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Introduction

In their booku[33] Rapoport and Zink fix an isocrystal (D, ¢p) over F, and consider the partial
flag variety F over Ko := W(Fp)[1/p] parametrizing filtrations of D with fixed Hodge-Tate
weights. They show that the weakly admissible locus (F;°*)™® (the period space) is a rigid
analytic subspace of F. They conjecture the existence of a rigid analytic subspace (fg)rig of
FUg an étale morphism (}v"g)rig — (J’z'g”a)rig of rigid analytic spaces which is bijective on rigid
analytic points, and of an interesting local system of Q,-vector spaces on (fg)rig, see Conjecture
3.3.9. A.J. de Jong [29] pointed out that to study local systems it is best to work in the category

of Berkovich spaces rather than rigid analytic spaces.

If the Hodge-Tate weights all are 0 and 1, Rapoport and Zink consider a moduli problem
of p-divisible groups and show that it is representable by a formal scheme M. We give the proof
in Chapter 2. They also construct a morphism called the period morphism of rigid analytic
spaces from the generic fiber M8 of M to the period space. The period morphism is étale
and surjective on rigid points. However, in order to determine the precise image of the period
morphism, one should look at Berkovich spaces again.

The aim of this thesis is to understand Urs Hartl’s construction [25] of an admissible locus
JF3' in the case where the Hodge-Tate weights are 0 and 1. The first main theorem is the following

Theorem 0.0.1. The set f“g 18 an open E—analytz’c subspace (in the sense of Berkovich, see
Definition 2.3.19 (i)) of F*®, where F* is the Berkovich space associated to F.

Moreover, Hartl [25] and Faltings [16] show that the period morphism factors through this
admissible locus and is surjective on analytic points. This is our second main theorem.

Theorem 0.0.2. The period morphism 7" : Man _, Fan factors through J’Eg and surjective on
analytic points of ]i"g

We will explain that in the case where the Hodge-Tate weights are 0 and 1 the rational Tate
module of the universal p-divisible group on M?" gives conjecturally the answer to Rapoport-
Zink’s conjecture. We will try to explain the necessary background for these results in this
thesis.

Organization of thesis

This thesis is organized as follows.

In Chapter 1, we define p-divisible groups and recall Grothendieck-Messing’s deformation
theory which are necessary in Rapoport-Zink’s construction of p-adic period mappings. The
main reference is Messing [32].

In Chapter 2, first we introduce the moduli spaces of p-divisible groups and prove its

representability. Then we briefly recall the theory of rigid analytic geometry before defining
period morphisms. The main reference of this chapter is Rapoport-Zink [33].



In Chapter 3, we introduce the weakly admissible locus of certain flag varieties and state
precisely the conjecture of Rapoport-Zink. This is also from Rapoport-Zink [33].

In Chapter 4, the final chapter, we follow Hartl’s construction of the admissible locus of a
p-adic period space possessing period morphisms. This is rather technical. The main references
are Hartl [25] and [26], Faltings [16].
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Chapter 1

Grothendieck-Messing Deformation
Theory

In this chapter, we explain the definitions and basic properties of p-divisible groups (or Barsotti-
Tate groups in the terminology of [32]). We refer to [32] for details. These are necessary in the
Rapoport-Zink’s construction of period mappings for p-divisible groups.

1.1 p-divisible Groups

We fix a prime number p. Let S be a general base scheme, we identify the schemes X over S
with the f.p.p.f. sheaves they represent. We say G is an S-group if G is a commutative f.p.p.f.
sheaf of groups on the site Sch(.S).

Definition 1.1.1. (Grothendieck) An S-group G is said to be a p-divisible group on S if it
satisfies the following three properties:

(i) G is p-divisible, i.e. the morphism p : G — G is an epimorphism.
(ii) G is p-torsion, i.e. G = li_n)lnG(n), where G(n) = ker(p" : G — G).
(iii) The S-groups G(n) are representable by finite locally free S-group schemes.

