86t 1971 l¡46 1912 1003 1973 316<br />

197¡ ?00 1975 887 1916 852<br />

llll -<br />

302 COEP. OP SÍEr = 0.2891<br />

srlt<br />

â33 sfD. DEg. =<br />

601 l lt<br />

cltcf,ttlt tREl, sQ K; =<br />

¡ÀIRTO R À1 DIP PLT'<br />

505 iÀP BBFEFE¡CE = S33:29054t<br />

t¡tlltB Ol ¡¡ltll' PE¡f,S = 25 PERfoD 0F REc. = 1952-76<br />

IE¡¡ PET( IEI R PEÀ[ ÍETR PEItr tEtn PrÀK<br />

1952 12,{ 1 953 223 1954 211 1955 320<br />

t956 16S I 957 ¡30 195S 273 1959 280<br />

.t<br />

1 960 60 196',r 270 1962 305 1963 116<br />

I 96¡ 262 1965 190 1966 ',l8f 1967 244<br />

1968 30q 196 9 202 19a0 309 1911 231<br />

1972 237 I 973 248 1914 348 19?5 451<br />

1976 249<br />

llll "<br />

sltt<br />

260 STD. DEV.<br />

'<br />

601 16<br />

CrÎCEtlll rlll¡ SQ f,l =<br />

¡tllll ol rttoll PllRs =<br />

tEl¡ PBt¡ fttÊ<br />

t966 43<br />

1970 62<br />

197¡ 59<br />

illl = 61<br />

rotts:<br />

PEIß<br />

192<br />

11<br />

78 COEP, oF srEI = 0.7396<br />

ctrRlû R lT ltELLs GllÊ<br />

ItP REPERFTCT = s¡0:26535?<br />

PeBIoD 0F REc. = 1966-76<br />

YEIR<br />

f968<br />

1912<br />

1916<br />

sTD. DEV. = ¡EtX = 5tt 9<br />

121 cOE¡. ot sfiE¡ = 0.6130<br />

PEÀ( fEIN PETß<br />

1967 5l<br />

65 1969 {c<br />

'191 1 51<br />

51 1 973 43<br />

1975 100<br />

88<br />

sTD. DEV. = l8 CoBF. OP Sf,Ec = 1.3649<br />

1, 18' I97$ PETT ¡IS TTf,E¡ àS ÎIIE LIRGgST TN ¡88 PERIOD<br />

1951-76.<br />

sltl 15276 sgolovEn R tT Borxlrs PElx<br />

crtcEtlrr t¡lÀ, s0 fü<br />

ioiElE E<br />

OF llfltlt. PElf,s =<br />

10 8S<br />

I<br />

l!ÀP REPEREùCr = S132!589786<br />

PEnIoD oP REc. = tc68-75<br />

tElB PBIÍ IE¡R PETK YETE PBIÍ fEÀR PTÀX<br />

I 968 569.7 t969 60q.0 1970 371.0 1911 291.4<br />

1972 39¡.0 l97l 210.0 19?4 rt58.5 r9?5 508. n<br />

Ittl = q3¡.8 SrD. DEY. = 121.8 CoFF. or s(Bc = 0.039C<br />

S IIE B4f0t<br />

CLEDDTO P 11 fIILIORI)<br />

CtTcStlEllT ¡REÀ, sQ Xr =<br />

ÍUIIBEF OT INIÛIL PEÀKS =<br />

155 tllP RflFEFEllcE = Sr13:908106<br />

11 PE¡IOD OF REC. = 1965-?5<br />

lulR PPA K YEÀR PEIK YEAR PEIf, YEIR PEÂf,<br />

1966 422 1967 1\7<br />

1 965 u23<br />

1958 400<br />

t969 5q0 197C 512 19?r 572 1912 533<br />

197 3 52U 1974 675 19?5 461<br />

Water & soil technical publication no. 20 (1982)<br />

t0l


9100r<br />

GNE? R ¡T DOBSO| s¡18 93207<br />

IXÀllclllltt n ÀT Bl.Àcrs Potli<br />

CllctiEll rREl, SO Xtl - 3830 llÀP RE'EFEIICE :<br />

¡ûllln<br />

crlcñiltr rlEl, S0 [ü 23q I'tÀP<br />

oF lI¡[lL pFÀf,S<br />

S¡¡:8tOO?7<br />

REPFnE[cE s38:340281<br />

= 9 PERIOD 0P RBc. - t96O-?6 lolEER oP tlitÀL ÞEtÍs = 11 PBRIoD oF FEc. = 1965-?5<br />

IEIR PETT IEIE PEÀK tElR<br />

t968<br />

PrtÍ<br />

36s0<br />

tElR IEI¡ PP¡I P8If, fEÀR PPTi<br />

PEÃr<br />

1969 qr13<br />

Pr¡f<br />

1965 272 'E¡8 1966 290 1967 428 'ETR 1968 q34<br />

1972 lt0s0<br />

r9?0 q800 t971 233S<br />

t9?3 3935 1974 1969 579 1970 412 .t9?1<br />

1976<br />

3695 1975 aO38<br />

338<br />

33S0<br />

1912 l8?<br />

1973 498 1974 975 19?5 534<br />

iEtt . 37?8 STD. DFv. = 669 coSP. op SÍEt = -.1.02f7 lB¡l = 073 SID. DEV. = 193 cogp. OF Sl(Et = i.BBrtF<br />

xolEs:<br />

l. TFE iql6 pEil( totts:<br />

or 6660 cuüEcs frs ÎtÍEf ts TnE<br />

rr<br />

Ltnclsr 1. TEE 19?4<br />

TIF<br />

PEIÍ fÀS T¡IEII IS TilB<br />

PE8IOD LrrCESl If<br />

1900-76.<br />

lNE ÞEFIOT)<br />

1<br />

2. TIE lq40 pErx<br />

887- 1976 .<br />

oF 5300 CÛrlECS ¡tS Ρttl¡ Às lEE rErBD<br />

LTPGSSI TT TÍE ST'E PESIOD.<br />

srlB 93209<br />

iIßOIA R TT PILLS<br />

s¡ 1? I 140?<br />

lll:: l_:_11-::::1<br />

cllcflllT<br />

cttCf,iEiT<br />

rBBl, S0 [l . 980<br />

l8rt,<br />

irP RETEFEICE<br />

sQ Kr l¡P<br />

= S32:683596<br />

?90 RE¿'nErcE S¡5:2Ot9Orl ¡otEBa o! tlfttll, PPtf,s<br />

¡û;E?R OF tt¡otr. = 13 PERIoD o! REc.<br />

PBIIS = PllIoD ' r96q-76<br />

9 oP REC. = f96B-76<br />

IEI¡<br />

IIIS<br />

P?IX<br />

PBTß IEIB PPTÍ TEIR<br />

IEIR<br />

PETß fETR PETÍ<br />

PBÀr<br />

1968<br />

YEÀR<br />

1700<br />

PEIÍ<br />

PrT[ 196t g¡7 1965 277 1966 ¡6 r 1967 758<br />

t969 1051<br />

1972<br />

1970 1260 'ETR t971 589 19ó8<br />

lc2q<br />

995 1969 808 1970 10r¡1<br />

1973<br />

1971 6¡?<br />

t{09<br />

t9t6 .r7¡<br />

1974 1039 19?5 t3r6 1972 8¡¡ 1973 685 197¡ 836 1q75 855<br />

1976 667<br />

iEll = 1199 STD. D¡ìy. = 328 cosF. oP sÍpt - -O.aZS2 lgtl s 7¡8 sTD. DBt, - 207 CoE?. OP sf,EI = -0.9q91¡<br />

toTts:<br />

l. lrr t9q0 p,tìtÍ oF 2320 cullDcs cÀs ÎÀKEr ls rEE sBCOtD<br />

L¡RC?ST rf ΡE PPRTOD rEtO_19?6.<br />

srrt 932t1 Ë¡ftßITtÍt R tT ilnD LÀf,F<br />

srTl 9320 l<br />

B0LL!RRrlr!foÍr cllclltlT lttl, s0 fi = 857 irp RErtFtfcE s32:?4r6tl<br />

llllBl¡ O? rfloll Pltfs E 13 PERIOD OP RSc. = 1964-?6<br />

C¡lClllEXT tBEt, 5Q fl<br />

635C ñÀP BEpERUItcE s3t:lAt629 III¡ PI¡f IEIB PEIT ÍEIR PETÍ YETR PETI(<br />

¡oltlll OF ¡¡ù[tL PFIñS = tq PEBIOD O? RDc. =<br />

196tr 843<br />

1963-?5<br />

t965 q48 1966 575 1967 7A1<br />

1968 981 1969 518 1970 1655 1971 1095<br />

IEI¡ PFTI( TET¡ PETK rEÀR PEIR rBlN PrIf 1972 1430 r9?3 818 1974 8Ê4 1975 ttt66<br />

1963 {qol 1964 359C 1965 2150 t9ã6 t976 r 161<br />

1950<br />

1967 ogôC t968 5800 1969 4745 1970 E23O<br />

t97t r¡7-


S ITE 91211 GLEIIROI R 11 ELICÍS<br />

cÀTcfËr¡Î tRPt, 5Q Kll = 198 rlÀP REPBFE¡cE s39:?5335¡ ctlc¡tlll lllt¡ SQ r! '1980 i¡P REPERBICE s54:1r¡2602<br />

