24.03.2013 Views

Linear independence Definition ® The set {v 1, ..., vp} is said to be ...

Linear independence Definition ® The set {v 1, ..., vp} is said to be ...

Linear independence Definition ® The set {v 1, ..., vp} is said to be ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LINEAR INDEPENDENCE [1.7]<br />

Q: Why do we care about linear <strong>independence</strong>?<br />

A: When expressing a vec<strong>to</strong>r x as a linear combination of<br />

a system {v1, · · · , <strong>vp</strong>} that <strong>is</strong> linearly dependent, then we<br />

can find a smaller system in which we can express x<br />

➤ A dependent system <strong>is</strong> ‘redundant’<br />

<br />

✍ Let v1 =<br />

1<br />

1<br />

. Is {v1} linearly independent? [special<br />

case where p = 1<br />

✍ A system cons<strong>is</strong>ting of a nonzero vec<strong>to</strong>r [at least one<br />

nonzero entry] <strong>is</strong> always linearly independent: True - False?<br />

✍ Are the following systems linearly independent:<br />

<br />

1<br />

0<br />

,<br />

−1<br />

1<br />

,<br />

1<br />

0<br />

,<br />

−10<br />

0<br />

,<br />

1<br />

0<br />

,<br />

−1<br />

1<br />

,<br />

2<br />

1<br />

?<br />

F-3 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

<strong>Linear</strong> <strong>independence</strong><br />

<strong>Definition</strong><br />

➤ <strong>The</strong> <strong>set</strong> {v1, ..., <strong>vp</strong>} <strong>is</strong> <strong>said</strong> <strong>to</strong> <strong>be</strong> linearly dependent if<br />

there ex<strong>is</strong>t weights c1, ..., cp, not all zero, such that<br />

c1v1 + c2v2 + ... + cp<strong>vp</strong> = 0<br />

➤ It <strong>is</strong> linearly independent otherw<strong>is</strong>e<br />

➤ <strong>The</strong> above equation <strong>is</strong> called linear dependence relation<br />

among the vec<strong>to</strong>rs v1, · · · , <strong>vp</strong><br />

➤ Another way <strong>to</strong> express dependence: A <strong>set</strong> of vec<strong>to</strong>rs <strong>is</strong><br />

linearly dependent if and only if there <strong>is</strong> one vec<strong>to</strong>r among<br />

them which <strong>is</strong> a linear combination of all the others.<br />

✍ Prove th<strong>is</strong><br />

F-2 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

✍ Let<br />

⎡ ⎤<br />

1<br />

⎢ ⎥<br />

v1 = ⎣1⎦;<br />

⎡ ⎤<br />

4<br />

⎢ ⎥<br />

v2 = ⎣1⎦;<br />

⎡ ⎤<br />

−2<br />

⎢ ⎥<br />

v3 = ⎣ 3 ⎦;<br />

2<br />

5<br />

1<br />

(a) Determine if {v1, v2, v3} <strong>is</strong> linearly independent<br />

(b) If possible find a linear dependence relation among<br />

v1, v2, v3.<br />

Solution: We must determine if the system:<br />

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤<br />

1 4 −2 0<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

x1 ⎣1⎦<br />

+ x2 ⎣1⎦<br />

+ x3 ⎣ 3 ⎦ = ⎣0⎦<br />

2 5 1 0<br />

has a nontrivial solution<br />

Note Solution <strong>is</strong> trivial when x1 = x2 = x3 = 0<br />

F-4 Csci 2033 – Septem<strong>be</strong>r 25, 2012


Augmented syst:<br />

1 4 −2 0<br />

1 1 3 0<br />

2 5 1 0<br />

Echelon 1st step<br />

1 4 −2 0<br />

0 −3 5 0<br />

0 −3 5 0<br />

➤ Th<strong>is</strong> system <strong>is</strong> equivalent <strong>to</strong> original one.<br />

Echelon 2nd step<br />

1 4 −2 0<br />

0 −3 5 0<br />

0 0 0 0<br />

➤ Select x3 = 3 (<strong>to</strong> avoid fractions) and back-solve for x2<br />