Remark 1.1.2. (1) In fact, one can replace condition (iii) above by
(#44)" The group G(1) is a finite locally free S-group scheme,

as for every n, G(n) is a multiple extension of groups isomorphic to G(1).

(2) Since G(1) is finite locally free over S, it follows from the elementary theory of finite
group schemes over a field that the rank of G(1) is of the form p”, where h = ht(G) is a locally
constant function on S with values in N. Then for every n, the group G(n) has rank p™"*. The
integer h (whenever it is a constant) is called the height of the p-divisible group G.

We have an equivalent definition by Tate.
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Definition 1.1.3. (Tate) A p-divisible group on S is an inductive system (G, )nen of finite
locally free S-group schemes such that:

(i) Gn = Gny1(n)

(ii) The rank of the fiber of G(n) at s is p"™*), where h is a locally constant function on

The equivalence of Definition 1.1.1 and 1.1.3 is given by:
Grothendieck’s p-divisible group G ~~ Tate’s p-divisible group (G,,)nen Where G, = G(n)

Tate’s p-divisible group (G, )nen ~ Grothendieck’s p-divisible group G = lim eNGn
n

The notion of morphism between two p-divisible groups is easily defined. In Grothendieck’s
definition any map f : G — H where G and H are p-divisible groups on S is a morphism of
p-divisible groups if f is a morphism of f.p.p.f. sheaves of groups. In Tate’s terminology, we
require f = (fy)nen where f, : G, — H,, are morphisms of group schemes and compatible with
the transition maps. Therefore all the p-divisible groups on a base scheme S form a category
denoted by pdiv(S5).

Remark 1.1.4. The category pdiv(S) is not abelian. Indeed, if we consider the multiplication
by p from G to itself, it is easy to see that this morphism has both trivial kernel and cokernel
in pdiv(S). But it is not an isomorphism, hence pdiv(S) cannot be an abelian category.

Definition 1.1.5. Let G = (G(n))nen be a p-divisible group on S. Since the G(n) are finite
locally free S-group schemes, the dual group schemes G(n)* = Homg_,,.(G(n),Gyg) are also
finite and locally free. The epimorphism p : G(n + 1) — G(n) gives a monomorphism p* :
G(n)* — G(n+1)*. Then the inductive system (G(n)*),en with respect to p* gives a p-divisible
group G* over S (in the sense of Tate). We call G* the Cartier dual of G.

Remark 1.1.6. The assignment G — G* gives a duality on the category of p-divisible groups
on S.

Proposition 1.1.7. (/32]) The p-divisible groups are stable under base change and extensions.
More precisely,

(i) If S" — S is a morphism and G is in pdiv(S), then f*(Q) is in pdiv(S’).
(ii) If 0 — G1 — G2 — G3 — 0 is an exact sequence of S-groups and G1 and Gs are in
pdiv(S), then Go is in pdiv(S) also and ht(G3) = ht(G1) + ht(Gs).

Example 1.1.8. (1) The constant formal group (Q,/Z,)s = &nn(#Z/Z)S is an ind-étale
p-divisible group over S.

(2)([32] Chapter I 3.4) Let A be an abelian scheme on S, i.e. a commutative group
scheme f : A — S with f proper, smooth and having geometrically connected fibers. Then
limA(n) = lim(ker p") is a p-divisible group of rank 2d on S, where d is the relative dimension
of A/S.

In the set of morphisms of p-divisible groups we have a particular subset, the isogenies of
p-divisible groups.



Definition 1.1.9. Let G and G’ be two p-divisible groups over S, a morphism f : G — G’ is
called an isogeny if it is an f.p.p.f. epimorphism with finite locally free kernel. Two p-divisible
groups are called isogeneous if there exists such an f.

Proposition 1.1.10. (/19]) Suppose S is connected or quasi-compact. A morphism f : G — G’
between two p-divisible groups over S is an isogeny if and only if there exists a morphism g :
G' — G and an integer N such that go f = pN1dg and f o g = pN Ide.