llolBER oP tNllg¡.L PErf,S = PERIoD 0P REc. = 1967-77<br />

Itllt¡ O? lllttll' Prlfs = l¡ PEBIoD 0P REc, = 1962-75<br />

IIIR P:[ß YEIR PE¡X TBÀR PEIß TEIR PlIf tll¡ PEIÍ IET¡ PEIÍ IETR PEItr IE¡R PEIT<br />

1961 159 1968 208 1969 1¡16 1970 t96<br />

t962 855 1963 tt?tt 196q 10¡1 t965 633<br />

1911 180 1972 183 1973 131 t9?|[ t¡5 l9ó6 771 !961 1300 1968 19q6 1969 661<br />

1975 197 1976 178 1971 262<br />

t970 1555 t97t 1073 1972 1423 1973 l1 19<br />

I 9?r 1120 1975 1436<br />

lEÀI = 18 1 srD. nEv. = 36 coEF. oP sÍ?¡ = 0.8ó08<br />

lllf - lt5t sTD. DEf. . 365 coEP. oP sKEe = C.512?<br />

tolls:<br />

1. IIB 1968 PLOOD PEIÍ ¡TS lf,fEX IS TEÈ L¡FGFST II¡ îIIE<br />

Pr¡roD 195?-75.<br />

lt<br />

stlt 61602 gÀIln-ÚÍt R 11 ttSBL¿ PT.<br />

S IIE<br />

¡lltÛ-0fft R tT itl.rlcs PÀss<br />

6. SOUTH ISLAND EAST COAST DATA<br />

SIlE 601 08 ¡lfRtn R 11 TtttttRrtÀ<br />

C^lCFxEllT ÀREÀ, S0 Kü = 3431 llÀP REPÞFBI|CE = 522.253077<br />

NúllBER 0P À[t¡UÀL PEIiS = 3¡l PPRIoD 0P RtC. = 193ó-t5<br />

TEIR PEIK IEÀN PEII(<br />

1 935 r 920 1 93? 1754<br />

1940 1 100 1942 209tt<br />

19ft5 125tt 1947 tq24<br />

1 950 1 8?0 1 95 1 2494<br />

1955 3q-1C 1956 20J7<br />

1959 1213 ',1962 3qCC<br />

1 965 1 030 1 966 1412<br />

1969 2 380 1970 354a<br />

1974 2830 1915 436C<br />

¡ElI = 212" sTD. DEV. =<br />

IOTES:<br />

fETR P¡:¡Í ÍEIR PE¡I<br />

t938 2011 t939 3396<br />

19rt3 1330 19¡¡t 1510<br />

1948 208n 1909 2010<br />

1953 t613 t95¡ 3820<br />

'1937 2201 1958 192q<br />

1963 3000 196¡ t800<br />

1967 3113 tq68 3000<br />

1971 192C 1972 25AO<br />

923 coF?. OP Srgr = 0.1919<br />

1. STX ÀIINUIL PEItrS CTl8TN THE IBOVE SFPIES CERE T.PSS lEIi<br />

1000 cuËEcs ìID SESE ÀssÛiED Âs 900 cil¡Ecs. TEE ¡sslttED<br />

PEÀt( VAL0ES rERF 0SED r[ 1ñE FSEoUBICI tìrÀLySIS ?On TnE<br />

STTE BI'T C¡FE ¡¡OT PLOTTFD TÌ DENIYTilG TNÈ RPGIO¡II<br />

CIIRYE.<br />

CAICItIIEII' ÀREÀ, S0 KF = ?t¡4,4<br />

NÛIBEP oP ¡¡¡g¡¿ Pg¡¡5 = 16<br />

fEÀR PEIK YE¡ F PEÀ¡(<br />

t 96 1 250 1962 69-<br />

t965 lt¡l 1966 525<br />

1969 .144 197C 53:<br />

1973 2C3 t97rr 139<br />

ItEÀl¡ = 462 sT9. DEV, =<br />

srlB 6 21 03<br />

srlE 62105<br />

CltC¡lltÎ l¡B¡, S0 ßÍ rl40<br />

t¡¡¡BEl Ol rlIUrL PEIrS = 13<br />

tBti Ptf,; rBlB Psrf<br />

t96¡ 95 1965 126<br />

t968 310 1969 52<br />

1972 r5r 19?3 109<br />

t975 20r¡<br />

lElf = 187 STD. DZ9. =<br />

cÀrfloPrr R tT cRllcloc¡t81<br />

FAP RtÌPFnqùcE S28:99¡865<br />

FERIoD oF RPc. = '1961-76<br />

YEÀR PETK YETR<br />

1q63 395 196¡<br />

196a 707 1 968<br />

1911 214 1q72<br />

1975 8C? 1976<br />

PEAK<br />

3 3t¡<br />

45q<br />

432<br />

531<br />

2C.l colP. oF srEl = 0.2385<br />

ÀcfiEROF n À1 CLtFr:ùCE<br />

clrcñ;BlT tBEt, 50 f,t = 991 IÀP RE?ER!IIC!<br />

54?: :119961<br />

¡0tEzB Ol ll¡otL PEIIS = t8 PERIOD OP R¿C. = 1959-76<br />

IETR PEIK tuÀR PEtÍ ÍEIA PEIK IEIE PEIF<br />

t959 2AO 1960 202 1961 117 1952 236<br />

1963 198 1964 22C 1965 171 1966 308<br />

1967 378 1968 736 1969 321 1970 356<br />

1971 361 1912 365 1973 201 197¡ ¡87<br />

1975 199 1976 26i<br />

lBtr = 33 3 sTD. DEg. = 182 coEP. oP sKEc = 1.5906<br />

sr?r<br />

6430 I<br />

CLÀREIICP R IT JOLLTgS<br />

flP REFEREIICE = s41=265862<br />

PERIoD O! REC. = 19611-76<br />

rEIR<br />

1 966<br />

1970<br />

19?0<br />

PEAK tEÀR PEIX<br />

320 1961 121<br />

150 1971 152<br />

266 1915 166<br />

91 COEP. OP sKE¡ = 0.4401<br />

colr¡Àt R À1 ltfrÍDlLtt<br />

CllCEil¡T lBlr¡ sQ fl ¡6r¡ ttP RBFERE¡cE s55:7166?7<br />

l0lBll Ot ¡tl0rl PEIrS = lt PERIoD oP REc. = 1956-66<br />

ttls Pllf, rElE PEtf YEIR ÞEÀÍ ÍBTB PE¡I(<br />

t956 540 1937 355 1958 210 1959 720<br />

t960 , 670 t96r ssc 1962 122 1963 1300<br />

t96r 58 1965 580 1966 1000<br />

ttll - 555 sTD. DPl. - 373 COEP. oP SIEI - 0.6019<br />

tolts:<br />

l- tEr 1923 rLooD PE¡f Ol 1700 C0IECS ¡ÀS Ttf,Er ¡s r¡B<br />

Lr¡Glsl rr lFE PIIIOD 1A69-1971.<br />

cllc¡lllT ¡¡lt, S0 f,l - 70.6 ltP REPEREÙCP = 540:018154<br />

f0lllf Ot ItlOlL PEIf,S = 10 PIBIOD oP REC. = 1966-15<br />

ITI¡ . PE¡f IE¡R PEIÍ YEÀR PEIß TEÀF PEAÍ<br />

1966 66.5 196? 86.2 1960 11q.0 1969 66.9<br />

t970 98.0 197 1 17 .6 1972 86.7 1973 82.0<br />

t97¡ 93. ¡ 1915 123.7<br />

llll = 89.3 sTD. DEv. = 18.9 CoEP. oF SßEf = 0.5772<br />

slrr 6510¡ E0Rol¡ilr R l? itIDtËfts<br />

Ctlcliltl Àßllr.S0 [Ë = 1070 ;lP BEFERE¡CB = 56l:932u62<br />

l0lBll Ol llttll PEtfS = 19 PEIIoD CP REc. = 1957-75<br />

ttlB Ptlr ItlR PETI IETA PEI¡ IETR PEÀÍ<br />

t95t r1¡5 1958 562 1959 611 1960 r¡47<br />

t96 1 559 1962 192 1963 665 196tr 465<br />

t965 291 1966 241 1967 q60 t968 67|¡<br />

1 969 2¡¡ 1970 858 1971 585 1972 83r<br />

1 973 175 1974 5r1 1975 743<br />

lElt = 500 srD. DE9. 253 COEP. oF sf,EI = 0.¡1991<br />

S ITE<br />

65107<br />

crtcEllElIT ÀREAr SQ Kll = 3tt2<br />

llUltBER oF À¡¡llllÀL PEIKS = 15<br />

tETR PPTK YEì8 PEIK<br />

1937 2t 2 1958 160<br />

1961 ql 1C62 78<br />

1 965 92 1966 56<br />

1 969 12t 1 a7C 235<br />

iErÍ = 138 SîD. DEY. =<br />

SITE 66401<br />

8ûRoFrr: R rT LÀrZ Sotttn<br />

lltP SElEnBllCE = s53:6855¡9<br />

PEBIoD 0F RBc. = 1957-71<br />

ÍETR P'¡R PI¡i<br />

1959 120 'B¡B 1960 122<br />

19 63 1tt 196¡ 135<br />

1961 163 t968 t8?<br />

19?t 176<br />

56 CoEF, OF SÍz¡ . 0.q875<br />

¡Àr¡lxt8t8: F Àr oLD E.t,<br />

cÀtcflllElT rREt, sO Kl 3210 iÀP BE?EREÍCE = 576:020?02<br />

IolBER oP t¡iotl PEt[s = 46 PEBIoD 3P BBC. . 1930-75<br />

PPIK IEIF PETÍ YEIR PEtf tEt¡ Pll[<br />

'EIR 1 930 I 33 t 193 I 2039 1932 1303 1933 2209<br />

1934 1501 1915 1303 1936 3112 1937 2209<br />

1938 2t11 1939 l01q 1900 3738 t9tl 1612<br />

19q2 1699 l9¡l 1076 t9q4 1 303 t9¡5 1¡¡¡<br />

19¡6 1614 19117 2095 1948 1812 t9¡9 t359<br />

1950 3C87 1951 2095 1952 1 218 1953 1303<br />

1950 161¡t 1955 2322 1956 2209 1957 3993<br />

1958 1044 1959 10q8 1960 1 388 t961 963<br />

1962 tl.rr 1963 1214 t96rr 1416 1965 1232<br />

t966 850 1967 2o5lt 1q6S 1Cl8 1969 ',1100<br />

19?0 2501 1971 1190 1912 1676 t973 t000'<br />

1974 1121 1975 1773<br />

iEtl = 1694 sTD. DEY. = 709 coEP. o! SRB! = 1.5790<br />

XOTES:<br />

I. lSE 1957 PI,OOD PE¡Í fIS lTÍE¡ TS lNE LÀRGEST Tf lEB<br />

PERTOD 1¡159-1977.<br />

srlE 661102 rtlñÀf,tRtBr a tr 6('¡61<br />

ctlcftEllT AREÀ, S0 rñ =<br />

xurBER oP lIÍoÀL PEÀKS = 2C<br />

rEIR PBÀÍ IT:TR PDÀf,<br />

1953 1 3Cl 195q 1586<br />

1957 42q7 1958 906<br />

1961 934 1962 1303<br />

1965 12tr6 1966 ll89<br />

1969 16q2 lc?tl 26A5<br />

iElI =<br />

168? ST¡. DEv. =<br />

2r¡ 6C<br />

llP nEFEFEIICE 575:089775<br />

PERIoD o? REc. = 1951-72<br />

ÍEÀ8 PEI( TETB PIIf,<br />

1955 2319 1956 2350<br />

1959 1 557 1960 l¡¡r¡<br />

1963 t303 196¡[ 195¡<br />

1C67 2605 1968 1869<br />

1911 1611 1972 2209<br />

534 COEF. OF s(rl = 0.¡231<br />

TOlES:<br />

1. ?88 1c5? PLOOD PEÀK CrS TrKEh tS T8E ¡,tnGESf lr l¡E<br />

PEnron tg69-1977.<br />

Water & soil technical publication no. 20 (1982)<br />

r03


6800 1<br />

sBlrri R tT SrITEC¡,tttS 6Itt 696 r8 oPrñr I ÀBorE Roct¡ooD<br />

Ctlclãlll ll9l¡ SQ [l -<br />

lt itB¡ or tffoll PEtfs .<br />

r ttt<br />

196 t<br />

t 965<br />

| 969<br />

I 97¡<br />

l6¡ t6<br />

i¡P ¡lrERlrcE 3 S7a:3t96t9<br />

PE¡IoD 0F REc, = 196t-76<br />

ÍETR PETi rB¡R PIIÍ<br />

1963 r6r,8 1964 39.5<br />

196? 66.0 1968 ¡8.3<br />

197 I 3?. ¡ 1972 t73.0<br />

1975 79.2 1976 6t. r<br />

PTTT TETF PEIT<br />

r84. 0 1962 37.6<br />

t85,0 1966 12.C<br />

1 r. ¡ 1970 58.8<br />

52.1 197¡ 96.2<br />

;Dtl " 85.11 StD. Dtt. 57.? CoEP. OF srEB - 0.891¡<br />

ClTcÍiE¡1 lREtr SQ ill =<br />

¡lllBEF ot t¡lotl PEIßs ¡<br />

III¡ PPIÍ IDTR PP¡i<br />

t96t t7t t968 9C<br />

19tt 65 1972 167<br />

19t5 ¡5<br />

iEtl . lt8 StD, D¡:V. -<br />

s ttg rt9t 02<br />

tsFEoRlor SlE R tt iT. so;rns<br />

RÀIcIltll R tBot! fLotDt¡r<br />

CltcllllEl? tnsr. SO ft ' l¡cs itp ÀEppFBrcE<br />

lüi0EB 59t:752290<br />

oF tffott. pEtfs - l0 pEETOO oi n¡è. = ßG1_i6<br />

?ttt Plrt tEtt PEt¡ YEIF P¿If<br />

1967 tq29<br />

IE¡R<br />

t96S<br />

DIIi<br />

639 1969 tt15<br />

t97t 3.tt<br />

19?0 t599<br />

1912 517 1973 1201<br />

1975 t 159<br />

r9t¡<br />

1976 75¡<br />

576<br />

lEtl = 959 StD. DEr. = r¡29 CoEF. Op SrEt = 0. f253<br />

toTls:<br />

601 ¡ÀP RE!EnErCE . s8r:820{tt<br />

9 PEnroD 0F FDc. = 1957-75<br />

ÍEIR PFTI( 'EIR<br />

PrI¡<br />

1969 ?9 197A 204<br />

19?-ì 5t tc?¡ 96<br />

58 CoEP. OP St(El = 0.6t80<br />

t. lrt tqSt ploon pttk op 1950 au;Ecs ets ltrEt rs T8!<br />

L|RC!5T tf ?f,t PEFTOD 1936_?7.<br />

cl?c[;Ex? lB!1, sQ fr ¡ ¡12 rrP nEtr8zfcE = Stct:5t2792<br />

IttBtR o? tt¡[t[ PPr¡s : 41 PEIIoD CP ¡tC. - 1936-76<br />

II¡R PETtr TEIR<br />

't9¡6<br />

PETÍ TEIR PEIÃ tE^R PEtf<br />

t41 1937 62 1938 80 1939 33<br />

1910 121 19¡l 126 1942 r03 1943 t19<br />

19¡¡t 120 t9t5 663 1946 ¡3 r9¡7 33<br />

t9r8 39 t9C9 50 1950 50 r95t 562<br />

1952 200 1953 ó¡¡ 1954 69 1955 29<br />

r95ó 69 1957 227 1958 1 19 1959 11<br />

1960 t19 1961 466 1962 ?¡ 1963 28¡<br />

t96¡ ¡0 t965 tt73 1966 t¡t 1967 10t<br />

t968 15¡ 1969 65 t970 1 18 1971 92<br />

1972 162 1973 39 1974 166 1975 t¡8<br />

t976 61<br />

ll¡l = 15¡ sÎD. DEV, È 151 COEP. OP Sf,Et -<br />

lorts:<br />

1. 1¡I PLOOD PETTS P¡¡O¡ TC 1965 ¡ERE DBRIY'D P¡OII OLD<br />

II?EÊ-LE'EL IECORDS. |IO ¡ÍICI I COITRI?ED R¡TI¡G<br />

COT'B CTS ¡PPLIED.<br />

2. T¡t 19t5 rfD 1951 ?r,ooD pE¡is ¡B8E ît[Et tS lnr LlrcEsr<br />

ItD SBCO|D Lt86ES1, RESPBCTTyEL!. It îfl8<br />

1902-76.<br />

pERTOD<br />

s¡tt 69621<br />

ROCtrf COLLT P ¡1 ¡OCiBU¡r<br />

ttlgllu!î t¡El, s0 ¡r . 22.0 i¡p REprBrrce slrc:367601<br />

lolDll O! ¡ttolL PEIIS - r¡ pE¡IoD oF ¡Ec. = 1966-76<br />

Itr¡ PEtr rBtS PEli tu ta PEIÍ tEtS PEtf<br />

19ó6 to.z 1967 tr.l 1968 19.3 t9?O j.2<br />

lltl 7.3 1972 51.6 1973 3.9 r9?q 9.¡<br />

1 975 7,8 1976 9.6<br />

llll | 12.7 STD. Dll. . ltr.q COE!. Ot S¡EC - 2,63¡0<br />

lotls:<br />

1. 1!! 1972 plooD pPttr sts 6.0 ftrEs Tf,r t¿Dltt rttorl,<br />

?LOOD PITT I¡D ¡IS îEB¡ETO¡E<br />

ptollttlM<br />

O;IITED FROi<br />

pLot<br />

l8g<br />

ttDsB noLE ro.2. f,o¡ztER, rT<br />

II3 ITCLIIDED ¡I î!E DENTVIIIOi O' TIE<br />

oltt¡lllstD cÛErE POR 1ñg lREr.<br />

2. to tfltttl pElr gf,s ¡vÀILIBLE ron 1969.<br />

7. SOUTH CANTERBURY DATA<br />

ïï______u:9:<br />

cttclttlr l¡lt, so i; =<br />

tolltt ot Ittrrll 9E¡rs =<br />

l8t¡ Ptl¡ rE¡B<br />

t96¡ tl. 52 1965<br />

r968 32t.53 t969<br />

19?2 296.83 1973<br />

1976 5r.56<br />

PETI<br />

t2 1. 14<br />

63.98<br />

98.16<br />

llll . tl2.?0 sTD. DE . .<br />

srlE 69506 onÀRr n 11 srLvEltot<br />

crlcÍiErT t8Et, SQ fi . 520 lltP REPEnETCE<br />

TO'IE8 O? IIIOIL 591:730081<br />

PE¡ÍS E 15 PtRIoD o? RBc. = 1960-tt sltt 7rrt6<br />

tEli PDil( tÊtn PPri rE^t<br />

1960 r70<br />

PEttr fElr P!¡f,<br />

196 I 4SC 1962 I<br />

1961<br />

lC<br />

l¡0<br />

1963 ¡t95<br />

f965 1tt7 1966<br />

1968<br />

63<br />

2t9<br />

1967<br />

cltcRtrfl t¡!1, s0 rl .<br />

29a<br />

t96ç 5: 197C<br />

1972 ¡t5<br />

317 197i lolllR or tttûll PE¡Ís<br />

98<br />

=<br />

1973 125 '1974 263<br />

tll¡ PEtÍ Ittn<br />

iEl¡ . 26" sTD. DEY, 196¡t tB¡<br />

" 197 COEF. OP SrEt É l..tO?2<br />

1965<br />

t968 1¡5 1969<br />

to?Es:<br />

1972 t86 197 3<br />

l. tfit to¡5 ?Læn ntti op lo0o.cfrtEcs gts llfpf, ts ?nE<br />

L¡¡GEST III THE PERIOD 1871-1976.<br />

llrl = 227 StD. DEl. .<br />

PEIf<br />

234<br />

380<br />

228<br />

899<br />

13<br />

557<br />

12<br />

IllllIlïl-:-11-l:I:l:<br />

iÀP ¡ElEnBict - Sltß:125t12<br />

PB¡IoD ot [Ec. = 196¡t-t6<br />

f 8IR PE¡T P'II<br />

1966 41.21 'Ef,R 1967 65,77<br />

1970 65.20 t971 q8. r0<br />

t97¡¡ r10.0¡ 1975 lOr.06<br />

93.13 COZ'. O? sÍ!¡ . 1.7422<br />

lto¡r¡I R tÎ sottîf lrItDEi<br />

llP IEPEFE|CP = Sl0ß:¡50406<br />

PE¡IOD Ot ¡BC. = 196¡t-?5<br />

fE¡A<br />

1 966<br />

1 970<br />

t97ll<br />

PEIß TEIF PETÍ<br />

259 t967 39¡<br />

262 t971 t05<br />

13? r9?5 208<br />

90 COPI. OP s(Et = 0.8171<br />

sIrE 596 t¡<br />

crTcf,is¡r t¡rt, sQ ft =<br />

lofBEP O? tftutl PElf,s:<br />

rlr¡ PEtf tEtR<br />

¡56<br />

oc<br />

oPoÍt F lDotE stlDlot<br />

lltP RE¡ERn¡C! = s10t:54t902<br />

PEnIOD 9P n!c, r 1917-76<br />

I¡IR PRTß IETR PElT<br />

1939 s0 194C !23<br />

19f¡3 1a2 19¡rt 218<br />

1947 q0 19¡8 216<br />

1951 666 1952 5ó5<br />

1955 111 t956<br />

1959 50<br />

230 1960 124<br />

1963 542 1964 t3<br />

1967 293 1968 It9<br />

1971 175 1912 306<br />

t9?5 30? 1916 147<br />

PEII(<br />

r9l7 25 1938 19ll<br />

l9¡l 36â t9¡2 46(<br />

t9¡5 e¡t t9¡6 91<br />

t9¡9 r90 t960 5q:<br />

r95t ¡00 t95¡ t52<br />

1957 , 666 1958 2(,¡t<br />

196t 36t 1962 69<br />

1965 520 t966 7t<br />

1969 127 197C 321<br />

lgtt ¡5 19t¡ 1¡'<br />

l¡¡f = 270 ST'!. ¡Et, = 2C2 COp.p. Op SiE¡ - t.Ol57<br />

TOT'S:<br />

1. T[9 lqIfs PRIOF T: T965 IERE DERTVEÞ FROIi OT.D<br />

fllEF-LEttL 'LOOD RECORfTS, TO rFrCfl t collRrvEn Rlrrtl6<br />

crttv? fls tPPLIS¡.<br />

2. .ilr l1¡5, t,rst rxD 195t FLOOD pEtKs fpnF lrf,pI ts !8t<br />

7T:?ST, S'COllD tttÞ 1fiIÂfi L¡Rersl pEtf,s. REspEcTIvELt,<br />

Ix .rfF PSR:OD 17C2-16.<br />

71128<br />

IRISIIIX CREEI IT 3ITDT RIDGP<br />

CtlclillT ll¿t, sQ ti = 1tt2 lllP REPERBICB = St00ro92880<br />

tûlllR ol tflûtl PEttS E 9 PEBIOD oF RDC. = 1963-71<br />

tll¡ Pttf rE¡t PEIÍ<br />

1963<br />

IETR P¡ITT<br />

31. t '196¡<br />

PE¡T<br />

18.4<br />

1967<br />

1965 20. 5<br />

79.3<br />

'ETR 1966 11. r<br />

1968 31,2 1969 c6.5<br />

r97t 197C 73.0<br />

t3.3<br />

¡Btl ¡ 36. I srD. DEr. - 25.2 COEP. OF SXE¡ = 0.95rc<br />

srrr 71129<br />

FORßs P I? BILttORTt.<br />

c¡lcnlllT lllt¿ sQ f! = tr0 itP ¡DIERricE = sR9:035017<br />

lÚltll o? ttttttl PP¡rs s tt PESIOD Ol R!c. ' 1965-75<br />

lll¡ Ptrf, tttn P!ÀK .'EIR PEÀÍ<br />

't965 16.7<br />

tslR PEtr<br />

t966 25.q 1961 50. I<br />

1969<br />

t968 19.1<br />

12.6 1970 3¡.0 1971 12.6 1972 22.3<br />

t9t3 20.6 t97¡ 12.0 19?5 r8.5<br />

lE¡l . 2¡.0 STD. Dtt, - lt.z COEP. Ot SrE¡ =<br />

104<br />

Water & soil technical publication no. 20 (1982)<br />

.i.


71t35<br />

JOLLTE R lT 11, coox slllfo¡ SIIE 7850't<br />

clIcElBrT [R?1, SO tr¡ = 139 lllP REIEnFICE = s89:8tl1164 ctICHiEllT tBEr, sQ xí 160<br />

tOiDlR OP ltt0ll PEIÍS E t0 PERIoD oF REc' = 1966-75 t{0llBEF OF tlllûtl PETKS = I<br />