(x2 = 5), and x1, (x1 = −14)<br />

➤ Conclusion: there <strong>is</strong> a nontrivial solution<br />

➤ NOT independent<br />

(b) <strong>Linear</strong> dependence relation: From above,<br />

−14v1 + 5v2 + v3 = 0<br />

F-5 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

LINEAR MAPPINGS [1.8]<br />

Note: Text uses the reduced echelon form instead of backsolving<br />

[result <strong>is</strong> clearly the same. Both solution are OK]<br />

➤ With the reduced row echelon form<br />

1 0 14/3 0<br />

0 1 −5/3 0<br />

0 0 0 0<br />

➤ x1 = −(14/3)x3; x2 = (5/3)x3<br />

➤ select x3 = 3 then x2 = 5, x1 = 14<br />

➤ Recall: x1, x2 are basic variables, and x3 <strong>is</strong> free<br />

F-6 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

Introduction <strong>to</strong> linear mappings [1.8]<br />

➤ A transformation or function or mapping from R n <strong>to</strong> R m<br />

<strong>is</strong> a rule which assigns <strong>to</strong> every x in R n a vec<strong>to</strong>r T (x) in<br />

R m .<br />

➤ R n <strong>is</strong> called the domain<br />

space of T and R m the<br />

image space or co-domain<br />

of T .<br />

➤ Notation:<br />

T : R n −→ R m<br />

R n<br />

●<br />

x<br />

Domain<br />

➤ T (x) <strong>is</strong> the image of x under T<br />

T<br />

R m<br />

●<br />

Range<br />

T(x)<br />

Image / Codomain<br />

F-8 Csci 2033 – Septem<strong>be</strong>r 25, 2012


Example: Take the mapping from R 2 <strong>to</strong> R 3 :<br />

T : R 2<br />

x =<br />

<br />

x1<br />

x2<br />

<br />

−→ R 3<br />

⎡<br />

⎢<br />

−→T (x) = ⎣<br />

x1 + x2<br />

x1x2<br />

x 2 1 + x2 2<br />

Example: Another mapping from R 2 <strong>to</strong> R 3 :<br />

T : R 2<br />

x =<br />

<br />

x1<br />

x2<br />

<br />

−→ R 3<br />

−→T (x) =<br />

⎡<br />

⎢<br />

⎣<br />

x1 + x2<br />

x1 − x2<br />

x1 + 5x2<br />

✍ What <strong>is</strong> the main difference <strong>be</strong>tween these 2 examples?<br />

F-9 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

➤ Given an m × n matrix A Consider the special mapping:<br />

T :R n −→R m<br />

x −→y = Ax<br />

✍ Domain == ??; Image space == ??<br />

➤ From what we saw earlier [‘Properties of the matrixvec<strong>to</strong>r<br />

product’] such mappings are linear<br />

➤ As it turns out:<br />

Any linear mapping can <strong>be</strong> represented in matrix form<br />

➤ Th<strong>is</strong> means that if T <strong>is</strong> linear, there ex<strong>is</strong>ts a matrix A<br />

such that T (x) = Ax for all x in R n .<br />

➤ A <strong>is</strong> the representation of T .<br />

F-11 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

<strong>Definition</strong> A mapping T <strong>is</strong> linear if:<br />

(i) T (u + v) = T (u) + T (v) for u, v in the domain of T<br />

(ii) T (αv) = αT (u) for all scalars α and all u in the<br />

domain of T<br />

➤ <strong>The</strong> mapping of the second example given above <strong>is</strong> linear<br />

- but not for the first one.<br />

➤ If a mapping <strong>is</strong> linear then T (0) = 0<br />

Observation: A mapping <strong>is</strong> linear if and only if<br />

T (αu + βv) = αT (u) + βT (v)<br />

for all scalars α, β and all u, v in the domain of T .<br />

F-10 Csci 2033 – Septem<strong>be</strong>r 25, 2012<br />

✍ Let A <strong>be</strong> a square matrix. Is the mapping x → x + Ax<br />

linear? If so find the matrix associated with it.<br />

✍ Same questions for the mapping x → Ax + αx - where<br />

α <strong>is</strong> a scalar.<br />

✍ Express the following mapping from<br />

R 3 <strong>to</strong> R 2 in matrix/vec<strong>to</strong>r form:<br />

➤ Is th<strong>is</strong> a linear mapping?<br />

y1 = 2x1 − x2 +1<br />

y2 = x2 − x3 −2<br />

✍ Read Section 1.9 and explore the notions of on<strong>to</strong> mappings<br />

(‘surjective’) and one-<strong>to</strong>-one mappings (‘injective’)<br />

in the text. You must at least know the definitions.<br />

✍ A mapping <strong>is</strong> on<strong>to</strong> if and only if ....<br />

✍ A mapping <strong>is</strong> one-<strong>to</strong>-one if and only if ....<br />

F-12 Csci 2033 – Septem<strong>be</strong>r 25, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!