We have a converse to the Definition 1.1.9.

Proposition 1.1.11. ([33] 2.7) Let G be a p-divisible group on S. Let H be a finite locally
free S group scheme and H — G a monomorphism over S. Then the f.p.p.f. sheaf G/H is a
p-divisible group.

The multiplication by p on a p-divisible group is obviously an isogeny. It follows that for
p-divisible groups, the group Homg(G,G’) is a torsion free Z,-module. Let Homg¢(G, G’) be the
Zariski sheaf of germs of morphisms.

Definition 1.1.12. A quasi-isogeny of p-divisible groups from G to G’ is a global section p of
the Zariski sheaf Homg(G, G’) ®7 Q such that there exists locally an integer n for which p"p is
an isogeny. We denote the group of quasi-isogenies by Qisogg(G,G").

Quasi-isogenies of p-divisible groups have the following rigidity property.

Theorem 1.1.13. (/1] 2.2.3) Let S’ be a closed subscheme of S with locally nilpotent defin-
ing sheaf of ideals J. Assume moreover that p is locally nilpotent on S. Then the canonical
homomorphism

Qisogg(X,Y) — Qisogg (Xg, Yer)

1s bijective.

In the sequel, we shall have to deal with p-divisible groups over formal schemes. Our
formal scheme X will be adic, locally noetherian (see Chapter II), hence there is a largest ideal
of definition J, and X = liign%n where X,, is locally written as Spec(Ox/3"t1). In particular
X1ed = Xp is locally isomorphic to Spec(Ox/J).

Definition 1.1.14. A p-divisible group G over X is an compatible system of p-divisible groups

Gy, over X, which means that we have G, 1 x%,., Xn = G, for every n.

Proposition 1.1.15. [32] If X = Spf A is an affine formal scheme, the functor G — (G mod "), N
induces an equivalence between the category of p-divisible groups over Spec(A) and the category
of p-divisible groups over Spf(A).

1.2 Relations with Formal Lie Groups

Definition 1.2.1. Let G be an S-group, for any k € N we define a sub f.p.p.f. sheaf Inf*(G)
of G over S. For each S scheme T, the T sections of Inf¥(G) is the subset of elements t €



I'(T,G) = G(T) satistying that there is a covering {T; — T'} for the f.p.p.f. topology and for
each T; a closed subscheme 7T defined by an ideal whose k + 1-th power is 0 with the property
that t7, € I'(T}, G) factors through the unit section e : § — G.

Remark 1.2.2. If G is an S-group scheme, Inf¥(G) is the k-th infinitesimal neighborhood of G
along e : S — G in [13] IV 16.

Definition 1.2.3. Let GG be an S-group, G is said to be formally smooth if for any affine scheme
X and any closed subscheme i : Xy < X defined by an ideal I with I? = 0, any morphism
fo: Xo — G lifts to a morphism (not necessarily unique) f : X — G such that fo = f o.

Theorem 1.2.4. ([32] Chapter II 3.53.13) Assume p is locally nilpotent on S, then any p-divisible
group on S is formally smooth.

Definition 1.2.5. An S-group G is a formal Lie group if
(i) G = limy Inf*(G), i.e. G is ind-infinitesimal,
—
(ii) G is formally smooth,

(iif) For any integer k, Inf*(@) is representable.

One can prove that if G is a formal Lie group then, locally on S, G is of the form
Spf(Os([X1, -+, Xn]]).

Definition 1.2.6. Let G be an S-group scheme with unit section e : § < G. The Og-module
wg = e*Qé/S is called the differential of G.

Definition 1.2.7. Let G be a formal Lie group on .S with unit section e : S < G, then we define
the differential of G as wg := e*Qllnfk @)/s for sufficiently large k. We note that this definition
is independent of the choice of £ >> 0.

Remark 1.2.8. One can see that wg is a finite locally free Og-module, we call its rank the
dimension of G.