trlE Ptl( fEl¡ PElf tETR PET( YETR PETI( IETR PPIK IEIN PETI<br />

1966 97 1967 106 1968 49 196q g0 1958 r¡l.C 1969 26,6<br />

t9?o 72 1971 31 1972 ¡9 1973 62 1912 55.7 1973 19.8<br />

r9t¡ 30 1915 60<br />

liPttl = 10.0 S1D. DEY. =<br />

rBll = 6¡ SrD. DEf' = 25 COE?. OP SrE¡ s 0.t¡152<br />

8. OTAGO.SOUTHIAND DATA<br />

sltr ?¡337 trlEB0Rll À l1 ll.E'B.<br />

cltcttrrrl llEr, sQ fl =<br />

IÛIEEB Ol t¡ittll, PB¡ÍS =<br />

376<br />

I<br />

ËrP REPERUfcE = sll5:935593<br />

pEBIOD Op EEc. = 1969-?6<br />

rll¡ Pt¡i rElR PEIÍ<br />

t969 13.2 1970 22.6<br />

19t3 23,6 197¡ ll3. ¡<br />

ll¡f . 4t.5 STD. DEv. =<br />

tEÀB PEIK IEIR PETT<br />

1971 79.5 1912 ó4.4<br />

t975 t10.5 1976 62.1<br />

23,2 coE?. or sf,E¡ = 0.1372<br />

srrE 14625<br />

ctTc¡tiEltl ¡nBr, sQ Íl =<br />

I0IBEB OF txiûl¡, PEÀÍS =<br />

rrta PEtf lEtl<br />

1964 21,3 1965<br />

1958 84.5 1 969<br />

1972 65.5 1973<br />

1976 ¡r3.1<br />

lEt¡ = 45.9 sTD.<br />

srlE 78633<br />

PETf<br />

30. I<br />

59. l<br />

25, e<br />

1C9<br />

t3<br />

ctT¡roPtr I tr fPftrfcfot<br />

IIP nEttREllC? = Sl77:4310r¡5<br />

PElIott ol nEc. = 1968-75<br />

IEIS PEIf, I'TB PEIÍ<br />

1970 25,0 r97l 17.1<br />

197r¡ 31.9 1975 22.O<br />

12.8 cogî. oF sit¡ = r.3586<br />

:11::11_l_ll-:"'ll3ll l!:<br />

lÀP BllERPrcE s169:122516<br />

PEnroD 0r ABc, = t96¡-?6<br />

rE¡n P¿lÍ rt¡R Ptlf<br />

1966 30,2 1967 32.O<br />

1970 67.8 t971 t2.ø<br />

1974 34.5 1 975 33.2<br />

18,5 coPP. oP SÍEI = 0.8196<br />

ilÍ¡BBcr B tr l¡EEurl6 lÍs.8.<br />

slll 7t3 r6<br />

I.OGTIBI'8¡ I ¡T PÀERIO cttcfltrfl rBrt' sQ ri 13q0<br />

loiBER ot lfl0l¡. PEIRS = 9<br />

iBlt = 359 sTD. DEY. = 2tl9 coBP. oF sfBt = 2.3010<br />

Cr!CI!E¡T l¡rl, s0 trã r5O rtP AEFSRE¡CE Slq4:624217 IETB PEàf IETS PEIi<br />

rutB!! oF r¡¡sít isrrs = 10 PErroD cP nEc. = 1967-76 1968 ¡t1.0 1969 t7q.7<br />

1972 269.2 1973 tlr6. I<br />

r!18 Pltf rEta PEIÍ rEtR PEIX fE!! PElr<br />

i,at s.r t96s 20.6 le6e 12.2 le?o<br />

1976 248.0<br />

22.e<br />

t9t1 35.5 1912 50.1 1973 21.8 197q 15' 6 rEtI = 216.5 sTD. DEv, =<br />

1975 26.5 1976 15.8<br />

rrll = 22.6 sID. DtY. = 12.7 cog?' oF SiEl = r'0925<br />

srll 75212<br />

POIITHIXT R ÀT BÛNÍES PORTI<br />

CllcÍrErT lRElr SQ Kl 1332<br />

tûrErB oP rlroll PE¡rs = 13<br />

Ílp gEpERt¡cE s,11.1.22t¿r12<br />

PBRIOD o! FEc. = t963-75<br />

tlIT PEII<br />

PEÀÍ f8ÀR PttÍ tLlR Pllß<br />

1963 337 'gIR 1964 8¡ 1965 310 1966 276<br />

1967 ¡66 1968 536 1969 2t9 l97C 255<br />

1971 370 19a2 1068 1973 170 1974 201<br />

't975 318<br />

tolBs:<br />

I. TIB 1972 FLOOD PEÀI( ¡TS ?88 LTREBST IÍ TgE PEEIOÍ)<br />

1958-?5. fT CÀS OirrTED FROü TEB lItLrSfs ttllDlR<br />

BÚLB TO.!, BOT ÍIS IIICLI¡DED 1I¡ lEE OERTYTÎIOX OF<br />

lEE GEXBATLTSED CURVE FO8 lBE IRET.<br />

itP REtEREXct S177:331139<br />

PDSloD o? RUc. = 196C-76<br />

tEÀA PETK IBIE PIIß<br />

1970 168,4 1971 201.2<br />

1974 1:t5, ¡¡ t975 t9¡1. 1<br />

05.1 coEP. o? slBt. 1.605¡<br />

Water & soil technical publication no. 20 (1982)<br />

105


APPENDIX C<br />

Summary of tho data <strong>for</strong> <strong>the</strong><br />

Nelson <strong>are</strong>a<br />

NETSON DATA<br />

srlt 57002<br />

tloÎUErt n l1 8¡10t BIIDOT<br />

c¡IaEllE¡r ¡8Et, sq [ü 164"<br />

¡úiBEA OP trtotL pEtis = iB<br />

ll!! PEIK rErR PErf<br />

!!93 7s7 reso s83<br />

!?18 s83 tese 75c<br />

1963 561 1966 325<br />

!?!? s6r<br />

1973<br />

rsze izt<br />

r 159 197¡1 2622<br />

ItElll = 1078 stD. DFv. = '<br />

lloTES:<br />

lllP SEP9REÍCz . St9:2O33OO<br />

PEAIOD OP REC. r lg5¡-l¡<br />

ïiìt i3|T üi; !¡äT<br />

i¡ï ,¡33 t3:3 iil;<br />

t9?t<br />

t. ¡o-rtrltolL pEtßs ¡aERp tvìrLtBrE poR r956,1960,<br />

1964 tID 1965.<br />

2. olrlt of,E ?¡r¡îÀîM R¡ÎIÙc c089E I5 tvtrf,lB¡,E,<br />

s16 1972 rjes<br />

70t¡ COEP. OF SÍEt = -t.6331<br />

IÀIGTPEÍ¡ N IT SIIIG ERIDGD<br />

c¡1c8llE¡1 rREt, SO Ftt - 373<br />

IU||EPB OP ÂXllftÀL PEIÍS ¿ o<br />

!9!R P¡At( rErR PErf<br />

!9qt 467 1e62 467<br />

1966 q7 196? 3¡0<br />

1970 2â9<br />

lllP REFEREnCE = Slo:072t¡l<br />

PERIOD 3P REC. - 1961-?0<br />

iiåi 'ååi i3åt "åi5<br />

1960 607 re6e iì ¡<br />

ËÈtl¡ = 39¡ STD. DEv. =<br />

l¡oTES:<br />

174 coEP. o? sßFt = -0.24?5<br />

l. io--Àrilut¿ pE¡t( 9ÀS ÀVtILtBL? ro8 1965.<br />

-'. ôtrLr o[E TFrrtrrvE FÀTfrc coav¡: ¡i-ii¡rrrg¡,g,<br />

srtt 57106<br />

slrrLtfBROOR I tî BtErr¡s<br />

cllcãttEÙT ¡RBÀ, SO K[ = 81<br />

¡ollBDR oP Àùt{rrtL PE¡KS = 7<br />

M!<br />

P ¡ÀK rR¡ F FnrÍ<br />

!?10 48,r¡ tq?l c8.s<br />

197tt 96.8 t97q 3n, c<br />

iEt[ = 60,6 sTD. DEV, -<br />

IAP REfpRt:t{cE = St9:2Og2tF<br />

PERIOD 0p FEC, = t97O-76<br />

ïll! PPrr rE¡R PErrl<br />

l?1? 103,6 te73 it. t<br />

ta76 50.0<br />

27.9 COEF. ot sÍEt = 0.9692<br />

106 Water & soil technical publication no. 20 (1982)


24 HOUR Í(AINFALL P OF RETI.R,N PERIOD 2 YEARS AND ITS STANOARD ERROR' E (III4I<br />

NUMB ER<br />

Nur'IBER<br />

-o<br />

ãt<br />

f.<br />

Ø<br />

CL<br />

ñ NÞ<br />

Þ !!m<br />

z I-<br />

x I<br />

É? r-r' a, Âa 8e 12 t2 f{ÄñGnNUl I{ANGOf\¡UI<br />

43950L 34 59 173 t2 r01 1?<br />

HAIHARARA<br />

439201 34 51 l7J 12<br />

87 e r{AiAmi- BnY- 35 2 t-t3 53 999<br />

856 RANGIT IHI 531301 35 6 L7? 2A 9t 1l<br />

KAITAIA AERODRDTTE 530201 35- 4---113 17<br />

triËîmilunr- -- ---si67az-tt<br />

z--îrtr<br />

ìîiiåìä--u u rv'r'-- -nl-zît- :z {'i- -irã-fz-- eo--i 2<br />

ruaffi o r 35 I 173 30<br />

--91-TT<br />

AI{I PARA --sallt¡f -- t5-Tõ-T¡t<br />

5a28ll 35 13 L73 52 L5¿ 15 KÉRI KER.I 532SOt. 3' L4 173 5?<br />

el I<br />

g¡¡g¡1P0LL5328L13513L73?_1--L5¿15KtsKIl\trKL)2L7wLJ¿!-LlJ'l<br />

-¡to<br />

TÃ-rrAN-Gl rdRE-si- - - -542õor ãá-i'ç -i1e 137 t3<br />

--llggl- i: l: ìl: i: ee L5<br />

RUSSELL 542LO1 35 1ó L-t4 q -<br />

108 1 HERÊKINÛ<br />

532202 35 1ó L73 13<br />

EEOIõÍõOD-- ltzzli ;,; i¿ ltz-2T---ca 1ó<br />

- 523502 35 l8 113 33 89 13<br />

-uHnwenr-¡¡o.z<br />

OKAIHAU 53319t --il zl-<br />

TaI- -1-i OPONONI<br />

534402 35 29 173 ?6<br />

KAIKOHE AERODROMI ME<br />

----8151ùI--a-;<br />

5348ii1 35 27 L73 t3 49 l?? 13<br />

ti- Ir14 t6 r35 6<br />

PUH I PUH I<br />

a462A2 35 36 174 150 Zl sANDsTWHANGAREI AREÂ 546411 15 36 l7+ 26 1?0 30<br />

HIKUR ANG I<br />

RUDER9{ OVRE --5767I t-- -$ -17--1ar4l- -- --12õ-"0- -TÍ-EFñCF;¡FANGARÊr. 53óó11 35 38 173 te t2r 13<br />

TÃImTElrlÚI---_-strtoT_35=ila77?ã---t'iÀIr'tAT¿ruÚ<br />

I{AIPOUA FORËST 536501 uJv t 35 39 L-t7 la a75 GLENBERVIE FOREST 54ó3C,1 35 39 L14 2l 139 9<br />

5 369ü ;óüi 1 zò I,¡ t13 5e-- - e5 ro ----P-Úk-rTÚRÙA NoRTHLAND 546<br />

5 91 r4<br />

a tâ<br />

-PIPI--FÃT_ RUATANGATA \ NO.2 N0.2 ja62o3 35 4t 11! I 3988 THË GLEN N PAKÙTAI<br />

537801 35 43 L?l 49 90 11<br />

^- - -- .'---' ¿<br />

531aç¡ a5 41- l-7-1 51' -- 1ô5 -1¿ -<br />

-T-4i-õ6T-3r-45--74<br />

T rTo-i


oæ ON LAT. STATION NA ATION LAT.<br />

NUHBER<br />

NUI{BER<br />

ÇWIER I5LAND<br />

EKUf,[-FOTñT----- TIRI TTRI LIGHTHOUSE - ó4ó901 3ó I74 54 85 ð64'1102<br />

_,461a2-364I__I14_43-__-_B7-I1_-__trtjoDFitl-'.FoREs-T--Ã<br />

15 DAIRY FLAT 646602 36 4L L74 39 82 .- ¿. 9- 6 9<br />

36 45 L74 43 100 12<br />

ALBANY<br />

65-47-ft---36-27--T7r-4-T Trr-l24-'--*--r.Ã-r-R-r¡r¡¡- --r+s3ET-<br />

l{ûoD-FiLl-<br />

RI VER,HEAI<br />

AL B ERT PAW--ã6-íI--F[4--86 rîr 9--- --Ãuü(fÃñD-cTrv-----6trS7ffi<br />

IIECHANI CS BAY 648702 3ó 51 L74<br />

829<br />

41 73 1 HËNDER,SON<br />

;ñn--- ersuY¡ ó48óOt '" 36 '-a-jLffaa---ji*<br />

174 38 8ó 14<br />

rl¡^<br />

^llÊrrr ONEHUNGA^<br />

649702 36 55 L14 41 '1<br />

84 g ONEHUNGA ö4e7Ð+ 64970+ 36 A6 56 L74 47<br />

rr^-trÃ;T'u-cK-tÃñD------64r8-cr--l6-T1--r14- 8g L2<br />

5z--- -t¡---¿---__ Fr_rcRtÃxD- ÀTR-po-RT.-- ä;;: 'r7 'i i#oå Þ-t ó<br />

ffi<br />

-7ã010''-- ir- T-f74 -5e--<br />

KINGSEAT ?4laaz 37 I 17+ 48 lt4 24 PITKEKoHE<br />

TffiEFõ.- -- --152-oo-t-- 74zsa3 3? t3 LT4 i4 69 6<br />

3TT5_-TIE--r- ----ÐÃfù --------<br />

l,tAIoRo FORËST 1437At<br />

7-4¿6ùI--7Tre<br />

37 2t tTL 43 93 6<br />

'Frir{fTsr-riFu rfi sT{isT<br />

SANDY BAY<br />

Ti{ANGAPOUA FOREST<br />

ROCKV BAYTI{AIKEKE<br />

TAItsUA<br />

THA14ES<br />

TAIRUA ronesTl,lARA¡TARUA__EQR<br />

EST<br />

O{EIIHERO<br />

P<br />

TE KAUI{HATA<br />

65540L<br />

ó 57ó0 ID.6 5800 I<br />

750802<br />

36 32 t75 27<br />

36 46 L75 36<br />

36 175 4<br />

37 'O 0 L75 5r<br />

75 1502 37 I L75 37<br />

75tBO2 37 t0 175 51<br />

_ _ -751_2_ol__3_7_L_8__t7_1 15_-<br />

74390L 37 20 174 57<br />

75t60L a7<br />

754L02 37 25<br />

t7t 34<br />

L32 t4<br />

102 18<br />

, 153 2¡_<br />

95 L2<br />

L23 9<br />

786<br />

99 18<br />

99<br />

879<br />

COROI,IANDEL<br />

CHILTERN<br />

HHITIANGA<br />

997<br />

at6<br />

6r7rot 36 46 t'rs 30 L6g 27<br />

ó58501 36 49 t75 32 L66 26<br />

ó58702 76 5t L75 42 t29 2L<br />

KAUAERANGA FORESI__311_é9.¿_j 1?5 38 134 "<br />

18<br />

ITHAREKAI{^ 751801 t7 9 L75 51 153 20<br />

TURUA<br />

-t525tt 37 t4 L75 34 115 24<br />

trEBE?-F,I1I<br />

GLENIFFER,oNÈ}THERo<br />

}IA IH I BEA CH<br />

1_s_3sol_ _gl_r_g L75 33 87 l5<br />

74394? 37 ?L t74 54 88 L2<br />

753 I<br />

754901 175 56 t50 28<br />

ll^lrlgf :rl ^..^ ^ --- !7:79\ 1! 29 L75 47 1o2 e -- Hoe-o-rArNur 175 24 t LL' r.e 3L<br />

Tr 754bo2 2l<br />

?t-29-L!Þ +o 15 E_Lsro_H 755óor 3z 31 rr,- 7s 90 13<br />

te rnoxÀ ----------- 755?ol--n z{ 175 43 ñ7-z---äî-rür¡ =ffiftn-ffi<br />

HAITQA _ 756602 ?l 36 L?5 t6 -r_o_ó__ 88 15<br />

ffi-?5ó<br />

ffi<br />

Water & soil technical publication no. 20 (1982)


TE PI'NA 766002 37 40 176 4 123 l8 TAURANGA AERODROI{E 16620I I7 4A 1?6 L2 TOO 6<br />

RIVER R0AD _llé!_qz 37 4r t75 LL ----<br />

8e-13-- NGAß-uA--- 7s670l 3-7-ri-r- 175 42 87 )6<br />

KIITITAHI 1575Ot 37 44 L75 ?4 97 l7 I{HAKAHARAT¡IA ?ó7OOl 37 44 17ó 0 L66 27<br />

TAU¡fHARE 757401 3? 45 t75 2? 94 15 DUNROBIN,OKAUTA 757801 37 46 175 51 115 l?<br />

È{AKETU T674OL '7<br />

46 L76 27 I18 21 RUAKURATHAMILTON 7s'ttfJl 37 47 175 le 69 5<br />

RAGLAN 748801 37 48 174 53 e2 l? HORRINSVILLE DAH 758503 11 48 L15 15 96 L7<br />

758ó01 37 48 t't' 4A_____!49 18 -- TE PUKE 7ó8302 37 48 l7ó 19 ll5 L2<br />

758001 31 49 175 5 83<br />

? itaTÂHÀ1Â f,tATAr,tATA 758703 A1 11 49 t't5 L75 46 107 1ó ló<br />

PoNGAKATaA 76840L ?1 19 176 29 L25- 20 RUKUHTA 758301 37 50 I75 l8 69 4<br />

TE PUKE NO.z 7ó8303 37 50 L76 29 135 L2 I¡IANI ÂTUTU 768402 A7 5L t76 2'l r3l 2l<br />

HAIIILTON AÊRODRCIHE 758302 5? T75 20<br />

716203 3? '1 57 t75 L4<br />

85 15<br />

81 13<br />

t{HITEHALL'CAf{ERIDGE 758501 t7 52 115 3+ 93 15<br />

CAHBRIDGË- 75940,4 37 s4 176 29 89 l?<br />

76920t t7 54 17ó tô L53 L2 ROTOEHU FOREST 76e50L 7? 54 t76 ?1 130 9<br />

THORNTON 769601 31 '6<br />

176 52 9' I<br />

74 52 ?5 lt KUIIANUI 76eSO2 t7 5T 176 51 108 l4<br />

EDGECUI,IBE 7tsso3<br />

-¡t =8 -TÈ 48 9E ll I{HAKATANE 166<br />

ROTO-O RANGI<br />

Tiño-EiTF<br />

75e401 37 5e<br />

iÈ ieio HunsEni eoo_gq ?? 4 lI9 1? l3-9 ?l HAIN9I'I{HAKATANE 9?9901 1l =2 IJI =1 llt }g<br />

TAUi{ANA @ 3s T lre ¡o loo 11<br />

KAI'HIA 840801 38 4 L14 49 78 t? NGUTUNUT 850003 38 4 1?5 5 Lze L29 2L 2l<br />

ffi--8-66oéi-'aã-=5- -rTr-2T------RAnEmu --<br />

ffi---Ér4õr-18-1- -ii<br />

ARApUNI pohÉR sTN. 85có01 3g 4 ?8 5 NootrGltnxA 8ó0101 38 4 17ó. 10 132 lô<br />

OpOURIAo s?oocz 3s 5 LT7 o 1?ó 4u LA{E aKATAlx¡- 8ó1401 38 6 1?6 26 l2l l2<br />

ROTORUA AERODROHE 8ó130t 78 , 7 175 le 114 16 LllHFIElQdglfepRU 8518Û1 38 I 175 50 e9 17<br />

8?1003 38 e L77 5 110 e<br />

ÎARAIIERA FOREST 8ó1óOI 38 8 176 39 L49 1ó }IA IHANA<br />

-G[EñERõõR- -Bl7zfi+ 18 f0 175 t2 - ---?5 -t-t---<br />

I,IAIAHINA 8ól7cl 38 l0 -T-zr-- 1l-t6 +7<br />

-wnã(ÃEEx¡ RE¡¡A -_------ 86 12õã- 38 To Tt-r 6- lr0 9<br />

r50 zo HATAHT 8?2102 38 ró rJ? .<br />

re<br />

? rÍ1<br />

r)0<br />

?=r<br />

|TATPAPA PoþrER ffi fB 1?5 41 90 13<br />

s6?4a2 38 18 176 24 lIe 24 0PoKoTUTAR.IRUA 8ó3803 38 18 l?ó 50 L24 23<br />

ROTOIIAHANA<br />

-mmTTOlo --8t3ãõT- as 2o<br />

GRANT RttTKOPURTKI 863!02 38 2L<br />

ã ffi---E4tð01---38 2-<br />

TAIOÎAPU FOREST 8ó3401 38 19 176 25 8l 7 TË KUITI 853104 3g 20 175 s 66 5<br />

176 48 LZ3 24 NGAKURU<br />

só3I02 j8 22 t7ó 10 eo t3<br />

KAINGAR0A_ F_orq9_r 9q1æl 29 2-l 17c 5Z- - -tl -<br />

Water & soil technical e- AT TAI{UR I POWER sTN. 864003 38 24 17ó 1 IO8 I5<br />

r_7_6_ 3_! j publication no. 20 (1982)<br />

\). ?!_ - ___quMEl4!_rProPIo ,=_ 844801 1s-4¡ L-t4 5t tol e


o<br />

NUI,IBER<br />

HHAKAIIARU 854801 38 L7'<br />

EIIITEI-<br />

--T-646s1 '36-25'<br />

48 93 13 OHAKURI POI{ER STN. 8ó4002 38 25 176 5 97 I-E<br />

tT<br />

4t-----r,T8 21- -.- --ùun-uprnÃ<br />

8ó470t ,8 21 l7ó 42 t4l 30<br />

GALATEATNO.2 8ó+704 38 28 t?ó +6 9ó 1ó PUREI]R,A FOR,Ë ST 855501 38 31 1?5 33 195<br />

L-t4 52 91 I llA I RERÉ 855002 t8 ,2<br />

rA¡RAPUKAO FOREST<br />

LT'<br />

8ó5501 38 32 l?ó 34 91 6 TAHORAKUR I<br />

865202 38 14 1?6 L4 e9 ló<br />

PT.INI¡IA¡ ARIA<br />

85500 I ?8 35<br />

-TfmFEI¡F¡nU<br />

t75 0 78 e HAIRAKFIT <strong>SOIL</strong>.CON.RFSgóó102<br />

-ao6-e-01, tB- 37 Í71-5T - -ttä2_t- --- -nu-aT-- 38 31 17ó 7 97 l4<br />

A<br />

sóóeoz 3¿ 37 17ó 58 -64-6_ 8l<br />

¡IA¡RAKEI POIIER STI-I. 8óó1OI 3838<br />

l4<br />

l?6 ó 8t 1 TAÜHARA FÛREST 8662A1 38 38 176 t3 96 L4<br />

ffi-85E9õT<br />

'<br />

z6- r-irt-ET- -- -E.4 f 5- ---- -- riI-ñõrNuT-FÐ'{ESr 8óó701 38 39 L76 44 887<br />

lAUPO 86ó002 38 4l t76 4 75 ó TAUPO<br />

8ó6001 38 4t 176 5 óó4<br />

IIO{AKAT INO STN,I.IOKAU<br />

ffi__-<br />

847601<br />

86 8001<br />

38<br />

38<br />

43<br />

57<br />

174 37 94<br />

t76 5 t21<br />

14<br />

Tç-<br />

I{AIMIHIA FÛREST 8ó8201 38 50 17ó 1ó 81<br />

ilAPTER ilITD DISTRICÍ<br />

LOTll{ POINT<br />

-IIÃT-ARTU--<br />

IIAUlOTARA<br />

GATE ST ATION<br />

RUTÎORIA<br />

HHAKATANE<br />

-rmmR-EIlü-sTÃT1-oNiloTU'<br />

IAIFASA<br />

-7¡r-ó-0öf<br />

785101 ?1 33 t78 10 tló 15<br />

-3-t-4: -1-?€---E - -T3r -6---<br />

7812A2 37 43 178 14 180 16<br />

-7EE-00r 37-5T--178-5- - -T4r-T0-<br />

78e301 31 54 178 19<br />

tO8 lt<br />

TË ARAROA 78ó301 37 38 178 20 ttz 9<br />

- E-Ã S f-e ÃÞ E- [T-GFTt.|o u_s tr_ 7-s750T--îT- 42 - -TT8-5T -----TT5-T<br />

KATOA,hHAKAANGIANGI 787303 37 43 178 18 150 9<br />

--TíÃRÃEMII-S.CEOEI- T- st ,¿ Lrt 5> llr z,<br />

?8e201 t7 57 178 L2 112 15<br />

TAOROÀ STATION<br />

769eO3 J1 58 L76 57 100 I OPOT<br />

-88trI-0-1-<br />

IKI 8702û3<br />

ãB -3- t-7-B<br />

-l0_ - -If7-T7- .----fE-ÞltÌÃ-SÞ.qr¡ùGS --- 38 0 L77 t7 rO0 ?<br />

--BB-03-0f -ãE-t-r-7FT9- --TtT-Tr<br />

sl2505 38 16 tTt 33 115 t4 ITAN6ATU<br />

-TE_<br />

Ftq,EST 812904<br />

T7-I7î--r-¿ - -EÃî¡U-r-ÎÃr-Tõ¡t<br />

------EE3-0-o-t- 38 r7 r77 51 847<br />

67T8'0r<br />

38 18 t78 I rrTr<br />

IIANGAfUNA I TOLAGA 8AY 88320t 38 te 178 16 1û2 L2 t.IATAT{A I<br />

873501 18 2t t77 32 t03 I<br />

KORANGA STAT¡ON<br />

--RTFõT;ÎE[ãGÃ_B-AY-<br />

PT.tHA<br />

' ñõR-^-IRAU r Þ¡rÄqÂs<br />

IIA IHIRERE, BEC KINGTON<br />

HAERÉNGA O KURI<br />

GISBORNE HARBOUR,<br />

874301 38 25<br />

B$4ãUI- 36 25<br />

874841 38 28<br />

884201 3e 28<br />

815903 38 35.<br />

t77 20<br />

-f7gre--<br />

L11 50<br />

'<br />

l?8- 15<br />

L17 56<br />

87ó801 38 41 l-?7 48<br />

88ó001 38 41 t?8 I<br />

PARIKANAPA 811701 __ 38 _4å_J77__!?_ _-_ .<br />

oNEPOT0TItAIKARET,TOANA 878lOt 38 48 L11 1<br />

PIHANGA 878401 38 48 L77 26<br />

--89---E---<br />

131 2t<br />

586<br />

846<br />

?89<br />

102 7<br />

824<br />

11ó l5<br />

lL4 I<br />

108 l5<br />

I,IOANUI STATION<br />

ðT-ol(E-- -<br />

TË KARAKA<br />

EãsTI{ooD HILL<br />

GI SBORNE AÊRODROI¡IE<br />

IlANUTUKÊ T GI SBORNE<br />

EREPET I<br />

874342 38 25 L77<br />

814-d0Z- 1E-2-7 ---TT?<br />

e74805 3A Z8 L77<br />

8?t701- -38 34 - 171<br />

s76902 38 40 L77<br />

876803 38 4t<br />

9?7301 38 44<br />

TUAI 878102 38 48<br />

Í,IARUMARU 8?95û2 ag 54<br />

36<br />

52<br />

43<br />

59<br />

L-t? 53<br />

L44 2l<br />

90 tl<br />

83 12<br />

- B¿ TO-<br />

775<br />

8l ó<br />

177 l8 eO 9<br />

177 48 L3t 25<br />

t77 9 109 14<br />

L77 ?2 L46 23<br />

Water & soil technical publication no. 20 (1982)