Theorem 1.2.9. ([32] Chapter II 3.3.18) Let p be locally nilpotent on S and G be a p-divisible
group on S. Then G := limy, Inf*(@) is a formal Lie group.

Remark 1.2.10. In general, G is not a p-divisible group, as G(1) is not necessarily flat. For
example, let E be an elliptic curve over k[[t]], with k a finite field of characteristic p, such that
the fibre over k is supersingular and the fibre over k((¢)) is ordinary. Let G be the p-divisible

group of E. Then the (G(1)) has rank p?, whereas (G(1))x(()) has rank p, and hence G is not
a p-divisible group.

Definition 1.2.11. We define the differential wg of a p-divisible group G on S (where p is
locally nilpotent) as wg. We have wg = wa(n) for n >> 0, since for any n >> 0 there exists an

integer n’ such that Inf"(G) = Inf" (G). The rank of wg is called the dimension of G.



1.3 The Crystals Associated to p-divisible Groups

We first recall the classical theory of Dieudonné crystal associated to a p-divisible group G over
a perfect field k of characteristic p > 0. For the details see [14].

Let W (k) be the Witt ring of k, Ko = W (k)g be the fraction field of W (k). The Frobenius
map = — 2P in k extends to a Frobenius automorphism ¢ on W (k) and Kj.

Definition 1.3.1. A crystal over k is a free W (k)-module M of finite rank, together with an
injective @-linear endomorphism F' and pM C FM, ie. F: M — M is injective, additive and
F(Ax) = o(\)F(z) for any A € W(k), z € M.

Definition 1.3.2. An isocrystal over k is a finite dimensional Ky-vector space N equipped with
a bijective @-linear automorphism F. Let V = pF~! be the Verschiebung.

Remark 1.3.3. (1) If M is a crystal over k, then Ko ®yy () M is an isocrystal over k.

(2) Let M be a lattice contained in an isocrystal N, then M is a crystal if and only if M
is stable under F' and V.

(3) Tt is easily seen that V is ¢~ !-linear and FV = VF = pId.
(4) The crystals (resp. isocrystals) over k form a category. The morphisms between two
objects are W (k) (resp. Kp) linear maps which commute with the ¢-linear endomorphisms F'.

This category is a Zj, (resp. Q) linear category, i.e. the Hom are Z,-modules (resp. Q, vector
spaces) and the composition is Zj, (resp. Q) bilinear.

Definition 1.3.4. All the schemes in this definition are assumed to be over F,,.

(i) Let S be a scheme, the absolute Frobenius fs of S is defined to be an endomorphism
of S which is identical on base points and sends a section s of Og to the section sP.

(ii) Let S be a fixed base scheme and X be an S-scheme. We denote X ®/9) or simply X ®)
the inverse image of X by the base change fg: S — 5, i.e. we have the following commutative
diagram.

Xx®) —= X

| ]

S—S

(iii) We define F' x50 X = X (?) the unique morphism making the following diagram
commutative. This is called the Frobenius morphism of X over S.




If G is a flat commutative S-group scheme, one can define a canonical homomorphism
functorial on G
Vg/s : G(p/S) — G

called the Verschiebung morphism of G over S satisfying the following properties:

Fgis0Vg/s =pldge and Vg/s0Ggs =pldg

For our use, we assume that S = Speck and G be a commutative group scheme over k. Then
we denote Fg = Fgy, and Vg = Vi In this case Vi - G® — @G is the Cartier dual of
Fge : G* — (G*)P) = (GP)*,

The classical Dieudonné theory associates to every p-divisible group G over k a Dieudonné
crystal D(G) and an isocrystal E(G). The Dieudonné crystal D(G) := Hom(G,CW), where CW

is the co-Witt vectors over k. The Frobenius and Verschiebung in Definition 1.3.2 are given by
F:=E(Fg) and V := E(Vg).

Theorem 1.3.5. ([14]) The functor G — D(G) provides an anti-equivalence of categories be-
tween p-divisible groups over k and Dieudonné crystals. The rank of D(G) is the height ht(Q)
of G.