8??20! ,3-q-<br />

--E[-LLçB.E-SI-ÂBD-K-EE,|,I- -5Þ !17 r-! I09 1-3 _TARE_!,,A_-<br />

-cr.voesAH(rrnl5ÈãrlwN s7s4Ù2 38 5't L71 2e<br />

- 8-?-e-q9? ---33--19- W -+9--.-r-8-6-28<br />

144 ZL rcÀNeAfo¡o siñrtronrnç sleltz 38 57 L77 47 L68 2e<br />

HAUI{GAlAN I}IHA _8þ9-9_L?_ V8 59 L76 es-I2---- FRASERTOHN'IIAIROA 91O4O2 39 O _ L71 24 LL' L5<br />

'4 126 1 HAIHUA VALLEY e7}20t a9 3 L77 14 11ó 15<br />

HAIROAT HA IPUTAPIJTA 9?0301 39 1 1?7 19<br />

HAIRoA __- e70403<br />

-L3-]- -!fl-ZE ---<br />

-93 þ _8AUzuNGÀ --9-?q!q1- !?--.1_'-L-71--8 123 18<br />

ll-2- l?_---=-SLENEAÊE-d!olEt'lÀqBt-lfqg93--- 3e---2 r71 2 L4? lr,.<br />

t16 29 Ll7 24<br />

116 42 ll8 9<br />

L76 ?3 L47 22<br />

!7_6L2_ L38 L3<br />

rE RANGr_[AUxqAHA3VßU9-éoqqL-:-9 BEA6H l-VLz?--_<br />

e?osol 19 5-171 s¿--- is tz BLAcK sTur.tp srATroN eó1401 3e 1Û<br />

'AH'A BAIRNSDALE eó2502 3e t? 1J9 19 --<br />

eó 16<br />

---<br />

ESK FOREST eó27o2 3e 15<br />

TAREHA e(,zsoz ?9-16 L76 i{-- tot zz fË I{ATRERE e62501 39 17<br />

TRELII!X_0_E__- - ?6-?1OL 19-t7 -t-t-e +5 - lr-s -1â -t¡l!golq---- ?óæ-Q-2---39--l-s<br />

çL$'¡qÂBB-Y-SIAf'-I-0-IL<br />

- --e-éÏol 4? r38 -3-e--L-e- -1-26--<br />

_p!BT!Â!p__Isrô!l_D__ __9_?380I - 3e 18<br />

-]11 2+<br />

82 I4<br />

?l<br />

-T-E NGARU eó3801 j9 19 l?6 50 L49 L9<br />

¡TA IHITI<br />

9ó4?10 39 22 1-T6 4' t39 24<br />

4301 t9<br />

IÉ HAU<br />

9ó4501 3e t76 34 IOL \?<br />

ESKDALE<br />

9ó4803 ?9 24 L76 t13<br />

RrssIxg-IoN -- -lé4191_--.7-e--21,,11þ -!3-'--115 l7 16<br />

- _-N4P¡E8lE-8qp8eË-E--- I{A IHHARE<br />

e644tl 27 "4 1?ó 29 114 l8<br />

5A<br />

eó4801 '9 3?,-2Q- t?6 52 8L 6<br />

SHERETþEN ____2-þ5Lo-L 3e 39 -Lf-g:9----l-u--1-q ---NA_?I.E&<br />

--9q??91--?e-99- r?ó 55 81 5<br />

*HANAI.HANA e654ot t9 3t-:,:.(, z6--__-104-tã cor-onsri Þooío 39 35 176 30 e0 1ó<br />

x¡ururu qoszgl 3g ¡¡ llg !9 lo3 20 TE KATAÎA eóó3ol 3e 37 L76 23 82 LO<br />

RosE H¡LL s665o? ffi s4 Lt xlsr¡nc,s -<br />

9óó8oL 3q 39 1?ó 5l ó8 o<br />

HAvEL_ocK N_o¡¡Tll_-- -e66soe<br />

3e 40 L16 it 82 I<br />

---- eó6901--3-e-41- l7ó 55 - ?3 5<br />

-IE-x¡I4dÂll-E-LocK<br />

r{HA_r(A.!uô_ _ e6!29t ?2 !? }I9 ?-5 eo 11 7e 44 t76 27 83 5<br />

TIHAKARA<br />

Illâl\^ñA tvtLvL ¿' -'<br />

----EI-A!¡-s--Eg-tsËlT-<br />

-?6!!9t<br />

HoKoPEKA _- e91?9? le 46 17ó 5ó Lze z4<br />

GHAvAs þlAvå)<br />

cl'tlõt ;<br />

--<br />

::::ll * i3 ,aA Eo o? A<br />

j-rqrq¡N-D- --<br />

jt-r9- ãi s---<br />

-11É- - -J7- -- ¡rA-rrAB¡-lA e68eol 2-e-4e L16 5e et 6<br />

--e6Bó03<br />

TLL 9ó8410 39 5l L16 22 90 ló S ILL<br />

9ó8802 39 l7ó<br />

BLACKB N<br />

232<br />

71<br />

A1<br />

9ó8 39 16<br />

92lJ 57 14<br />

liiirjårñU__' _ ____qqlgf-jg a \16 32--þt--!-<br />

HAK<br />

HOUNT VERNON<br />

|{ATPUKURAU<br />

---9ó<br />

968303 39 5l L76 23 89 l5<br />

s3<br />

lo3 l7<br />

9<br />

969<br />

39 I<br />

CLIN ó0502 400 L76 32 72 13<br />

rA¡?UKURAU6A5g340c1?633--TIgROTOI|AIóo?o24o0t?ó43e',15<br />

FOROALE<br />

ôu 6o7d6--1Í fu+<br />

120 t9 RANGITApU óOB1l 40 2 L76 49 Lz't 24<br />

Pt KERANGT _-_ TTZ-TiffiTATION ó0602 q<br />

KopuA q 11_ __i__z_ _ _TËHpLEts ILAT_- __- _ 60?ró _ aa---5 ---!1Q-iL<br />

t32 le<br />

Water & soil technical publication no. 20 (1982)<br />

-<br />

-


l9<br />

AT<br />

NU¡IB ËR<br />

AR',tËtlANA ÂRAIIOANA<br />

ó1801 40 9 176 50 90 t3 RED OAKSTFLËMTNGTE¡I<br />

1õ<br />

6L4O2 4A<br />

ñ<br />

-i----a1-î<br />

10 1?ó<br />

l+6 TË rF RE|IUNGA RFí{uNc z 7 69 l0<br />

-arooi 626a2 40 -----


955902 39 32 I75 5T 54 7 MAUNGANUI IVIOAþIHANGO<br />

-TIf_fa'_=9-ã' -T14-1I------¿I-1--6 -- _-- o-FÃFtr----- - e55801 !9 t4 175 5l 578<br />

s+szo-r tT 7'---T74-TZ 64t<br />

955?01 i9 t5 l'75 47 ó0 9 KOHHAI HLSIPUKÉOKAHU<br />

95ó701 3e 40 LT:2 +2<br />

- -5e<br />

eóóoûL 1? -3-7^JLó_=¡.^-- 70 J9,<br />

I HITFI'TAIHAÞE. Þ1636i- '17 -lí---1,75-ÈÕ: - 54 3<br />

HÊSSElTrlAûR0A e5?eot ae 42 L75 55 64 LO<br />

95640L 79 4l L75 25 ó4 10<br />

UTIKU SLIP<br />

e57S10 19 44 1?5 50 óo 6<br />

PAßI},IAÜHAU<br />

957ZOl 39 43 115 14 78 13<br />

Ërltr<br />

947402 39 +5 r74 28 90 L4 UPOKOPOITO s57to2 39 45 1?5 9 78 tl<br />

F.^VZÁ<br />

foqtç EsrArEs<br />

ffio = ??I?gi gsleoz a2 1+_+++__:+ *__ __:++t*:1ËË¿t¡uc_HuK_s-e4z4o!- 39 47 L7, 59 67 lO ?7ffi<br />

GL EN}IOOD eó8211 3e 52 t?6 l2 206 ?5<br />

TAf,UA<br />

ìffi;ööil"^': _jésspz=_ _zZ_iz _Lal 7s<br />

--, --i-.a-<br />

J-, -- -o-xl-Qrr- eÞsf,-o-l -19_-51- -175 20<br />

----<br />

IAterilul<br />

-9-59OOl<br />

ic SO L75 3 54 4 OKOIAT|TANGAONE<br />

nARToN FTLTEBITA¡ToN 50407-- +0<br />

-rÐ-- --<br />

IURAKINA<br />

O¡¡Vgrf Sft¡'flnfOH<br />

FE¡ ùp¡NG<br />

- - - ,- 525AL-- 40 13<br />

--L1Þ-33 --- 14 l-2-<br />

50501 -4a<br />

12 LL<br />

2 L75 tt 67 I<br />

uÄ8Â!A- -lq-gQ-!- 40 L L75 LL 66 ,?<br />

KOI{AKO 509A2 40 5 17, 55 81 L2<br />

TE AHA 51?q,!, 40 I r75 4? 48 3<br />

OHAKEA 52101 +O 17 17' 23 ,74<br />

FAI-TÄIÁP-IJ--- 52tO2 40 lL4_ 175 Le 4s 2<br />

--<br />

WHARTTE PEÂK TV SIN!- 529-9?----40 lf-- J-7¿JL 94 L2<br />

FlEtDlt{G SEHA-EË-?-L4N-I-¡¿å04 40 15 t!2 ?2 1?-12 -<br />

TLoeKHotrsE,BtJLLs-<br />

- izzot 40 16 175 17 50 z gÚÑr.¡yrHonpE- aot ¿o 17 115 38 78 L2<br />

6?.¿r'rr LO ?õ 175 24 6<br />

53ó05 40 23 L75 77<br />

r ^ ^t<br />

t tÊ at<br />

HIIATANGT 54301 40 24 175 t8 58 -6 -- -L¡$]gN--ì$-LrT-@ ia--4--]11-ZÞ-- 7?<br />

54442 40 26 ]31_ 28 51 TIRITEA NO.2 54604 40 26-_ I75 40 92 L?<br />

_3<br />

HILL r L If'rTON 54502 4 o<br />

ielltHeroN {t{D DrsrRrcr<br />

28 175 35 7-7 L3 ilA KOI{AKO 54701 40 28 L75 42 a2 10<br />

4 HAITARERE FOREST 55201 40 33 I75 12 ó6 8<br />

775 I.IANGAT{AIRE<br />

t{ANG^t{uTurPAHIATUa-54801 +o zl tts r'c 55?01 +0 3l L75 45 96 1ó<br />

FltlNl'lmulvtr,{n¿¡<br />

55óot {,o^2. .r? Êr * rr<br />

ËêxE^Hôq-lqHEr<br />

- -r_979? - 'g:+ -++! -l+ l.9 E_AsrRy_5I¡_r_r_9! - ----åóre!_--401!- t1?- ?l--- 7? r2<br />

IIANGAHAO UPPËR Sç+O¿-?O 38 -ttS Zg Lz6 tó LEVIN 5ó?02 40 3e 175 tó ó0 ó<br />

Water & soil technical publication no. 20 (1982)<br />

l1<br />

L?


A ON LAT. STATION NA<br />

NUMBER<br />

AHUNA<br />

5ó701 40 19 t75 +<br />

MOUNT BRUCE<br />

7t 01 1õ 46 175 9 532<br />

I{A TRER HURAUA<br />

I(tPÎHANA STN. IIATATKO 612ÚL 40 47 KOPU<br />

ROSEBANK'BIDEFORD 58891 æ 5l 175 51 69 9 AGSHOT STA<br />

PARAPARAUÍTIU AIRPORT 4990I 40 54 174 5e_ 6ó _5 __ HARANGAI STAÍIÛN<br />

TINUI DOI{NS STATIoN 69AC2 40 5+ 17ó 4 102 1<br />

llAIltcAHA'HAS-IFRT0i\|-- 5q6-04--¿¡--5e - r7'-57----6t 5 --<br />

GLADSTONE,TE KOPI I5O?01 41 L L75 42 69 L2<br />

PAEKAKARTKT Hr LL T4o-06T--4L---T-'r71-'6--só t2<br />

IIOODSIDE<br />

L503A2 4t 5 t15 23 --<br />

TITAHI BAY<br />

ffiunñrFloõf<br />

GLADSTONE IARAHURA<br />

KAPTTI ISLAND<br />

LIlIOEN<br />

AYAI¡0Nr LOI{ER HUTT<br />

IIARTINBOROUGH<br />

IfADD¡NGTON<br />

L4L8A2<br />

I 5tó03<br />

LOI'ER HUTTTTAIIIA ST L4?9TZ 41 13 L74<br />

c - +î-r+ -L-74-<br />

PURUITINcA.t'tARTIN30R. L52501 4I 14 1?5<br />

ffi---I4TeTÇ--fi-Io-I?ã<br />

HIKAUERA t526t? 41 16 t75<br />

KARORI RESERVOI fì<br />

-Offi¡ñõÃ-rA-YcLENBUR,NI<br />

TE I{HARAU<br />

IETCON HILL<br />

BAR¡NG HEAD LIGHl.<br />

STATION<br />

NUT'IBER<br />

57501 40 45 175<br />

5780t 40 TÃ<br />

5 8óOt 40 48<br />

587A2 æ ñ<br />

69001 40 54<br />

t75 7'<br />

I<br />

176<br />

35<br />

FI<br />

40<br />

æ<br />

o<br />

t09 t3<br />

8<br />

a2<br />

CASTLEPOINT LIGHT. ó9201 +A 54 17ó 13 69 t0<br />

¡{A TRARAPA CADEI FARI{ t5Gó01 4t o l7s -€--T-I-T'<br />

r5080t 4L 2 tT5 53 959<br />

1502orc<br />

r15<br />

82 t2 GR€YTOhN<br />

150401 . 41 5 t75 2S 61 10 5<br />

41 6 174 51 _q e q!{L_LÅGFTP0NATAHI 151501 4L 6 t75 33 72 t2<br />

.r 6 l?t 't----a¿<br />

rz- nrn-u-li-(-S¡imi-r----Éiffi-ffi<br />

4l r I75 66 I<br />

4T-E_r.z-zi=T--r3--E--ffi "o @ lll?94 41 7 r75 23 z3 to<br />

t5too4 4t t?5 3 72 e<br />

1l_- _8___1Þ, _1q___ JL l? F_ËR]!__E!EN 1ó1001 41 I 1?6 0 74 L2<br />

43e01 40 51 t74 s6 7t 6 TRENTHAM 15tOO3 4l e tT' 2 - 8? v¿ 15 a¿<br />

f+TEõI---+T-fil--I74 - 76 e ---Iõr'¡oeu-SH ERrñef-Sri,¡. -ffi<br />

r+r"/u) 141905 4L +I II ll rt4 174 56 1þ- 16 5 TAITATLOWER TAITÀ.LOWER HUTT HIJTI 14l9OZ t¿)tqo2 4t tt lL tt I74 Tz¿ 58 qq 93 o", lO rn<br />

- L5t4oz 41 11--T75-e-- aa àr clirvsto¡ L4zsol 4L Lz L74 4e eo t5<br />

-- -!l??07 !!- \2 L't4 51 7_l É I{ATKQUK0U,LONGEUSi{ 1526ü3 4L L2 L15 36 58 s<br />

5+ 18 e hrA¡NuroRU vLY.rNAGATAl526ol +l 13 t7i 4t ?z<br />

--_......:---_<br />

13<br />

,> a+ 9 ËAHAKI t524A4 4l t4 175<br />

306û9<br />

25 57 I<br />

t{AKARA L42143 +L 15 L?4 42 83 9<br />

L4270L 4t 17 174 45<br />

rz3601 4i Ia Í74 tl-<br />

153801 4L le 175 5l<br />

5 s - r 1A-r ¡- -<br />

--fÃTõRmc-õ-,rTT-- r5210r 4r r6 I-75---9<br />

J1 80 14 ¡{AIHOANA TE }II{ARAU L52tO2 4L 1ó t?5 53<br />

9Ce<br />

8C L2<br />

82 13<br />

---TB66T - 4T-26 - T74--5õ ---T a--t-5 -<br />

144891 4t 25 t14 52 78 L7<br />

FAREI'ELL SPIT LIGHT. 35OOI +A 33 N3 L 74 3<br />

-TlITEEnt--- 26401 40 4-I -11-I -z-Ç - 75 -1<br />

tArftA AERODROT4E 28701 40 4q t72 46<br />

lO7 I<br />

ffi - -T2osor-4- T- r - - i-tz-E c- -fr c z s-<br />

llos3 BUSH 120elo 41 3 L72 55 t14 12<br />

Water & soil technical publication no. 20 (1982)<br />

KËLBUTINTWELLINÈTON 142702 4L 17 t?4 46 71 5<br />

noNogr-lr --_ r+aeTe<br />

-a[lg-il{-l! 7l tz<br />

-- ?9 ll<br />

IlÇsEût-H¡ -<br />

__ _ TETLINGTON A¡RPORT 143807 4t 2g L14 +9<br />

8?<br />

EE IZ<br />

ó9ó<br />

CAPE PALLISÉR LIGHT. 156301 41 37 I?5 t8 789<br />

STEPHENS ISLAND LIGHT 4óOOI 40 40<br />

- - aÃlñ¡rIr.r ---r15õt -4O-"6 -<br />

UR,UTHËNUA 29801 40 59<br />

TITIRANGI RAY<br />

RIHAKA VALLÊY<br />

140IOZ +I r 174<br />

L?aeoz 41 3 L72<br />

L74 0 578<br />

t72 3? Leg 25<br />

t72 49 r7l ló<br />

9<br />

55<br />

erTt<br />

133 tó


COBB POTIER STATION<br />

ßIIAKA t IIOTUE KA -- rzl-ttrf<br />

ÎH¡'IROTHERS LIGHT. 1414T1<br />

1 2070t<br />

-6- -LïZ 5F--<br />

_-IûI--t Þ-etKo-KiÑ-l- ---TtI963--41--6--TTT-56-TI-ö-T4-<br />

ffi-T4[OoT-<br />

4I<br />

TESIERN L oTFÅ xqvr Ej' i 1_4 e_q_1<br />

4L<br />

-4-1-<br />

41<br />

5 t12 44 149 ?4 COBB DAH L2l6A2 41 6 L72 41 118 9<br />

6 174 21 69 13<br />

T---T7T-T-_-LTT_N<br />

7L742<br />

41 1ù 112 58 88 e<br />

T4-17- - -- mlrE_ï rurFR-tr--<br />

84<br />

57<br />

ó3<br />

HDTUEKA 131002 4t 1 L73 I 118 1.8<br />

IZ1eO3 4I e L7? 5e<br />

141002 4l 10 L74 2<br />

}.AITARIA 8AY<br />

ïHAHCA¡|OA 2 1315û4 4L 11 t7? 3t t44 ?5 COLLTNS VALLEY 131503 41 rt r73 14<br />

rjffiRTFo_T-22aõr--¿i-rz--_IT2-5o-__T3T2o----__FtanÃKEK-_-13200_T-lT-I'-1?'-_r<br />

TFFIEEY-- ---rrzrol--4Tar-T1a--é----6r--4----TEt-gctr FRo-õRTrr4-F-.-T!2-62ffi<br />

ffi1¡_qKSI4ZOOr<br />

BËNE AG LE<br />

GLENI{AE<br />

SEAVI trll<br />

LZ3 ¿><br />

L54 24<br />

l3ó 1.5<br />

nAI.vALLEy L32501 41 t4 t7a 35 t41 14 THORPÊ L22802 4L 17 112 5L<br />

6t-<br />

NELSON t7¿¡.o1 41 L7 .173 18 6e 4 r.lA ITAI VALLÊY L323A2 4L t7 173 21 141 26<br />

HAVELOCK l327OL 4L 11 173 46 146 24 LIÀ¡KWATÊR<br />

r32Súl 4l t7 171 52 155 26<br />

çT-TT--TTÇ-T---T0-g-¡¡ Dltv-E-õ-A-LE<br />

---LT'EOT-4-I T8 L12 55 7' 6<br />

CANYASTOT{N t33ó03 4L l8 113 40 127 ZO BATON<br />

123701 4L 19 172 43 9t I<br />

-HÃgËLOCI( SUBTJRBAN<br />

- 13l7OI<br />

-<br />

4I ?a L17 46 114 15 oCÉAN 8AY<br />

143101- 41 2t taL -'6 109 TT-<br />

KOROHIKO 133eÛ1 41 21 173 58 153 2L HOUTËRE HILLS 13300L 4L 22 I?35787<br />

HOUTECE NO.4 133OrO 41 22 113 96 10 HCUTERE N0.5 l330ll 4L 22 1?3 5 e? 11<br />

lrlot TERÉ No.I2 133014 4L 22 t73 5 9Û 11 i'IOUTERF NÛ.14<br />

noOine nlven r3?:-g!__+]_22---L7-3- !!-- --. e6 -- ó r33t1 2 41221735979<br />

- - - -- BRIGHTT{ATE-1--- .-. 1331 02 4t ?t t7t I 9l l4<br />

-taffirELD NoJ r¡+oo+ 4L 24 173 3 e5 ç HANGÂPËKA<br />

r'roluPtKo -L-?+:99L 1L ?L t246AZ 4l 26 1?2 38 83 7<br />

L72 4e 18 L-2 _!ta I toa__G-o R_GË_ N<br />

q, 3_ _ !34qLó 1LZl L73__5 *__l_04__té_<br />

HARSHLA[q_9__-_ -.- !41-0-ql--!I 2-1 l-21---9 -89<br />

T¡BlANs itÄttgy 135501 41 31 L1? 35 105 1-9 ASnqQ{N siltr!lNAt!Ä!uru!34éQL tt Lq<br />

10<br />

-]:D- 4r 12? L5<br />

aLEÑHEtt'l AERoDRoMtr 1358ü1 41 3l t7l 5? 55 I<br />

-<br />

_BLEf{HEIr't _.__I-3å_?g¿ - 4L 1r r11 51 5> 3 r2590L 4r ?2 L72 56 108 18<br />

---iiI}lIPANGtl<br />

SEYEilOAKS 135802 +L 72 L73 4e 669 GOLDEN DOIINS FoRÉST 125801 41 33 172 5l 774<br />

FAI Ri{A LL _ 135803 4L-31- ,!73 51 ò5<br />

- - 9<br />

t259or<br />

-lyrrEsFrELD-- - 51,]l- -11_?<br />

!\<br />

13ó701 +r z6 173 45<br />

UGBROOKE r46LA3 4r ?1 r71- -þf<br />

136e40 4L 38 1?3 53<br />

ITAIHOPAI POyIER STN. !1óÞif - 41 4A- -L73-34 -<br />

Lt5 28<br />

554<br />

6_<br />

7<br />

I<br />

79t<br />

93 ll<br />

__L]Þ2Aþ 41 35 -1?3<br />

56 192 19<br />

13ó401 4t 31 177 24 73 e<br />

14ó101 4L 37 L74 9 59 9<br />

BIRCH HILL 13ó201 41 39 I13 11 96 L4<br />

sÉD_qoN 14óOO1- 4! EO- -L74 5.- 7t L6<br />

EAPE,çÂi{e_LËL-L__LIÇl!Ir L-+7 9-t -*-L 1! -L1--+-}1<br />

THE LËATHAM<br />

4L 45 r13 L2 106 t1 rnÊ-H-ll-ooNs 13?9ol 4L 45 173 5e - 84 l8<br />

¡ I lg LÊÃ I I r^r I<br />

rAI rrr \1-!9Q-? 41 45 t74 5 9e \3<br />

AOIEA 137802 4L 47 tlt 4c 77 14 I{URCH I SON 128301 41 48 L12 ?A 653<br />

ÃglE^<br />

- LAKE RoTOITI t2asoz 41 48 L72 5L 1? -J_ - ¿U-UIÅE9!- l387ol +L---]2_ L73 46 85 13<br />

Water & soil technical publication no. 20 (1982)<br />

73 13


â<br />

NUI,IBER<br />

Lü{G.E<br />

ON<br />

NU14EER<br />

I,IURCHIS=ON L¿o,v¿ t283OZ 4L +L 50 )u t tl? t1 ?O 2.9 ó[ ó1 s5 HANGLES VALLEY L284ù2 4L 50 172 24<br />

CHAÍ{CET HARD 14glor 4r ¡o - rz¿ 1r<br />

- -84<br />

ls -- --Srx-rriiE - iããaó+ il-m-iffi;<br />

f.f!99I,.lI4TERE VALLEY 13??91 41 54 L73 34 83 15 r,trpoLE HURST 13e4or 41 5e L73 ?7<br />

xoLEs¡{oRTH<br />

---ZidZdL<br />

CHRISTCHURCH I.iWD DI STRICT<br />

¡IESTPORT AÉRODROI,IE<br />

¡NANGAHU_A _ _ _<br />

II{ANGAHUA LANDIN6<br />

L22lOL<br />

It75A2<br />

I18901<br />

1 1eeo I<br />

4L L5 27<br />

4L 44 fZf aS 784<br />

_41 51 _ l7l 57 s3 ó<br />

4L 55 tzt s¡ ror rr<br />

ERTo}I<br />

I{É STPORT<br />

BERL INS<br />

DUI{FR E ITH<br />

746<br />

776<br />

50?<br />

16802 41 41 l7l 53<br />

117óot 4L 45 171 36 8tå<br />

118001 4l 52 171 50 135 al<br />

22020t 42 4 t72 15 89 ô<br />

REEFION 211801 42 7 l7t 52 78 3 _ REEFTON 211802 42 7 l?t 52 8? 11<br />

LE¡rls PASS 22340L 42 ?3 L72 24 102 e GREyr{ot TH ?L420L 42 27 '1?1 L? 108 t2<br />

OOBSON 21430t 42 27 171 t8 109 1l GREYT.IOUTH 21424? 42 2S t?l L2 100 6<br />

w tt5 tl PAROA 2r5ra2 42 31 171 lO 107 t2<br />

KArrlAÏA 215401 42 32. 171 25 108 9 HAUprRr Z159ol 4? 34 lzt 5ó 99 lO<br />

ffi<br />

HOKITIKA SOUTH 20790t 42 +3 170 57 Lag_ ó _ HOKITTKA AERODROilE 2O7eO! +2 43 t7O 5e LOz ó<br />

LAKE KANIERE 218102 42 48 l7l I 1ó6 2l OTTRA SUB STATION 218501 42 50 l?1 34 183 I<br />

Ko¡aHrrIRANGr No.2 z raoor Tr r:-t7r z t51 21 ROSS 20e801 42 54 170 49 t4? 15<br />

HARI HARI 301502 43 I t?0 33 200 27 HARr HARr 30t503 43 9 t?O 33 L75 25<br />

LO¡|ER llHaTARoA 302301 43 Lz L7o 22 L52 20 wHATARoA 7oz?o3 43 tó L7o zz ztt 2.3<br />

FRANZ JOSEF 303lol +3 23 1?O 11 2"2 19 FOX GLACIER 3O4OO1 4t 28 1?O t 184 23<br />

Fox GLACTER 304002 4? 2S 170 L 215 3? I{AHITAHI 3966c,2 43 38 1ó9 3ó 186 28<br />

3-EmI-<br />

BILLY CAHPTHAASÏ 399301 4? ,6 169 tB ?33 32 MCPERSON CAI'IPrHAAST 3g93OZ 43 57 169 19 L9O 27<br />

ffi-tE116T-4:-4;---T6çm_-FAAS.<br />

M zaóóói 42 I t?3 5e rz¡ ?+<br />

NGAIO DOI{NS____ ?392_A?_42__ 4 _L73 57 L27 28 GRANGE ROADTHAPUKU 2t36OL +2 le L73 4L 158 30<br />

SA¡IYERS DOI{NS 233401 42 27 l?3 29 I3A ?1 KAIKOURA 234701<br />

HAI{I{ER FOREST<br />

---2860T- 47-s-t- TtZ m --zã¡Eõi<br />

COiITIAY FLAT 23ó401 42 39 L?-f 27 101 24 t{A }tKS HOOD ?3ó302<br />

RIYERSIDE ?2180t 42 43 t72 53 -IF---E----FERNIEÐ<br />

548 ISLAND HILLS<br />

sP01sH00D 23730L +2 45 L7t 18 I08 24<br />

LAKËS STATION<br />

Water & soil technical publication no. 20 (1982)<br />

?2750L<br />

22720L<br />

42 25 tÌ,- 42 968<br />

42 36 1?3 le<br />

42 3e L73 20<br />

42 45 172 ,7<br />

42 46 L72 ló<br />

r31 2?<br />

t3,ô' 25


CULVERDEN<br />

GME_E¡V---<br />

2218A? 42 46 r72 61 +a 6 LOWRY HI_ILS STa¡_1s¡¡ 43q!-q!-!L-2L- 1?3 ó 75 L2<br />

gÊ . evL<br />

ãisaoi 4T5r 1E Í9- F- iL sÁL-uoRÃL-FoREsT zzï-tol ãis3o-1 Etsr1B i9- - --f 5- it - sÁL-H0RÃL-F0RESí- zzï-to7- 42 52 t r¿ 1> )+ r<br />

PORÎ ROBINSON 2383a2 4? 5?- L73 18 ?8 13 MASON! FLAT zzes}L 42 54 L72 32 48 ó<br />

¿2ô3V¿ -¿ )._ La2 !v<br />

zzç4d1--12--55--T7Z-26---aZ-iT ARTHURS PASS STORE zresvz +z >6 I rr 5r ¿5v ¿5<br />

?3e_Lgr_ 42_56 _r't! -2 ,-<br />

171<br />

T-l-? -ABr!-r-uLLqël-- -z-!22e,t--!41<br />

t4 183 l?<br />

--<br />

SANDHURST PASS 3207a1 43 1 L72 42 ó0 lt<br />

--r.t-otu-tt-¡-u 'hEKA --¡-e-ooor--11- T 173 5 79_ r'<br />

HouHr rüHIrÊ srArIoN 31oeo1 I{A<br />

-SRT_TÃSIN<br />

1? 1 -111 ?9 ---FuTErÉTf<br />

I P ARA<br />

72A7A2 43 3 L1? 45 548<br />

---9ll<br />

3TT-7c'1 47 I 171 4ó f7 I<br />

cRrfo¡eaunrr FoREST 311702 47 s 171 43 78 I !L'll3¡_Ë q4_L -E__ _ a?LZOL 43 9 tTz 12 7r tI<br />

GLENÏHTRN È 311401 43 tl 171 21<br />

nà ¡r-FER-n-TVE R -- -- -- 91 L2<br />

A].IBÊRLEY<br />

3 21701 43 9 l-tz +3 80 t7<br />

Tõð-u-Fs¡--- 3?ø7õ67- 1-3 lZ -t72 2q- -- 1s-t2<br />

-- :-lT4dT- 6-LT-I71|-2 s 7' lo<br />

CKUKU 322!02 43 14 172 23 67 to<br />

TEf,FO-SFSIATION<br />

KTLt{ARNOCK<br />

-<br />

GLENALLEN 22960t 42 'e<br />

l7z 39 51 I<br />

ciËiñ'-- ttolaz- 43--2-a7T-+5--- -62 -6<br />

CASTLÉ HILL 3r27AL 43 L4 171 43658<br />

-FEIK_HIf,t<br />

_=4ilg--f7T TTT4TT rT--_-TZ-T3------m-0-ur¡rTtRaãssE--------3T3-90T--E-5-TE-TirI- 56 a5s<br />

RAN6¡ORA<br />

t23502 47 le 112 34 66 9 I{OODEND ?23602 43 ?A 172 40 73 ló<br />

L.COLERIDGE HOI{ES TEAD3l350T 43 ?I I71 35 óü7 LAKÊ colÉarocl 713502 43 22 l?l 32 ó1 6<br />

TÃL-ËTHT¡RPE<br />

- --3-13-t-07- -45 -Êfln-e<br />

2A- 171-52 74 l0 wÉlu roresr- - 1z-+7ol +{-24 - 7.72-fr-------6T-T<br />

¡IAII{AKARIRI BRIDGÊ 3246CIL 43 25 LlZ 79<br />

ffi õñ- ---TtTTrJ r - -4t ZT<br />

DARFIÉLD<br />

!24IO2 4l 29 - -¡¡--Ça- 12 15 UPPER, LAKF TIFRON 314110 47 26 171 11 77 tO<br />

---?E--e- - --frcV-Fl-¿ID-S--<br />

L72 I 6.5<br />

Ar¡1PORT 3Z+50L 43 29 172 12 51 7<br />

43<br />

SI{IRLEY 3256A3<br />

-Þ-AFÃRIIÃ-TR-rSOñI-FARE - ã25-{OI - -43-tf<br />

43 3ü L12 40 17 18<br />

-<br />

a7-f28<br />

43<br />

Èrpffi_¡R-rsoñr-F¡Rm -ã25-{oI --43-tr -a7-f28 - EREhHON 3058Ü1 31 170 5? e2 L2<br />

iuoSfof e--.. - 5ó- 11 H0'ìE-RATA |.¡ËsT -3f58or 32 171 51 6-3---T<br />

43<br />

CHRISTCI{URCH 3256t1 +3 32 L72 V7 54 3 BRûFILEY<br />

iI5-óoz tzt +r -<br />

r C<br />

+3<br />

iuosrore---- II5-óOZ +z tl l?1 41 75 - r-{RI STCqURCI'{ 325103 3? 172 42 78 14<br />

1 HoR0RÀTA<br />

- 31i90i 13 L7l 54 ó5 '9<br />

43<br />

HORORATA SUB STATION 315e(i3 43 33 l?t 5e 51 5 WI GRAù{ AE RODc'0i'1E ? 25502 ?3 L72 33 544<br />

I12 4a<br />

HIGIJBANK PÛþ¡Ëì S1\¡. 3L57C2 47 35 17I +4<br />

I,IOUNT PLEASANT 3251A4 43 34 T12 4A 53 543<br />

B<br />

172 GOIILEY H:AD LI\;HT. 325801 43 35 L1? 4g<br />

HOR0TANE 3251A5 43 75 r72 42 71 15<br />

.Eß-E. EltÊ-L-E-L D-S-r Lt t-it1С{-(- 3-r-ó7-QL -43 6 T5 18<br />

? --lU- 4L-_ ó8 I<br />

ALASKA<br />

I<br />

--<br />

3L6505 +3 76 -.-L7L_--3_-1- - - EÞ- - e-<br />

LYTIÊLTON ?261CL 47 ?7 L72 47 84 19<br />

stRilHAH SEþlloE PLÂNT 3263AL 43 31 L17 19 55 9<br />

üE-IHV-EN 1!ó6QL<br />

-<br />

- -43 38 -r?l--ae - -.-<br />

7L L2<br />

-Ë-Esg¿Ol¡tltÀ - --- 3.Ûé901-- 43 39- L79 5-4 tt L?<br />

3 !6tù_? _ +? 19 _ Ll L 27-- __gt- r I<br />

r,rouNT Po99E5!!-o¡L-- 3162C11 +3 32 L7-L- ]! -83 18<br />

ST AVE L ËY<br />

326401 47 ?9 172 28 54 ?<br />

cneesloÈ 3lô8ol 4? 3e t'71 4e 86 t7<br />

L INCOLN<br />

puRAU 3?6'192---43 39 l7Z 45 L25 30 336001 43 4A 1?3 0 96 ?l<br />

SPRINGBURN 3ló403 41 +l --<br />

LTTTLE A(ALOA<br />

171 29<br />

EVAN9ALE -1113-03- 43 83 18 TÊ PIRITA TI{ÊAD 3ró901 43 4t 171 59 62 lO<br />

42 rf I 20 _8/+,18 tI LYg¡iK_ 5T-AI I8N 3q_?J!1 43 _!3._ rla 84 13<br />

- Water & soil technical publication no. 20 (1982)<br />

"4<br />


æ<br />

TATI<br />

¡rouNT sor.tERS 7L740? 43 43 1?1 24<br />

THE HERMITAGE,r1- -c-ooK3o?ro ll¡-++- Ito --- ó<br />

KILLINCHY 3212A2 43 44 t72 L4<br />

EASTHOODTLE FONS 3Ay 33710L 43 45 173 6<br />

SOIfERToN 38992 43 46 tll s5<br />

83 _U______ GRËENPARK__ 3275OL 43 43 L12 3L 453<br />

zag 15 BUCCL EUGH r t¡tT. SOüE R S 317403 43 44 171 29 ?5 t3<br />

5\ -l<br />

TJH I lF RNfìK<br />

3 1710 t 41 45 t?t tô ,A l,<br />

lo0 21 BRAC(LEY, T.IAYFIELD tL73O4 43 +6 171 rrl 25<br />

558<br />

o \ AI-Ë-IÐUVÂUEIJ E l=L E -B¡ Y3eZ9-q!<br />

- 43 46 L'tz 19<br />

56 948<br />

1?_l _35 _ óé _1_r<br />

t{ I NCH tYtOR, S<br />

318803 43 48 171 48 55 I<br />

172 58 t37 27 LOCHA B ÉR<br />

318001 41 5g 171 4 74 tO<br />

171 l5 lI3 ?4 I,IAGNET BAY ___ .128701 43 5l L72 45 65 13<br />

170 28 544 VA LETTA 3L85A2 43 53 171 75 58 I<br />

AKAROA 32890L 4' 49<br />

IrtouNT P EEL 3t5202 43 50<br />

GÛDLEY PEAKSITEKAPO 3O84OI 4! 52<br />

AKARoA HÊAD ____ 728eAZ 4? 57 t7z 59 -___ 8e _2r_ ___!{IDEAI_!!5HAßL __ _L,L?403 !3 54 t7r Z' 78 1?<br />

ASHBURTON 319?01 +3 54 t7L 45 5e j_ __ DEEPBURN 3Oe8Ol 43 56 170 1?O 51_ e8 t5<br />

ORARI GORGE 319206 +3 58 l7l t2 101 T8 BRAEI{AR<br />

309201 43 59 170 12 6? 3<br />

IqJryI- {OHN 30e4or 43 5e r?O 28 +2 4 HrltDs 3te4ot 43 5s 1?l 2ó ó3 7<br />

171 ro sBrr ffi- ;ôó¿õi ¿í-í_jiffi<br />

FORD 410601 44 7L ?6 58 6 HORIIELL s 4007a2 44 2 170 43 Ác å<br />

HIIAST PASS 4eL3A2 44 6 L69 22 t+4<br />

ffiñ+ç-la-<br />

9<br />

LAI4BROO( 4018û1 44 t?O 51 57 4<br />

I t711e óO 7<br />

CûLDSTREAT{ No.3 411503 44 9 l7l 33 ãl ,<br />

.LAKE €IHAU_!_I¡rION +etBfJz +4<br />

s l?l 37 5r t<br />

LO- Lq 49 724 LAKE PUKAKJ NO.z _- 4OI1O2 44 11 17O B 12?<br />

TEHGAIIA I 4O27O2 & 13 l7O t+4 51 7 1ËI,IUKA 4l?204 44 15 171 l? 453¿<br />

iE--<br />

ç9f!=CIEEK'r'lAllARo 403e03 44 l'8 l?0 54 ó8 12 TIIIARU AERoDRot{E 4l31ot 44 lB t?l 14 4? 3<br />

SEADOIIN<br />

RIEBOt{tlü)D __ 493801 44 22 169 51 60 + SilITHFIELD 4lt2o2 ¿* 22 171 15 4' 5<br />

GLENITI RESERVOIR 414104 44 ?4 1.71 ll 51 4 TII{ARU HARBOUR 414202 * 24 171 l5 476<br />

TIñARU 4t4ZOt 44 25 l?t 15 51 t ADAIR 4r4rol 44 26 fm<br />

HAKA ITAKA uuhrNs DOIJNS 5lAlluN STATTON r+(xlóol 404óOl +4 44 26 r70 170 40 +9 3 r{ouNT NIt{RoD 4o4got 44 26 170 53 75 12<br />

oTEXATATA 1062q3 +4 36 1?0 L2 38 3 __IIOANAROA 416101 ¿+4 36 l7t ó 78 l?<br />

¡rA¡KORA 40ó?01 t4 40 l?o 41 ó6 6644 LAKE I{AITAKI<br />

}|A¡HATE SADD-LE ¿07t-t-<br />

40ô401 * 41 t7l) 170 2,<br />

*<br />

47 I<br />

1+ Ií7A<br />

70 59 -----ã- 7 HArrrrATE<br />

FORD HILLS 407?01 44 45<br />

--- nzoói ++ +¿---Îtrt 57<br />

70<br />

46<br />

Water & soil technical publication no. 20 (1982)


\o<br />

ffi ,F----4ezz6z-44-Tr-rETt---18ç--ç---------tîrñÃmr-Eãy--<br />

rARA HrLLs,or{ARAr,rA +929-9\ !1 2! !!9 =2- 2-2 ?<br />

TPFEn-TEG Þo-H-Ed-tÎ-N; 4-ca0õT - 14 5B--<br />

i-oçoõ-i 14-58-- Gç--¡ - --61__--- - -oÃEÃ-[u Ãr-tro-oTsHE--_--4fç06T--1T3î<br />