Remark 1.3.6. Assume GG and H are two p-divisible groups over k of the same height and
f: G — H be a homomorphism and E(f) : E(H) — E(G) is the Ko-linear map induced from
the functoriality. One can show that f is an isogeny if and only if E(f) is an isomorphism.
These are also equivalent to the condition that D(f) is an injection.

Example 1.3.7. (1) Let k be algebraically closed and A € Q, A = r/s with r,s € Z,(r,s) = 1
and s > 0. We define an isocrystal Ey = Ko < T > /(T° —p",TA = p(A\)T,\ € Ky), where
Ky < T > is the non commutative polynomial ring, i.e. the elements in K are not commutative
with the indeterminate T. We can also write

Then Dy = End(E)) is the unique division algebra with center @, and invariant A\. Moreover,
we have dim E\ = (1 — A) ht(E)).

(2) From [14] we have that A € [0,1]NQ if and only if there is a p-divisible group G such
that E(Gy) = E).

From Remark 1.3.6 we see that after inverting p it is possible to work with vector spaces
over a field and the classification of isocrystals over k of the form E(G) is therefore equivalent
to the classification of p-divisible groups up to isogeny.

Theorem 1.3.8. (Manin)([14]) Let k be algebraically closed. The category of isocrystals over
k is semi-simple. Its simple objects are the E)’s, i.e. any isocrystal N over k is isomorphic to
a direct sum Y (Ey\)"™. This is called the slope decomposition of N.



The problem of generalizing Dieudonné theory to p-divisible groups over more general
base S over which p is locally nilpotent has been tackled and advertised by Grothendieck
([24]). Grothendieck’s proposal was to define D(G) as a F-crystal on the crystalline site of
S. As Grothendieck commented ([23]), there are two different ways to construct the generalized
Dieudonné functor, the method of exponential and the method of f extensions. The first gives
a direct application to the theory of infinitesimal extension of p-divisible groups and the second
clears easily the connection to the classical Dieudonné theory. In the case of p-divisible groups
over a perfect field of characteristic p > 0, this gives a canonical isomorphism between them.

We give here the main results of Messing’s covariant Dieudonné theory by using exponen-
tials. The covariant theory and contravariant theory are connected via Cartier duality.

To define the crystaline site over a scheme S, we first introduce the concept of divided

powers.

Definition 1.3.9. Let A be a ring and I an ideal of A. We say that [ is equipped with divided
powers if we are given a family of mappings v, : I — I for n > 1 which satisfy the following
conditions:

(i) vi(z) =x, forall x € T
(i) (@ +y) = (@) + 75 i@)i(y) + m(y)
(iii) Yn(zy) = 2"y (y) for x € Aand y € I

(1v) Yo (Y (@) = GLamer Yonn ()
(v

) Y (@) () = LR ()

Given such a system we define 7y via vo(x) = 1 for all = € I and refer to (I,~) as an ideal
with divided powers.

Remark 1.3.10. By the axiom (v), we have

(my+mo+---+ mp
m1!m2! . H'le

Vima+ma-t--tmy (T) -

In particular, we have 2™ = (y1(z))" = nly,(x). This formula is the main motivation to introduce
the divided powers. If A is a Q-algebra or a torsion free Z-module, we have ~,(z) = 2™ /n! for
all n > 0. Hence every ideal has a unique structure of divided powers. We sometimes write the
map v, by x — (™.

Definition 1.3.11. Given (A4, I,~) an ideal with divided powers, we say that the divided powers
are nilpotent if there is an integer N such that the ideal generated by elements of the form
Vi, (1) -+ yi, (xg), i1+ - -+, > N is zero. This implies that IV =0 (taking k = N, iy = --- =
iy =1).

Definition 1.3.12. Let (A, I,v) be an ideal with nilpotent divided powers. We define two
homomorphisms exponential and logarithm as

exp:J — 1+ J, exp(z Zx
n>0



log:1+J —J, log(l+2)= Z(—l)"fl(n —1)lz™

n>1

These two homomorphisms give an isomorphism J* 2 (1 + J)*.