-¡FTFUFs_To1NT-----,t696ilr'-++-5Ç_-ró8_Zõ---74l4---[ÃÚDER¡TÃ1---_--_'g61<br />

¡TEODERBURN 5OOOO2 45 1 1?O O 42 ó NASEBY FOR,EST 5OOIO2 4, I t?0 6 44 2<br />

TúEEñsfirFr s-õiioiffi----tr-i-ffi---Eirini<br />

G¡BBSTO¡{ 5gggot 4, L68 57 51 7 CROI'IHELL 59O2Ol 45 2 L69 12 39 t<br />

-mTÃK-ANút---- 5to5õ-1 +'s i " l_¿q-¡r-- - 5l -a - o¡¡r-n:: - E-çreor--€-T-a6r-?F------æ-T<br />

--a --raE- 45_- - --4T-l - -RAN-Fu-RTf 50rt01 4, I 170 6 30t<br />

-FTE-TFEER-<br />

581?õi<br />

tfAlPIAlA 501102 45 r01709?83<br />

TË ANAU ÐOHNS 571802 45 ll 1ó7 50<br />

59130r 45Tf-T-6e-TE 365 -- -_x¡T-æR<br />

45<br />

5oró01 45 11 1?0 4l t07 25 -t1ó02<br />

11 l6e<br />

GALLOHAY<br />

59249L 45 13 ló9 79<br />

28<br />

HERBERT FOREsT<br />

IIANORBURN DAlt<br />

-TROTTEFS CRE'EK<br />

TE AtìlAU<br />

45<br />

5-e25A2- 45 L1 T6E-2A- ---24-¿ w-Ãril¡Àîf<br />

- -<br />

- l6zÍdT' -85- r4--f To--E ,32<br />

W ró915 59 ó<br />

ËoRyEN HILLS 4eó501 44 a9 1ó9 30 58 I HILFORD SOUND 47ó901 44 4A L67 55 235 16<br />

T[mm-FosT-EFFr-r-E---4-çzTõrîïEz-:toç:i---6=-7-=E<br />

TTinRE----<br />

-----ZõEE-oI - -44-TE -Fto ¡-o-- 4? -a----TARRAS--- 4e8401 44 ,o lóe 26 ,79<br />

GLEìIORCHY 488301 44 5l ló8 23 78 15 DUNTROON 408601 44 52 170 4l 19 I<br />

49930L 44 54 ló9 19 5ó 10 AL-AßSTONE HILL ¿r999ol ¿l+ )ö ló9 55 40+<br />

TEX'õTGO_-<br />

489801 44 51 169 50 49 3 KNOÐS FLAT _____489001 44 ló8 2 e07<br />

IRROHTOIdN<br />

'8 t?l 5 56 lO<br />

Tf,YD-<br />

KAURUTTHE DASHËR<br />

-mFFSgCC-usF-<br />

5T¿-762 --45 I5-- 1-7O 46 -' -9T-21<br />

30 z<br />

593601 45 22 169 76 t2 1 GLENDALE STATION 503401 45 22 L70 ?7 óo t3<br />

5 03 EOZ - -4T -ZT-TZo--49---' -Tt - 11 ffiD--<br />

574801 45 ?4 1ô7 53 öO E<br />

5141$t 45 25 167 44 5t 5 TE ANAUr(A(APO RD 574802 45<br />

- óî --6<br />

25 ló? 4S 59 ?<br />

-p-ÃEFÄII- --5o490T- -45-25 --L-ô,-e -17 - - RoxtuRdi{- Po-WER<br />

-Sïñ;<br />

-ss43õ-I--4-52Tl6119----=0-T-<br />

-EYFF-CR-EF-K-<br />

-5e546-1 4l3T- L-e,s zl - - 5-t--ó<br />

G-R<br />

-ÊÃ1 -rq<br />

oS 5 -S w-A r'1Þ- - - 5958 0- t - 4-t-3-T--I69-49 ++,<br />

GARTHIIYL?tlIDDLEt¡IARCH 5û5102 45 al 170 I 385 CFNTREWOOü 505?Ol 45 31 170 4ó 619<br />

-5-E toT' -41-TT-Tæ-I9-_---- 1{-7- ---Hf LtTõ-Þ'' RorSnRcF-- '--595-405-aÆ- 33 169 24<br />

ROXEURGH EAST<br />

FlAflÃru\,^L TIANAPOURI<br />

' --' ---__-<br />

575601 4' 34 L67 36 51 5 MID I)OMÉ<br />

585502 45 34 1ó8 30<br />

-ëx-Ë-nn-v=rA-R-F;Þ-u¡Err1¡r -EOó-6Õz 11 1r -iz6 T'Ì- --tI -<br />

6- LÕHÍHËR- 5-ft6401, -15-41- 16{21 42 3<br />

-DEíp-TTRË¡EI-O;Z-_- 45 4r -I:ÇE 5e --- ]3<br />

ruNROBIN '.q69Ú2 587101 45 44 168 7 5e<br />

R f LÞEñ r\Io .I 5 912tL 45 4t I ¿i9 r 2 Lg<br />

HINDON 1:ARM 5012itL 45 45 17û 12 62<br />

I{ENDONSIDE 5877Ü1 45 46 158 4+ 41<br />

9<br />

7<br />

êt<br />

9<br />

(,<br />

Water & soil technical publication no. 20 (1982)<br />

MUR{AV CRËEK<br />

T? rl<br />

3t<br />

2Ö<br />

I<br />

3<br />

4rc<br />

5612OL - 45 42-- L6{TT------37--ThATKAIA<br />

58?8ol 45 44 168 51 57 t2<br />

pt,rt'w;¡o -<br />

5o12t2 45 44 170 15 69 14-<br />

ELAC(t{tLJiìi STATITJN 57871Û 45 +6 16? 4Û ?0 I<br />

MüA trLAT' 5972ú? 45 46 1ó9 t7 41 3<br />

5l<br />

ât


N)<br />

o<br />

STATIoN NAr{gmLfï3---ffij<br />

NUIIE ER<br />

f.{ONOtlA I 5 7760 1<br />

IAIAROA HEAD 5077Û1_-<br />

ST PATRTCKS,DUNEOIN 588503<br />

tÞ_<br />

45<br />

45<br />

IULLIYAN__AAH 5_Q,95_o__3<br />

INVERI{AYITAIERI 5083i1<br />

41<br />

45<br />

47 L(r'| a7<br />

-<br />

4't tza 44 . _,<br />

4e t68 32<br />

1_9 _L7A _31__<br />

51 1?0 22<br />

-r, ----<br />

-NAf--TTrrlo¡¡<br />

NUI{B ER<br />

LAT. S LONG.E<br />

55 5 L:: ËLAT 50?001 45 47 t7O Z 4L j<br />

---19 -J. - -B4F-s- -J-!rN-EI-r-ç¡¡,t--._ ._ sea90l__.t.Js Jþ2__4_ 44 6<br />

46 7 I{HARÊ FLAÎ 5í}84ùa i{ +ç tiO zd -1rr 2r<br />

?? L6 _SAbI_YËRS 84Y 29góq1 45 !e_ IIO 3ó er 15<br />

51 ó Rsss cRÊ=K roe¡oi ¿t 5a i70- 30 - 8-Ìi4<br />

s B¡,rúo,r¡Lr eurnÃu 5alzo:- 45- il - Iio-It-- óo t2<br />

BEAUIIONT<br />

5eß402 45 52 foÞ ls<br />

DUNEDTN BTL. GAR,pENS 5085C2 45 52 t10 3L 61 4<br />

I{AHINERANGI DAII 59åi9ol 45 53<br />

_-_ LTNHOPE<br />

l¿ì9<br />

__ 5S841O 45 53 L68 ?7<br />

58 576<br />

tE:M,t= I{ËTHER<br />

I4r_ HI LL __ _____51 ee 0 l_ _!5__ 5 4 _ _ f_61 _ 57<br />

souTH RSRVR.,DUNEÐIN 50 e4g2- -4t 54-- L-lc- i - X? --5 --3!8I[SI-DErQU|!ED-IN -- -- 5-qe1g1- +t-54 L7o 21<br />

111 Zt r.tussÊL3uR6Hrt-lui,tÊtllN 509504 45 54.1?O 31 3t<br />

LAITRENCE 5ee60t -1E ss - r¿s +1 si tZ--<br />

KAHEKU 589óOt 45 tl tóg 40 4? 6<br />

5ee2o1 -ã-ffiö-ä--r-ä-<br />

LTNHUTE __ 5EB4IO 45 53 lóg 2Z 5g 6<br />

CAPE SAUNDERS LIGHT. 5A8702 45Ñ<br />

DUNEDIN A IRPORT<br />

5úe2AL 4' 56 l?O ¡.2- 42<br />

59eOt 7 16q<br />

RANKLEBURN '<br />

FOREST 599401 45<br />

EtslE_eu._B_u_sll_<br />

HENLEY _ 57_27ar<br />

5oetot--tt -tC -_iro 58 169 26<br />

_ qg, 5_9<br />

to i{ n<br />

_L67 46 46 5<br />

Lf LLBURN<br />

ô70óol 46 0 L67 40<br />

-ttÃttOEvll-f-E--<br />

546<br />

680801 aeoßor -i* +6 0 n -r^o-Zó lo8 4e +ã couof a-nir-r--- ozo¿or-aó__l -<br />

LOßA. STATION I<br />

ó8050. ó80501 16? _ 4ó I tó8 33<br />

n 627<br />

6û 9<br />

_ HA<br />

REABY<br />

rHOLA<br />

DOI{NS jggo_a__4é ___Þ<br />

6&0701 46 __<br />

Z<br />

l_r_?q 63 14<br />

768 46 39 4 TUAPEKA f.IOUTH ó9Ü5OI 46 2 169<br />

:ll5pF+icH'ra_L____ g!+!az_!q<br />

73<br />

3 Lþ7t3_<br />

395<br />

_2_c_ 8-<br />

EAST L-oqL_Sc_tlqpL<br />

GOR,5 6ß0903 46 __ _ __ó8qj_!_o_ 9þ _-4 I óg<br />

5<br />

29<br />

1ó8<br />

457<br />

57 t7 t TA IER I f,4OUÎH ó00201 +6 5 170 L2 486<br />

GoRE --<br />

457<br />

6E tO<br />

503<br />

¿sieor- ãe o--ioelð- ---E-T<br />

__-_681701 46 Ióß_ 45 43 4<br />

ó91e01 46 7 169 58 4g ?<br />

ts z<br />

gtQ!NS'UI-NI-0-N--<br />

--_---é,-q!!10-- 4é---e-<br />

PUYSEGUR POINT LIGHT.óó1601 46 i-_1ó6 --!6s 3?- 27 - 81 4<br />

HTNTON oarãoã ?¿ -ó---r-oe 20- - -lo -l<br />

3 orrrihli<br />

OT AUTAU 681002 -ro +o tót-õ---- 40 2<br />

P:åIE!=STCCK,T{An{ËRA s.6e¡5gl _19 !o róe 31 34 5 r{rNToN<br />

IIII9I^<br />

-Ð-_Ë_-ffi<br />

é!¡æl-tå. rI<br />

ó82810 46 ll -!é-8-2-g-----_{r<br />

ü¡-ïÂuRA<br />

1ó8 52 38 -¿<br />

3<br />

þ_ 68280l þ.1gllL _.rô _t_? L6g 52<br />

cHRYSTALLS eEÁcH -9I?F4óìr-rãa<br />

ó02101 + -:? 46 +-3- 12 -170 =!_ég -¿<br />

Þe__. _ 3? _ E _ c_LrNroN _<br />

37'<br />

þ?¿?ez _1þ- 12 LqeL?-- 4? 6_<br />

POURAKINO VALLEY 672elo 46 13 167 55 56 6<br />

HEOGEHOPE 682501 46 t3 1ó8 a? 4L5<br />

OlA}IUTI 6BZTOT- 4ó l4 l6s--to 36<br />

B A LC LUTHA<br />

44 4_._._PÊBBLY HILLS<br />

45 7 OREPUK I<br />

HOKONUI FI}RE ST<br />

68250? 46 t3 168 35 392<br />

6e27A2 46 t4 L69 45 --3t<br />

2<br />

68l6LZ tú I ó<br />

6727û2 46 1?<br />

683701 46 19 168 47<br />

INCHCLUIHA _i!!_.3 óe38o2 jL6___rB __f_Þ? 50 _ 52 ?.. _- - _E_D_rN-qaL_E<br />

333<br />

Water & soil technical publication no. 20 (1982)


pAHIA 6?3801 46 Zú t61. 42- 54 5 SLOPËDOI{N -- , 693ZLA 46 20 ló9 LZ 42 4<br />

rfËx-r-^rDÊR-_6ç4orõ-__=4;-7>-içÇ-ï- -- îi--1- - - _-<br />

GNNtrrãrï¡r<br />

- aal4ta- 4621--t6e n ----1î-t<br />

INVERCARGILL AIRpoRT ôB43cp" 46 25 ré,q 2Cj- 36 2 !l\yËÀc,A3GI!!- ó843Û2 25 168 Z? 7e 3<br />

ffi---6ñEdr--:4îæ-i;-¡t--Í.T'rr<br />

--=õ4iEi- 46ffi<br />

!,NA\,l Y ALLL I<br />

LÊ A A<br />

t¡tATAuRA I5LANDS óg4?10 46 z't lóg 45 4û 5 ot{AKA ó94{5û1 46 ?7 169 39 65 13<br />

-{qr¡¡r<br />

lluiqEl PgINI_ Lt9tlI: _ 6_?4?91_ 4þ_ CËNTRE ISLANIÌ LIGHT. ó74801 +6 28 ló7 51 45 5<br />

-ÃI{ÀRUA-<br />

?7 L69 49 ?)4<br />

685301 46 3r<br />

.ã¡¡äii-ilil-r-s---- ¿s5oof +e zz t6e 3 ---66<br />

168 22 373<br />

LT<br />

BUCKINGHAM RESERVE 695ZIO 46 33 16e l? 7C r?<br />

-oõ-e-fSf ¡Ho -nenf-t8ó4sr +a<br />

-<br />

-zs'<br />

oan,r¡rsre¡lET--isLAND oeçror 46 54 1ó8 I 50 2<br />

168 25 155<br />

Water & soil technical publication no. 20 (1982)


APPENDIX E<br />

Compadson of Regional Flood<br />

Estimation Method with TM61<br />

comparison because all catchments used here also were used<br />

in deriving <strong>the</strong> regional method.<br />

References<br />

mates on average by 4t/0,<br />

Table E'1 comparison of or estimatos with rM61 €stimates ($l and regional flood estimation estimates (efl.<br />

Region<br />

Number of<br />

Catchments<br />

Return<br />

Period<br />

T<br />

roi/q)<br />

Mean Std Max Min<br />

Dev<br />

(o+/q)<br />

Mean Std Max Min<br />

Dev<br />

Canterbury/<br />

Waitaki Basin 17 20t1, 2.11 1.19 6,01 1.10 1.06 0.36 1.A7 0.59<br />

Westland<br />

Northland<br />

2011, 0.76 0.1 5 0.89 0.52 0.96 0.22 1.32 0.68<br />

512) 0.56 0.18 0.88 0.38 o.94 0.23 1.16 0.60<br />

Note: (1) Estimates of elo and Ozo from Ogle (1g7gl.<br />

l2l Esrimates of Oi from Waugh fi 973).<br />

122<br />

Water & soil technical publication no. 20 (1982)


Appendix F<br />

Flood frequency analysis <strong>for</strong> Otago and<br />

Southland<br />

F.1 lntroduction<br />

At <strong>the</strong> time of developing <strong>the</strong> flood frequency curves <strong>for</strong><br />

<strong>the</strong> eight regions covering New Zealand, <strong>the</strong>re were only six<br />

relatively short flood records available <strong>for</strong> <strong>the</strong><br />

Otago/Southland region. This region's flood frequency<br />

curve was <strong>the</strong>re<strong>for</strong>e treated as provisional and was only extended<br />

to <strong>the</strong> 100-year return period; <strong>for</strong> <strong>the</strong> o<strong>the</strong>r regions<br />

<strong>the</strong> curves were drawn up to 200 years. The tentative nature<br />

of <strong>the</strong> analysis is best illustrated by <strong>the</strong> fact that one of <strong>the</strong><br />

records used was <strong>for</strong> <strong>the</strong> Pomahaka River at Burkes Ford<br />

(Station 75232) <strong>for</strong> <strong>the</strong> period 1963-1975. The flood peak<br />

<strong>for</strong> 1972 of 1088 mtls was omitted because it appe<strong>are</strong>d to<br />

be an extreme outlier, yet this peak has been exceeded three<br />

times over <strong>the</strong> period 1978-1980.<br />

The number of <strong>not</strong>ably large floods in <strong>the</strong> <strong>are</strong>a in <strong>the</strong><br />

period 1978-1980, and <strong>the</strong> availability of substantially more<br />

data, suggested that reassessment of flood frequencies in<br />

this <strong>are</strong>a was appropriate. This appendix gives <strong>the</strong> results<br />

of <strong>the</strong> reassessment, which has been completed just in time<br />

to be published as a supplement to <strong>the</strong> main study.<br />

F.2 Data collection<br />

With assistance of staff of <strong>the</strong> Otago and Southland Catchment<br />

Boards, annual maximum flows <strong>for</strong> stations with at<br />

least l0 years of reliable flow record were extracted. The<br />

catchments <strong>are</strong> listed in Table F.l and <strong>the</strong>ir locations <strong>are</strong><br />

indicated in Figure F.l. The flood peak data <strong>are</strong> given in<br />

Table F.2.<br />

Additional historical data were sought. <strong>These</strong> data took<br />

two <strong>for</strong>ms. The first was estimates of large floods which<br />

occurred be<strong>for</strong>e recording commenced and which were <strong>the</strong><br />

largest <strong>for</strong> a known period. For example, <strong>the</strong> estimated<br />

p"it of 220 m3/s in tÈe Leith on 19-20 March 192í is <strong>the</strong><br />

largest known in this <strong>are</strong>a since settlement, which is taken<br />

as dating from 1850. The second <strong>for</strong>m was when <strong>the</strong> largest<br />

recorded flood was also <strong>the</strong> largest known peak in a<br />

preceding interval. For example, <strong>the</strong> peak of 505 m',/s<br />

recorded on <strong>the</strong> Mak<strong>are</strong>wa River on 15 October 1978 is<br />

known <strong>not</strong> to have been exceeded since 1895.<br />

Sources of historical in<strong>for</strong>mation <strong>are</strong> "Hydrology Annuals"<br />

No. 3 No. 17 published by <strong>the</strong> Ministry of Works<br />

(1955-1969), and<br />

-<br />

"Floods in New Zealand (1920-1953)"<br />

published by <strong>the</strong> Soil Conservaton and Rivers Control<br />

Council (1957), supplemented by in<strong>for</strong>mation from catchment<br />

boa¡ds and some early newspaper reports. As early<br />

historical estimates <strong>are</strong> of uncertain accuracy, only data<br />

considered to be reliable were used.<br />

Annual maximum l2-hr duration lake inflows calculated<br />

from records of levels and outflows (Gilbert 1978) <strong>for</strong><br />

Hawea, Wanaka, Wakatipu and Te Anau were used. Local<br />

inflows to Manapouri were <strong>not</strong> used because <strong>the</strong>y <strong>are</strong><br />

calculated as Manapouri outflow, minus inflow from Te<br />

Anau, minus change in lake storage, and since inflow from<br />

Te Anau is 6690 of Manapouri outflow <strong>the</strong> residual local<br />

inflow is subject to large errors. Although <strong>the</strong> l2-hr maxima<br />

inflows <strong>are</strong> less than instantaneous maxima, <strong>the</strong><br />

reasonable assumption that <strong>the</strong> instantaneous maxima <strong>are</strong><br />

a constant ratio (say 1.2) of <strong>the</strong> l2-hr maxima suggests<br />

<strong>the</strong>se data can usefully supplement <strong>the</strong> maxima recorded on<br />

rivers <strong>for</strong> frequency analysis purposes.<br />

Flow records were also derived <strong>for</strong> two contributing<br />

<strong>are</strong>as in large catchments by subtracting, from downstream<br />

flows, <strong>the</strong> upstream flows lagged to allow <strong>for</strong> time of<br />

travel, Records of annual maxima were thus derived <strong>for</strong> <strong>the</strong><br />

Waiau River between Tuatapere and <strong>the</strong> Mararoa confluence,<br />

and <strong>the</strong> Clutha River between Clyde and <strong>the</strong><br />

Shotover and <strong>the</strong> three lakes. Because <strong>the</strong>se data <strong>are</strong> derived<br />

by differencing hydrographs, after making assumptions<br />

about <strong>the</strong> travel times of <strong>the</strong> upstream hydrograph, <strong>the</strong> errors<br />

in <strong>the</strong> estimated peaks <strong>are</strong> significantly greater than <strong>for</strong><br />

o<strong>the</strong>r records. They were <strong>the</strong>re<strong>for</strong>e <strong>not</strong> used in deriving <strong>the</strong><br />

regional curves; however, <strong>the</strong>y provide a useful independent<br />

check on <strong>the</strong> curves derived from <strong>the</strong> o<strong>the</strong>r data.<br />

Table F.1 L¡st of catchments.<br />

Number of<br />

Stat¡on<br />

Catchment number<br />

in Fig. 1<br />

Name of River and Recording Station<br />

Year<br />

Record<br />

starts<br />

Catchment<br />

atea<br />

(km2l<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

I I<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

73501<br />

74308<br />

74310<br />

74314<br />

74346<br />

75259<br />

75232<br />

77504<br />

77505<br />

7A502<br />

78607<br />

78625<br />

78633<br />

78803<br />

78906<br />

75276<br />

75253<br />

23<br />

24 84701<br />

Water of Le¡th at University Footbridge<br />

Taieri at Outram<br />

Taier¡ at Sutton<br />

Taieri at Patearoa-Paerau Bridge<br />

Loganburn at Paerau<br />

Fraser at Old Man Range<br />

Pomahaka at Burkes Ford<br />

Mataura at Gore<br />

Mataura at Parawa<br />

Waihopai at Kennington<br />

Oreti at Lumsden<br />

Otap¡ri at McBridges Bridge<br />

Mak<strong>are</strong>wa at Freezing Works Bridge<br />

Middle Creek at Otahuti<br />

Aparima at Dunrobin<br />

Lake Wakatipu inflow<br />

Lake Wanaka inflow<br />

Lake Hawea inflow<br />

Lake Te Anau inflow<br />

Shotover at Bowens Peak<br />

Manuherikia at Ophir<br />

1 964<br />

1 955<br />

1 961<br />

1 968<br />

1 967<br />

1 969<br />

1 962<br />

1 957<br />

1 956<br />

1 958<br />

1 957<br />

1 963<br />

1 955<br />

1 970<br />

1 963<br />

1927<br />

1 930<br />

1 931<br />

1 926<br />

1 968<br />

197 1<br />

Clutha tributaries above Clyde, and below<br />

Shotover and <strong>the</strong> lake outflows (see McKerchar,<br />

1981. Table 4.1) 1963<br />

Waiau tributa¡ies above Tuatapere and below<br />

Mararoa. {see McKerchar, 1981, Table 4.1} 1969<br />

Cleddau at M¡l<strong>for</strong>d 1964<br />

45<br />

4 705<br />

3 066<br />

738<br />

150<br />

122<br />

1 924<br />

3 465<br />

766<br />

152<br />

1 160<br />

108<br />

1 040<br />

27<br />

215<br />

3 133<br />

2 624<br />

1 384<br />

3 124<br />

1 088<br />

2 036<br />

3 839<br />

2 336<br />

155<br />

Water & soil technical publication no. 20 (1982)<br />

t23


Table F.2 Flood peak data.<br />

NEW OTAGO DATA<br />

NEW SOUTHTAND DATA<br />

3I TE 73501<br />

I.EI18 TT UTI9EESÍTY POOIBNIDG? sITE 15232<br />

POitñtKÀ À1 Do¡t(zs ¡oBD<br />

crrcHtBtT t8Et, 5Q Kü =<br />

tollBER oP ÀXtltÀL PEÀKS =<br />

IEIB PEÀI( IB¡I P¿TK<br />

CÀrCllAIl IREÀ¡ 5Q Klt = 47A5<br />

!0;8EF OF IIXûÀL PE¡ñS = 25<br />

IEI! PETK IEÀE<br />

45 ¡Àp RBFpREì¡cE = s16q:i63?2s<br />

17 P¡iFIoD 0P REc, = 196q-e0<br />

YETR PBTK YEÀR PET T<br />

1964 4.7 1965 6. t 1966 1,\ 196? 5.2<br />

1968 r 13 1969 8.5 1911. 39.6 1971 95. 6<br />

1972 65. I 1973 8.5 1974 51.8 tq?5 ta?, 9<br />

t976 46.7 1971 28.7 1978 49.4 19?9 23.5<br />

t9B0 1 30<br />

lBtf = 41.16 STD. DEv. = 39.9€ coEF. Op sKEs = 1.01Â<br />

tolBs:<br />

1. rflE t929 pElK, ESIltttTED tÎ 220 CUiECS, rtS THE LtRcESl<br />

ST¡CE SETTLEI'EIIT À¡TD TÀKET IS ÎIIE LÀRGÈsT Tll TfE PERIOD<br />

ts50-1980.<br />

sIîB 7¡308<br />

1955 10S5 1957<br />

'1960 181 ¡961<br />

1964 37.6 1965<br />

1968 845 1969<br />

1972 832 1973<br />

I 9?6 t 43 1977<br />

1980 2600<br />

Pr¡[<br />

2009<br />

12't0<br />

119<br />

152<br />

151<br />

326<br />

1ÀI8RI À1 OIITRÀñ<br />

llÀP REPEREIICE = S163:9337q(¡<br />

PERIoD 0P 8Ec. = 1955-F0<br />

YEÂR PBÀK TEÀR PEÀI(<br />

1958 425 1959 21Ã<br />

1962 205 1963 368<br />

1966 300 1961 19(<br />

1970 266 t97t 43f<br />

1914 864 19?5 J34<br />

1978 1133 1919 r¡Oo<br />

;!Àt = 593.2 STD. DEg. = 62t¡.5 Copp, Op SÍEc = 1.965<br />

tolE5:<br />

1. T_8!'l?qo-g_Err, rRE r868 pE¡t (Bslrt!llED À1 2179 coiEcsl<br />

rfD ÎE?.1957 PEÀi ¡ERE IIKEI rS ÎIIE 1ÍRN8 L¡RGEST rìI<br />

TI¡E PIRIOD 1858-1980.<br />

5I1E 7q3 10<br />

cllcfliliT À¡Er, sQ K; 3366<br />

xltllBtg OP ¡¡[0ÀL pEÄis = t8<br />

I'IR PgTf TEÀR PETK<br />

1961 06¡t 1962 108<br />

t966 56.6 1968 3OO<br />

1971 115 1972 207<br />

1975 96.2 1976 156<br />

1979 96-2 1980 800<br />

TIIERI tÎ S0110tl<br />

lllP EEPEnEICE - s15¡t:939092<br />

PeÂIOD oP REc, = t96l-90<br />

TPÀR PETi t¿ÀR PEÀX<br />

1963 t30 1e65 66.5<br />

1969 59.4 r97o 76. !<br />

1973 113 1974 311<br />

1911 67,9 19?8 ¿ü?<br />

t8¡¡ = 204.0 sTD, DEt. = 196.3 coEp. op siE3 = r.986<br />

tolEs:<br />

l. PB¡Ís, irssl¡c FoR 1964 rxD 196?.<br />

cÀTCHllELT tREA, S0 Klt = 1924 ilP REPEREItCg 5711.221472<br />

llullBEF oP Àf,tlûÀL PEI(S = tq PEnIoD oF R¡)c. = 1962-S0<br />

IETR PEÀK fEÀR PETI( IEÀR PETß PI¡f<br />

1962 1?6 1963 337 1964 96. I 'E¡¡ 1965 3lo<br />

1966 216 1967 467 t968 516 1969 2¡9<br />

't 970 2s5 1971 369 1972 t08? 1973 170<br />

t 97q 206 1975 32A 1916 201 1917 375<br />

t 978 1217 1979 352 1980 1210<br />

ÍEltl = 435,2 STD. DEV. = 353.6 COPF. op SiE¡ = 1.?tO<br />

ltotEs:<br />

1. Tfir 1978, 1980 ÀXD t972 pEtKS íERE TlFEL tS TEE Î[tBr<br />

LTRGPST TI THE PERTOD 1920-1980.<br />

s rlE 17504 tlTl0Sl lT coRt<br />

c^TcHiEtT rt8l, s0 ¡ü =<br />

llUllBER OP IUtaUÀL PEÀRs =<br />

IEIE PRIK<br />

1 957 1 047<br />

1962 586<br />

1966 352<br />

1970 252<br />

197r¡ 21O<br />

1 978 22f5<br />

TETE PE¡(<br />

1959 6CS<br />

1963 tt33<br />

1e61 656<br />

19?1 443<br />

t9?5 51C<br />

1979 52t)<br />

3q 65<br />

23<br />

766<br />

25<br />

llP REtEnutc? st70:013¡t3<br />

PERIoD oP EEc. = 1957-S0<br />

tEtR PEtß tzl¡ Pllf<br />

1960 tt52 1961 35t<br />

1964 260 1965 292<br />

1968 1290 t969 62a<br />

1912 121A 1973 2O1<br />

1916 453 1971 1300<br />

1980 1625<br />

ËEtl¡ = 6c2.3 stD. DEI. = 520.3 coEp. op sf,B¡ = t.59o<br />

ùtoTEs:<br />

1. rflE 1978, 19t3 (1700 cu;Ecsl rrD t98o pErxs tB¡E î¡ßE¡<br />

ls îfl¡ L^RGESÎ fIf TflE pFRTOD t870-1980,<br />

srlE 77505<br />

ctIcHllEN? ttEr, sQ ßÍ =<br />

llUllEER 0P rXXuÀL PEÀKS =<br />

PEIX IEIA<br />

YDT R<br />

1956<br />

1950<br />

t 961¡<br />

t 960<br />

197 2<br />

1916<br />

1 980<br />

PETK<br />

68 1957 !2\<br />

rc,t 1961 92<br />

117 1965 103<br />

276 1969 259<br />

214 1973 1 lC<br />

165 1977 266<br />

215<br />

rrT¡str Àr P¡llt¡<br />

ËtP REPEEE¡CE st5t:¡9t058<br />

PEDIoD 0P REc. = 1956-80<br />

IEIR PEÀÌ fBTÂ PIT¡<br />

t95S rq3 1959 2tt5<br />

1962 103 1963 55<br />

1 966 106 1967 292<br />

19 70 84 197t 2t¡<br />

197tt 93 1e75 136<br />

1978 590 t979 29t<br />

iEtü = 190.¡ STD. DEV. = "124,0 CoEp. o¡ srEt = 1.638<br />

SIlE 78501 ¡TIROPÀI TT ¡ETIII6IOI<br />

SIÍI ?131¡ 1ÀIEtr tÎ PtTEtROI-P¡lt¡u cÀrcflllFl¡T ÀREt, SO till = 152 nlP REFERE¡cr<br />

NUIBER O? = sl773t3t0¡5<br />

ÀTI'OÀL PEÀKS = 19 PERIoD 0P REc, - t95B-77<br />

c¡lcElt¡î rRElr SQ fr 738 iÀP BEPEfiEICI<br />

tUiBEn OF À¡lott. pEtÍS = St45:675374<br />

= l3 PEBIoD oP<br />

IEIR<br />

nEC.<br />

PFTK TE¡ R PEÀß<br />

= 1968-S0<br />

IETR Pttf( tEtR<br />

1958 Pttt<br />

tt.6 1959 26,6 1961 2q.1 1962<br />

IIIB PETf,<br />

1953 31.3<br />

2¡. t<br />

IEIß PEÀi<br />

t964<br />

1t68 PEII<br />

25.tt<br />

61.0 '1969<br />

IEIR PETI<br />

196<br />

IBAB<br />

5 39,1<br />

196? 1966 26.A<br />

56,0 19?0<br />

23. I 1968 t¡1,3<br />

65. 6<br />

1972<br />

30.9 1971<br />

1969 26.1 1970 25. O<br />

¡02.r¡ 1913 q6.0<br />

1971 17.7 7912 55. R<br />

197¡a<br />

1976<br />

55,3<br />

191<br />

1975<br />

3<br />

68.5<br />

19.8 1974 31. ó<br />

39.0 1971 69,9<br />

19?5<br />

't<br />

21.8 t9?6 30.7<br />

51.<br />

1980<br />

978 t 37. 5<br />

1917 ql.6<br />

1979 I<br />

205<br />

Ëxlt{ = 28.93 SrD, DEc. = 1C.û2 COEP, op S(Et = 0.9960<br />

iEl¡ = 76.07 SfD. DEt. = 47.67 COEP. oP SrEs = 1.98F<br />

sITe 7860" OF¡:îI T1 LOËSDEI<br />

s¡ ÎE 743¡6 LOGIXBoÀX tÎ PtERto<br />

CÀTCflll¡ll1 àRP^¡ SQ ßñ = 116C FÃp fiEpFRENCE = SrSO:lBr¡g62<br />

c¡lc8llrT rSEr¡ sQ l(r ùU;BEF = t50 llP REPERBICE<br />

OP lIilûAL ÞEIKS = 22 PERIOD OF RDC. = 1957-80<br />

¡0lBB¡ OF ¡lIÛÀL PBIÍS<br />

= Stqtt:62¡t217<br />

= t3 PEBIOD 0p nEc, = 1967-79 YEAR PfAK IFÀ8 PEÀK ÍNTR PRÀI( TEÀR PEI<br />

II¡g ÞE¡Í IE¡8 PE¡R IEAR PEÀX TEÀR 666 1e58<br />

f<br />

1957<br />

334<br />

ÞIÀt(<br />

1959 378 1960 271<br />

t957 5.48 t968 20.7<br />

't95|<br />

t969 12.2 19?O 352 1962 352<br />

22.9<br />

1963 183 1964 211<br />

19?r 35,5 1972 50.0 1973<br />

196 5<br />

21.7<br />

-lc<br />

197¡t 1 1q66 232<br />

15.6<br />

tc67 416 1968 352<br />

t975 26.4 19?6 1s,7 1977<br />

t969<br />

20.3 t97B 211 l97C 21C<br />

58.s<br />

19'11 t69 1912 139<br />

7yr9 1 8. 9<br />

1 975 765 1976 453 '1917 871 1978 1171<br />

197C 131 1980 I 10c<br />

lBlf . 24.91 STD. DEt. = trt.92 COEp. oF SßEr = 1.2ge ñE¡tl È 454. I 51r\. DRv. = 29Ê. I coFF. oF s(Ft = t.27tt<br />

Ìorts :<br />

1. TBE 1980 pEti oF 365 CUTECS<br />

NOTES 3<br />

tÀS OñIÎTED FFOil TltE<br />

ITTLISTS: I1 9Ts IT BITRETE oOT¡,IER 1. lIIF<br />

ÀIID T¡tE IYÀrLIEL!<br />

1C-8 ÀNTJ 198C PEIKS Y¡]FII ÌÀKE¡r ÀS lHf L¡RGEST I¡<br />

LpxGTft ot ¡EcoRD ¡rs fùstrFFlcrEilT TO Rltt¡L8<br />

THE PPFIOD<br />

REÀLISTIC<br />

1879-198i.<br />

TETIIEI¡ PEBIOD 1O BB ISS¡GIIBD 10 Iî.<br />

^ srtt 7a625 OlTÞIRT ÀT iCBRfDES BRIDGI<br />

PRÀZEF<br />

:l::__--- _ t::::<br />

IT OLD ItTN R¡IIGF<br />

c¡tc¡rrir tBEt, s0 [t = 180 ItP AEFEREIICE = S169:|t22516<br />

c¡fcfitBlT rREr, SQ Kü !ûIBEB<br />

= llÀP<br />

ol<br />

REF¡ll?Eilcr<br />

¡IlûrL PEÀIS 5143:03't485<br />

= 1B<br />

122<br />

PEAIOD OP REC. = 1963-80<br />

XUÚBER OP TT¡Of,L PEÀKS = 12 PERIoD 0r 8EC. = 1969-80 r'¡¡ PEIf, TET¡ PEÀK IETS PPÀK fEtS PEIX<br />

IE¡R PEÀT YEÀK PRTß 1965 31.2 1<br />

TETR 1963 tt2.3 196¡<br />

PEÀÍ<br />

29.1<br />

966<br />

YEIF<br />

30. 3<br />

PEI f,<br />

1969 23.4 1970 1911 t967<br />

19,3<br />

52,5 1968 85.5<br />

11,9 1969 60.0 1970 70.3<br />

1912<br />

'19t3 22.3<br />

1975 1971 43.5 1972 65.8<br />

16.2 1973<br />

1976<br />

25.9<br />

1<br />

31. rl t974 tq.2<br />

974<br />

12.7<br />

34.7<br />

1971 11.9 1919 1915<br />

1?,0 3q,2 1976 rt3.9<br />

t978 88.<br />

1977 90.2 1978 198<br />

O<br />

t980 26. 0<br />

1979' 52.8 1980 r15<br />

¡E¡i = 26.29 sTD. DEY. = 20,29 COFP, OF SÍF:C = 2,911 tE¡x = 61.3r¡ sÎD. DEÍ. = 41.93 COEP. oF SIEc = 2.28A<br />

tu<br />

Water & soil technical publication no. 20 (1982)<br />

a


786 33<br />

!lll::l- 1I-::TÏÏ-i:Î::<br />

cltcElExl lRBl, sQ fl = tOlO rrP nBFEREtrcE : s1?7:331130<br />

¡trlBB¡ oP lllûll. PEIRS = 24 PERIOD OP R¡c. = 195'80<br />

tEA¡ P¡Àf fSÀB PEÀT tEÀR PETK IETR PBIÍ<br />

1955 2rl 1957 175 1959 111 1960 216<br />

1961 156 1962 169 1963 201 1964 90.6<br />

1965 201 t965 81 1967 156 1968 395<br />

1969 r78 19t0 170 1911 200 1912 263<br />

1973 1l¡5 1974 136 19?5 195 1916 2\2<br />

1977 318 1978 505 1919 287 1980 434<br />

rr¡l = 223.0 sTD. DEv. = 103.0 coEF' ot sfEl = t'326<br />

lolBs ¡<br />

I. Tf,E 1978 T¡D'1980 PB¡TS CEIE TÀÍET ¡S lNE TUO LÀRGISÍ<br />

III lEE PE¡IOD 1895.1980.<br />

srrr 78803<br />

:I:3ï-::::I-"-ilÏ1I<br />

cttcErtrl tElr' sQ rl 27.4 ËÀP 8E?BR!¡cr s176:192268<br />

llttDE¡ or rflÛrl. PE¡[s = 10 PER¡oD o! REc. = 1970-79<br />

rllr Pltf tE¡B pBl[ IEIB PSTÍ IEI! PEÀT<br />

1970 3.16 1971 9.51 '1972 13.41 1973 l.?3<br />

19?¡ 1.55 1975 2.74 t9?6 3.60 1977 5. 1?<br />

197ø 1.82 1919 9.40<br />

;Elr = 5.ll STD. DEV. =<br />

tl.O2 COE!. o! srEÍ = 1.170<br />

¡PtEttt<br />

lT D0¡RoBlll<br />

IEIR PEÀI( IEIR PB¡K rElB PEIÍ ftlB Dltt<br />

1930 1037 1931 1832 1932 1210 1933 t588<br />

1934 1 106 1935 15rt0 193ó 1716 1937 llrt<br />

1 938 952 1939 1080 1940 1293 19t1 17t2<br />

1942 1889 t9¡t3 19rt3 t944 9¡r8 19t5 t93¡<br />

't9q6 2265 19q7 1 160 1948 3227 19¡9 2l7t<br />

1950 2867 l95t 975 1952 t¡459 t953 t5ó0<br />

1954 1261 1955 1700 1956 960 1957 :¡11ó<br />

t958 2022 1959 1255 't960 1 458 t961 1279<br />

1962 2004 1963 A27 196¡ r 163 1963 1936<br />

1966 1337 1967 30lr 196S 1854 1969 325a<br />

t970 1512 197 1 1 t5C 1972 1127 1973 1706<br />

1970 791,, 1975 2419 1976 t 104 1971 1169<br />

t9?8 3991 1919 3¡23<br />

ttEltl = 1829 sTD. DEV, = 841.9 coEt. Ol SiE¡ - 1.316<br />

IOl9S:<br />

1. TÍF II'PLOCS TERE DERTgED FÂOË [Àf¿ LEÍIL IID OOT'I.OI<br />

BECORDS USrilc r l2-800R rrtE rtrEBVlL.<br />

5ITE 9 I ?O LrÍE FtrEl rttlo¡<br />

CÀTcllllELT à88Àr S0 fl = r38q nlP ¡Elgnzlcr =<br />

ùUtlBER 0F l¡il0ll PEIKS = lt8 PEBIoD 0t nEc. .<br />

IETE P?TK<br />

193t 187<br />

1935 653<br />

I 93e 606<br />

19q¡ 599<br />

t 947 !rt2<br />

1951 502<br />

t955 619<br />

1959 367<br />

196:t 338<br />

1967 903<br />

1971 325<br />

1915 q6 t<br />

fETR<br />

1932<br />

193 6<br />

19¡t0<br />

t 9ll¡<br />

19C8<br />

1952<br />

t 956<br />

1960<br />

196¡r<br />

1968<br />

1912<br />

197 C<br />

PB¡K<br />

593<br />

503<br />

599<br />

332<br />

845<br />

157<br />

371<br />

561¡<br />

453<br />

¡r08<br />

552<br />

365<br />

IE¡ R<br />

1 933<br />

19 3?<br />

l94t<br />

1945<br />

1949<br />

't9 53<br />

1937<br />

19 61<br />

1 965<br />

1959<br />

1 973<br />

1917<br />

l93l-78<br />

PEtß rBtt p;lf<br />

539 193¡t 717<br />

l¡23 1936 60¡<br />

585 l9e2 62t<br />

540 19¡ó 926<br />

665 1950 7¡¡<br />

605 195¡ 373<br />

700 1958 556<br />

$15 1962 839<br />

ø23 t966 631<br />

1 r 36 1970 650<br />

cl?CElBIÎ rlsr, SQ Ír 215 llP rErrBBtc! s159:119827<br />

rulBlB O? I¡IU¡L Ptrfs = t8 PEEIoD ol ¡Ec. = 1963-80<br />

162 197¡t {36<br />

rB¡¡ PEIÍ IET¡ PEIf, IEIB PETf, tEtn Pllf<br />

t23 19?8 ltl¡<br />

1963 15.2 1964 1îs 1965 t43 1966 81<br />

1967 l7q 1968 131 1969 6 t. 6 t 970 10.2 ËEtù = 596.5 srD. DEv. = 197.5 coEP. oF sßP9 ' 0.7392<br />