Example 1.3.13. (1) Consider W = W (k) the Witt ring with coefficients in a perfect field &k
of characteristic p > 0 and I = pW. Then by the classical method of Gauss, assume n > 1 is an
integer and

n:ao—i-alp—i--'-—l—alpl

with 0 <a; <p—-1,5=0,...,l and let s, = Zé’:o a;. Then the p-adic valuation of n! is given
by

ord,(n!) = - Sln <n-1

Then we define v, (p) = p™/n! € pW giving the unique divided power structure on pW.

(2) We can replace W by any separated and complete noetherian adic ring A of charac-
teristic zero with p contained in an ideal of definition. Then the ideal pA can be equipped with
a canonical divided power structure.

Definition 1.3.14. Let (A, I,7) and (A’,I’,v') be two ideals with divided powers. A divided
power homomorphism ¢ : (A, I,v) — (A',I',+') is a homomorphism of rings ¢ : A — A’ such
that ¢(I) C I' and ¢(z™) = ¢(2)™ for any z € I.

Definition 1.3.15. Let (A, I,7) be an ideal with divided powers and let ¢ : A — B be a ring
homomorphism. We say that v extends to B if there exists a divided powers structure v’ on I B
such that the mapping ¢ : (A,1,7) — (B,IB,’) is a divided power homomorphism.

We have two cases when the divided powers structure extends successfully.

Proposition 1.3.16. ([24] or [32] Chapter 3 (1.8)) Let (A,I,v) be as above and ¢ : A — B be
a ring homomorphism, then

(i) If I is principal, then ~ extends to 1B
(ii) If B is a flat A-algebra, v extends to IB.

Remark 1.3.17. Our construction can be globalized as follows: we replace A by a scheme S,
I by a quasi-coherent ideal sheaf J of Og, divided powers on J are given by assigning to each
open subset U a system of divided powers on I'(U,J) commuting with the restriction maps.

Given a divided power morphism between (5,7, v) and (S’,7,') is the same as to give a
morphism of schemes f : S — S’ such that f~1(3') maps into J under the map f~(Og/) — Os
and the divided powers induced on the image of f~1(J') ”coincide” with those defined by 7.

Definition 1.3.18. For a scheme X, we define the crystalline site Crys(X) as a category whose
objects are triples 7' := (U — T, ) where:

(i) U is a Zariski open subscheme of X

(ii) U — T is a locally nilpotent immersion



(iii) v = (yn) are locally nilpotent divided powers on the defining ideal I of U in T.

The morphisms from (U < T,7) to (U" — T’,4') are the commutative diagrams

(1.1) U—>T

F

(]/ > jﬂ/

where f : U — U’ is the inclusion and f : T — T’ is a divided power morphism, i.e. the
morphism of sheaf of rings ?_1(OT/) — O is a divided power morphism.
A covering family of an object (U — T,+) is a collection of morphisms {(U; — T;,~v;) —

(U — T,~)} such that T is the open subscheme of 7" whose underlying set is U; an open subset
of U and U; =U.

Definition 1.3.19. A sheaf (of sets for example) on this site is a contravariant functor F' :
Crys(X)°? — (Sets) such that for every covering family {7; — T}, the following sequence of
sets is exact
0— F(T) = [[F(T@) = [[F(T xr T))
i ij

Remark 1.3.20. Sheaves on this site admit the following description: to give a sheaf F is
equivalent to giving an ordinary sheaf F(y—,7 ) on T for each object (U — T),~), and for every
morphism u : (U — T1,71) — (U < T,7) in Crys(X), amap py, : u’l(F(U;,Tﬁ)) — Fu, -1 m)
such that

(i) If v : (Uy — Ts,7v2) — (Ur — T1,71) is another morphism, then we have a commutative
diagram

o o) _
v uTH (Fue,y) — 0 HEw =)

\ \va
Puov

F(U2‘—>T27’Yz)

(ii) If w : (U — Th,m) — (U — T,v) a morphism satisfying w : 71 — T is an open
immersion, the map p, : u’l(F(Uc_,Tﬁ)) — Fy,—1, ~) 18 an isomorphism.