1 971 6 1, 6 1972 8l¡.5 1973 11 1970 68<br />

t975 135 1976 t03 1977 169 rs76 53q ¡OTES :<br />

19?9 119 1980 196<br />

T. TflE IIPLOflS 3ENE DERIYED FßOI LTßE LEVFL IID OTîILO¡<br />

NECORDS USTf,G À 12-HO¡IR 1I'IE IIITESYTL.<br />

rEtI = 126.5 STD. DEt' = 113.7 CO!F. oP SKEI = 2.895<br />

fotlS !<br />

srlE 957C<br />

LÀr(E îE t¡lt lltlot<br />

1. tEE '1978 PttÍ CÀS Ttf,E[ tS tllE LlnCEsr rx rtlE PEFToD<br />

1914-1980.<br />

CtrCtËEf,T tREl, SO K¡ 3124 ülP BEFEREICE =<br />

l¡UliBEF OP ¡[iÛll PEÀxs = 5q PERIOD OP REc. = 1926-19<br />

NEW SOUTH ISLAND WEST COAST<br />

YEÀR PEIK<br />

PEÀK<br />

PEÀf, YEIR P'Tf<br />

1926 1q20 'EÀF 1921 1737 'EAR 1928 20 r6 1929 1500<br />

srlB<br />

9 1 l0<br />

Llt(E fltrlllP0 IftloS 1930 1500 1931 1285 1932 2511 1933 2604<br />

193ft 2365 1935 1609 1936 2608 193? 1¡20<br />

1938 l8lq 1939 260'Ì 1940 3499 194'1 2294<br />

cÀTCBllFxT ÀREt' sQ KË = 3133 llÀP REPERE¡CE =<br />

1942 1362 l9rrl 1935 194r¡ 20 rB 1905 2540<br />

NUiBER OF ¡xNUlL PEÀKS = 53 PEBIoD oF FEC' '<br />

1946 3C6l 'l9tt1 221 ''<br />

t9rr8 3¡a59 19¡9 1948<br />

1927-79 1950 2167 1951 2671 1952 lt4r¡ 1953 2865<br />

YEIR PEIK Y¡ÃF PEÀ¡( TDIR PETR f!I¡'B PEIT 195¡1 2942 1955 2C6C 1956 210U 1957 3512<br />

1927 1¡¡9t 192A 1855 1929 1?9lr 1930<br />

r 958 31105 1959 2¡t88 1960 2818 1961 1937<br />

75¡<br />

1931 1250 1932 929<br />

t962 tB80 1963 1166 1<br />

1933 792 193¡ l26t<br />

964 1723 1965 227e<br />

1935 199 1936 736 1937 648 1938 r061 1966 l6rrl 1967 3715 1968 2381 1969 2552<br />

1919 512 1940 1q90 19¡.1 1635 1942<br />

1970 226A 1971 2202 1912 2220 r9?3 1495<br />

10tt6<br />

1943 939 1944 669<br />

1974 19¡¡4 lq15 2426 19?6 20 19<br />

1945 1332 t9¡6 2799<br />

191't 2009<br />

1907 1288 l9q8 2118 1949 1866 1950 1463 1978 4839 19fs 4r¡38<br />

1 95f 1 094 1952 26qA 1953 11r¡5 19511 10?3<br />

1955 1C26 1956 759 19 57 2933 1958 20r5 ËElN = 2561.8 sÎD. DFv' = ?68. O COEF. OP sKE¡ = 0.9820<br />

1959 890 1960 1181 t961 1700 1962 It98<br />

1961 585 1964 t057 '1965 963 1966 t t¡2 l¡0TEs:<br />

1961 2CUi 1968 1869 1969 2254 1970 88r I. T8E INFI,O9S TE¡T DERI9ED ¡ROII LIÍE LPVgL AIID OOTPLOT<br />

r9?1 780 1912 1\29 1973 812 197¡ loTt<br />

RECOFDS ÛSIIIG À 12-IIOUR TIIIE I¡lERVAL.<br />

1975 2006 1916 1 138 1917 1 469 l97S 2¡60<br />

1979 26J2<br />

;Eltl = 1382 sTD. DEY. = 609.2 coBP. oF s(E¡ = 0.88{9 sIrD 75276<br />

saofoÍE8 tT BosElrs ÞErl<br />

l¡oTEs - I<br />

i. rue rt¡Lots IBRE DERTSED FRoË LÀiE rtYEL ¡lD ooTrlo¡ C¡lCErErT tREf,' SQ ß; = lC88 irp ¡EPlBEfcE = s132:589786<br />

RECOBDS OSII¡G T 12-HOUR TIIE IXIENYTL.<br />

TUTBER O! llf,tttl, PEIIS = 12 PERIOD oF REC. = 1968-?9<br />

IETB PEÀK IEIB PETK IETR PETI tEÀR PEÀÍ<br />

639<br />

srtB 9150<br />

LltrE Clllfl I¡FLOI 1968 l¡51 1969<br />

1970 369 191 1 328<br />

1972 00r¡ 1973 277 197¡a 528 1915 56c<br />

1976 r¡? 1 1911 508 1978 c18 1979 tt81<br />

cllcflüE¡Î ÀnEl, S0 Kll<br />

I'IP RE?EREf,CE =<br />

PERIOD OP REC. =<br />

167.5 COEP. O? SKEi = l.l¡06<br />

IOIBER O! I¡IIUÀL = 2624<br />

PEIÍS =50 r93O-?9 rEl¡ = 4C5.C SrD. DEY. r<br />

Water & soil technical publication no. 20 (1982)<br />

125


F.3 Analysis and results<br />

tatively placed with<br />

Region on <strong>the</strong> basis<br />

<strong>the</strong> hydrograph <strong>for</strong><br />

to <strong>the</strong> Taieri River<br />

Paerau and Loganburn at Paerau (Figure F. l0)<br />

Southland rivers (Figure F.9).<br />

-<br />

than <strong>the</strong><br />

(see section 3.1.6). Plots with similar shape were overlaid to<br />

<strong>for</strong>m combined plots.<br />

Flood frequency data thus plotted were found to lie in<br />

three groups:<br />

(a) peak lake inflows and Shotover floods;<br />

(b) Southland floods and <strong>the</strong> pomahaka floods;<br />

(c) East Otago floods.<br />

Group (a) closely resembled <strong>the</strong> South Island West Coast<br />

data<br />

Canterbury data<br />

(see<br />

<strong>the</strong>se two groups<br />

were<br />

I plots of <strong>the</strong> data<br />

<strong>the</strong>y<br />

Support <strong>for</strong> <strong>the</strong> differentiation of <strong>the</strong> lake inflows and<br />

Shotover from <strong>the</strong> o<strong>the</strong>r sites studied is also given by <strong>the</strong><br />

hydrographs (Figure F.8). <strong>These</strong> show that floods <strong>are</strong> frequent<br />

and occur at <strong>the</strong> same time <strong>for</strong> each catchment. Since<br />

<strong>the</strong> floods result from <strong>the</strong> same storms, it is an argument<br />

<strong>for</strong> each catchment having a similar shape in its flo;d frequency<br />

curve and <strong>for</strong> grouping <strong>the</strong>m toge<strong>the</strong>r. Also shown<br />

in Figure F.8 is <strong>the</strong> hydrograph <strong>for</strong> Cieddau at Mil<strong>for</strong>d.<br />

Finally,<br />

-<br />

<strong>the</strong> hydrographs (Figures F.8, F.9 F.lO) show<br />

that <strong>the</strong> majority of large floods in <strong>the</strong> decade l97l-19g0<br />

o-ccurred in <strong>the</strong> years 1978-1980. Figures <strong>for</strong> F.g, F.9, F.l0<br />

also show <strong>the</strong> wide extent of <strong>the</strong> October l97g flood which<br />

was <strong>the</strong> largest of <strong>the</strong> decade <strong>for</strong> many of <strong>the</strong> records.<br />

F.4 Gonclusion<br />

and <strong>the</strong> Manuherikia at Ophir (1971-1980) wirh rhe<br />

regional clrves (Figure F.7) shows <strong>the</strong> difficulty in determining<br />

which curve is appropriate. Central Otágo is ten_<br />

graphs (Figures F.8, F.9, F.l0)<br />

because <strong>the</strong> frequency of minor<br />

ach region but <strong>not</strong> across region<br />

ïable F.3 Co-ordinates fiom regional frequency curves.<br />

O2.33/O<br />

o5/o<br />

olo/o<br />

ozdo<br />

o5o/o<br />

orodo<br />

ozoo/o<br />

S.l. West<br />

Coast<br />

1.OO<br />

1.24<br />

1.45<br />

1.64<br />

1.89<br />

2.O8<br />

2.27<br />

Southland<br />

1.03<br />

1.46<br />

1.82<br />

2.16<br />

2.61<br />

2.94<br />

3.27<br />

sth<br />

Canterbury-<br />

Otago<br />

0.97<br />

1.51<br />

1.99<br />

2.48<br />

3.17<br />

3.73<br />

4.33<br />

Acknowledgements<br />

D. McMillan in compiling <strong>the</strong><br />

Miss K. Vollebregt in anatysing<br />

owledged.<br />

References<br />

Fitzharris, B.B.; Stewart, D; Harrison, W. l9g0: Contribution<br />

of snowmelt to <strong>the</strong> October l97g flood of <strong>the</strong><br />

Pomahaka and Fraser Rivers, Otago. Journal o!<br />

Hydrologlt (NZ) I9(2): 84-93.<br />

Gilbert, D.J. 1978: Calculating lake inflow. Journal o!<br />

Hydrologlt (NZ) I 7(I): 3943.<br />

Ministry of Works: Hydrology Annual. (No. 3, 1955 ...<br />

No. 17, 1969). Ministry of Works, Wellington.<br />

t2Á Water & soil technical publication no. 20 (1982)


c o<br />

E<br />

an^in<br />

o<br />

\'<br />

f¡l<br />

U)<br />

o<br />

oô<br />

^' s' r-<br />

: ô¡<br />

f¡¡<br />

o _ L \-zi<br />

,-l"-l'X<br />

\/'\<br />

þ<br />

-:<br />

t!<br />

.E .c,<br />

o<br />

F<br />

.=<br />

Itoø<br />

= o6<br />

at,<br />

| ; -r'-9-\-/<br />

-l¿-ì<br />

.'<br />

^,2<br />

.t ì.---.'{ ---<br />

t!--/<br />

\-'<br />

-r'---\-,-.<br />

" --b-.^,<br />

r\- -ti<br />

ffi r<br />

:' =


ét<br />

êt<br />

REOUCEO VßFIHTE<br />

2. 33 5 l0 ?0 50 t00 ?Do<br />

NETURN<br />

PEFIOD (TERRSI<br />

Fþurc F.2 Plot of normalised flood frequency data <strong>for</strong> lake inflows and Shotover River superimposed on <strong>the</strong> Wost Coast data given in<br />

Figure 3.13' (Circled points <strong>are</strong> lake inflows and Shotover floods with plotting position retuin peiiod greãt€rthan 20 years.l<br />

o<br />

o<br />

REDUCEO<br />

VNBIHTE I<br />

?.33 5 ¡0 20 s0 too 20D<br />

RETUB}'I PEBIOO (YEflRS)<br />

Fþure F.3 Plot of normal¡sed flood frequency data <strong>for</strong> <strong>the</strong> Pomahaka River and <strong>the</strong> southland R¡vers.<br />

t?ß<br />

Water & soil technical publication no. 20 (1982)


ct<br />

ct<br />

o<br />

ê<br />

o<br />

.25<br />

ñEDUCEO VRBIFTE<br />

2.33 5 t0 20 50<br />

RETUBN PERIOD (YERRSI<br />

100 200<br />

Figuo F.4 Plot of normalised flood frequency data <strong>for</strong> East Otago rivers (Taieri catchment and Leith) superimposed on <strong>the</strong> South Canterbury<br />

data given in Figure 3.1 5. (Circled points <strong>are</strong> Taier¡ catchment and Leith floods with plotting pos¡tion retum period of greater than 20<br />

years.)<br />

Qr/Q<br />

\q<br />

\þ)<br />

X<br />

y'x*<br />

o<br />

0 r.011 2.33 5 ]0 20 50 100 200<br />

RETURN PERIOD 1 (yrS)<br />

Frgurc F.5 Average points from Figures F,2 (ol, Figure F.3 {x) and Figure F.4 ( +). The fitred curves ars <strong>for</strong> (a} West Coast, (b) Southland,<br />

(cl Sor¡th Canteôury-Otago.<br />

Water & soil technical publication no. 20 (1982)<br />

t29


SOLITH<br />

I<br />

EA<br />

l')<br />

COAST<br />

soUTH CANTERBURY/oreco<br />

SOUTHLAND r l00km .<br />

E$r. F.6 Regions inferod from dots of flood frequency data.<br />

130<br />

Water & soil technical publication no. 20 (1982)


RETURN PERIOD T (Yrs)<br />

20<br />

Figure F.7 Frequency analysis of annual maxima derived <strong>for</strong> Clutha river tributar¡es above Clyde and below Shotover and <strong>the</strong> lakes, (x)<br />

1963-198O, Manuherikia (ol 1971-80, and Waiau Riv6r tr¡butar¡es above Tuatapere and below Mararoa (tr) 1969-1980. Regional frequency<br />

curves <strong>are</strong> also shown.<br />

I<br />

sHotovtx . uuxtils PK i3/5<br />

t<br />

cLE00Êu o Ë¡LFoRo sÛuNo il3/s<br />

LÊfiE HNKÂÍIPO INFLOH Í3lS<br />

Figurc F.8 Hydrographs of shotover, cleddau and l¡ke wakatipu inflow, 1 971 - 1 979.<br />

Water & soil technical publication no. 20 (1982)<br />

t3l


0tiftflt a itÉitut5 ü¡. il/5<br />

tg?t<br />

t9?¿<br />

l9 ?J<br />

i¡fÊ¡Erâ nI FflEEZtrc lis 88. ff3/5<br />

¡l<br />

f<br />

Flgure F.9 Hydrographs of two stations ¡n ü€ Soúhland region, l97l-l9gO.<br />

lfflti¡ Hr f(ltHH0H-PHtffHU iJ/5<br />

I<br />

l06PxBU8N nr PFESFU ¡3/S<br />

,å<br />

P-<br />

t8{uHE8lÍtF Êt oPttfi t9/5<br />

t<br />

lt?r lr?{ tE?! ¡9?6 ¡9?7 t¡76<br />

Fþure F.1O Hydrographs of three Orago stations, I9Zl-I9gO.<br />

a,<br />

\* 1; lr' P. D. llulbe¡¡ CoUu¡at Prlala, Wcllia¡oo, Nd ?Fl.d-lSll<br />

Water & soil technical publication no. 20 (1982)<br />

C0g6flE-6OO/¿V82R


1.<br />

2.<br />

I.IATER AND <strong>SOIL</strong> TECHNICAL PUBLICATIONS<br />

Liqu'id and waterborne wastes research in New Zealand ($t-OO¡ Salty<br />

Sampling of surface waters ($1-OO¡<br />

M Kings<strong>for</strong>d, J S Nielsen, A D Pritchard, C D Stevenson<br />

Davis L977<br />

I977<br />

3. l.later quaìity research in New Zealand 1976 ($1-OO) Saìly Davis<br />

4. Shotover River catchment. Report on sediment sources survey and<br />

of control , L975 (out of stock)<br />

5. Late Quaternary sedimentary processes at Ohiwa Harbour, eastern Bay of<br />

with speciâl reference- to property loss on Ohiwa ($1-OO¡ J G Gibb<br />

6. Recorded channe'l changes of <strong>the</strong> Upper [,laipawa River, Ruahine Range,<br />

New Zealand P J Grant (out of stock)<br />

-r.<br />

7. Effects of domestic wastewater disposal by land irri<br />

qua'lity of <strong>the</strong> central Canterbury P'lains ($1-OO<br />

G N Martin and M J Noonan<br />

feasibility<br />

gation on groundwater<br />

)<br />

L977<br />

1978<br />

P1 enty<br />

1978<br />

8. Magnitude and frequency of floods in <strong>the</strong> Northland-Auckland region and <strong>the</strong>ir<br />

application to urban flood design ($1-00) J R tlaugh<br />

9. Research and Survey annual review 1977 (out of stock) 1978<br />

10. The probìem of coasta'l erosion aìong <strong>the</strong> 'Goìd Coast', western l,lellington,<br />

New Zea'land ($t-sO¡ J G cibb<br />

11. The Waikato R'iver: A water resources study ($12-00)<br />

L2. A review of <strong>the</strong> habitat requirernents of fish in New Zealand rivers ($3-00)<br />

compi'led by D F Church, S F Davis, and M E U Taylor<br />

19 78<br />

1978<br />

L978<br />

1978<br />

L979<br />

1979<br />

13. The Ruahine Range: A situation review and proposals <strong>for</strong> integrated management<br />

of <strong>the</strong> Ruahine Range and <strong>the</strong> rivers affected by it ($S-OO¡<br />

A Cunningham and P W Strib'ling<br />

14. A Survey of New Zealand peat resources ($10-00) A Davoren<br />

15. Effects of urban land use on water quantity and quality: an an<strong>not</strong>ated<br />

b'ibì i ography ($S-OO¡ I Sirrners<br />

1978<br />

1978<br />

1980<br />

16. Research and Survey annual revjew 1978 (free) L979<br />

17. Investigations into <strong>the</strong> use of <strong>the</strong> bacterial species Bacillus stearo<strong>the</strong>rmophilus<br />

and Escherichia coli (HZS positive) as tracers of )<br />

LlllSÏñto=n -<br />

1980<br />

18. A review of scrne biolog'ical methods <strong>for</strong> <strong>the</strong> assessment of water quality wi th<br />

specia'l reference to New Zea'land. Part 1 ($f-OO¡<br />

L979<br />

19. The frequency of high intensity rainfalls in New Zealand. Part I<br />

A I Toml inson (free)<br />

1980<br />

20.<br />

21..<br />

22.<br />

23.<br />

F.egiona1 flood estímation in New Zealand. M E Beable and<br />

A I McKerchar ($8.00)<br />

Coasta'l hazard mapping as a p'lanning technique <strong>for</strong> l,Jaiapu County, East<br />

Coast, North Island, New Zealand ($5-00) ¡ g el¡¡<br />

A review of sqne bio'logica'l methods <strong>for</strong> <strong>the</strong> assessment of water<br />

quality with specia'l reference to New Zea]and Part II ($3.00)<br />

Hydrology of <strong>the</strong> catchments draining to <strong>the</strong> Pauatahanui Inìet<br />

R J Curry ($S.OO¡<br />

Water & soil technical publication no. 20 (1982)<br />

l-982<br />

1981<br />

1981<br />

1981


Water & soil technical publication no. 20 (1982)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!