In Grothendieck’s term: ”crystals grow and are rigid”.

Remark 1.3.21. (1) The site Crys(X) is ringed in a natural way, namely the sheaf of rings
Ox¢,y, corresponds to the system O 1,y = Or.

(2) A sheaf of modules M on the site Crys(X) is given by a family M7 of Or-modules
satisfying the similar properties as in Remark 1.3.20. Such an M is said to be special if for any
diagram

U——=T



we have f* (Mpr) = Mp. A module M is said to be quasi-coherent if M is special and all Mp
are quasi-coherent Op-modules.

Definition 1.3.22. Let F be a fibred category on (Sch) which is a stack with respect to the
Zariski topology. An F-crystal on X is a Cartesian section of the fibred category F X (gcn)
Crys(X), where Crys(X) — (Sch) is given by (U — T,v) — T. A morphism of F-crystals is
a morphism of Cartesian sections. This means that for each object (U < T,7) in Crys(X) we
are given an object Q—71,) in Fr and that for each morphism (1.1) in Crys(X) we are given
an isomorphism

up: Quety) — [T Quret 5

These isomorphisms are to satisfy f*(ugz)ou 7 = Ugoj Where g comes from a morphism in Crys(X)

UI—>TI

of
U// Tl/

In particular, an F-crystal is a sheaf on Crys(X).

Remark 1.3.23. A special Ox, -module M is a crystal in modules. Here Fr = QCoh(T) is
the category of quasi-coherent Op-modules.

Let Sy be our base scheme with p locally nilpotent on it. In order to generalize the classical
Dieudonné theory (in covariant form), we hope to define a functor

D : pdiv(Sp) — (Crystals in finite locally free Og,,,  -modules)

By the method of exponentials, one can associate to certain p-divisible groups on Sy a crystal
in finite locally free Og,,,,-modules. The word ”certain” means that our p-divisible groups in
question are locally liftable to infinitesimal neighborhoods. More precisely, we define pdiv(Sp)’ to
be the full subcategory of pdiv(Sy) consisting of those p-divisible groups Gy with the property
that there is an open cover of Sy (depending on Gy) formed of affine open subsets Uy C Sy
such that for any nilpotent immersion Uy — U there is a p-divisible group Gy on U with
Gulu, = Goluy-

By the arguments of Grothendieck and Illusie, every p-divisible group over Sy is locally
liftable to infinitesimal neighborhoods, i.e. pdiv(Sy) = pdiv(Sy). To such a p-divisible group G
Messing had defined:

(1) a crystal in (f.p.p.f.) groups: E(G)

(2) a crystal in formal Lie groups: E(G)
(3) a crystal in finite locally free modules: D(G)

The crystal E(G) is our basic crystal to construct and E(G) is obtained from E(G) by
”completing along the unit section”, while D(G) will be obtained from E(G) by applying Lie
functor (Definition 1.3.32). To construct E(G) we now arrive to introduce the universal extension
of a p-divisible group by vector groups.



Definition 1.3.24. Let S be a scheme and M be a quasi-coherent Og-module. One can associate
to M af.p.p.f. S-group M whose section over an S-scheme T is given by F(T M) I'(T,0r®04

M). If moreover M is a locally free Og-module of finite rank, then M is representable by the
group scheme defined by the symmetric algebra Sym(M ") which is locally isomorphic to a finite
product of G,’s and M is called a wvector group over S.

Proposition 1.3.25. (/32] Chapter IV 1.3) Suppose G is an S-group scheme with G* rep-
resentable (e.g. G is a finite locally free S-group). Then the functor (on quasi-coherent Og-
modules): M +— Homg_g,(G, M) is represented by wg=, i.e. there is a morphism d : G — wg~

such that the natural map Homog—med(wa+, M) — Homg_ g4, (G, ]TI/) is a bijection for any quasi-
coherent Og-module M .

From now on, we assume p¥ is zero on S and G is a p-divisible group on S. Then for
any quasi-coherent Og-module M, Homg_4.(G,M) = 0. This is because pV G — Gis an
epimorphism and p" times any homomorphism f : G — M is zero and we have the following
commutative diagram

G—=M

N

G—— M

Definition 1.3.26. An extension of G by a vector group V' is an exact sequence of commutative
S-groups:
0—-V->FE—->G—0

Such an extension is said to be wniversal if for any vector group M the natural mapping
Hompg mod(V, M) — Ext}(G, M) is a bijection.

By an automorphism of an extension 0 — V — E — G — 0 we mean a morphism
a : E — FE such that the following diagram is commutative

0 Vv E G 0
Idl al Idl
0 |4 E G 0

Since Hom(G, V') = 0, an extension of G' by a vector group V admits no non trivial automor-
phism.

Theorem 1.3.27. ([32] Chapter IV 1.10) Assume that pN Og =0 and G is a p-divisible group
on S, then there is a universal extension E(G) of G by a vector group V(G).

Remark 1.3.28. (1) Here V(G) is actually wg(ny- = wg+-

(2) The universal extension commutes with an arbitrary base change S’ — S. Hence this
can be generalized to base schemes S where p is locally nilpotent.



Corollary 1.3.29. (/32] Chapter IV 1.1}) Assume that p is locally nilpotent on S and G is a
p-divisible group on S. Then there exists a universal extension 0 — V(G) — E(G) — G — 0 of
G with V(G) = wg+.

Proposition 1.3.30. (/32] Chapter IV 1.15) Let p be locally nilpotent on S and G, H two p-
divisible groups on S with u : G — H a homomorphism. Then there is a unique homomorphism
E(u): E(G) — E(H) such that we obtain a morphism of extensions:

0 —— V(G) —— E(G) G 0
0 —— V(H) —— E(H) H 0

where V (u) is the map induced on the invariant differentials by the Cartier dual of .

Proposition 1.3.31. ([32] Chapter IV 1.19) Assume p is locally nilpotent on S and G be a
p-divisible group on S, then E(G) := limy Inf® E(G) is a formal Lie group.

Definition 1.3.32. We define Lie(E(G)) = Lie(E(G)) = (%)V

Proposition 1.3.33. (/32] Chapter IV 1.22) By taking the Lie functor of the universal extension
0—V(G) — E(G) — G — 0, we get an exact sequence 0 — V(G) — Lie(E(G)) — Lie(G) — 0.

We state the main theorem which allows the construction of E(G).

Theorem 1.3.34. ([32] Chapter IV 2.2) Let S = Spec(A), p~ - 15 = 0, Sy = Var(I) where
I is an ideal of A with nilpotent divided powers. Let G and H be two p-divisible groups on S
and assume ug : Go — Hy is a homomorphism between their restrictions to So. By Proposition
1.83.80 ug defines a morphism E(ug) : E(Go) — E(Hy) of extensions

0 —— V(Go) —— E(Gy) Go 0
lV(uo) E(uo)l UOJ/
0 —— V(Hy) —— E(Ho) Hy 0

Then there is a unique morphism v : E(G) — E(H) (not necessarily respecting the structure of
extensions) with the following properties:

(i) v is a lifting of E(up)

(ii) Given w : V(G) — V(H), a lifting of V (ug), denote by i the inclusion V(H) — E(H),
such that d = iow —v|y(q) : V(G) — E(H) induces zero on So. Then d is an exponential in
the sense of [32] Chapter 3.

We have several corollaries that are needed for the construction of the crystal E.

Corollary 1.3.35. ([32] Chapter IV 2.4.1) Let K be a third p-divisible group on S and wy :
Hy — Ky a homomorphism. Then Es(uj o ug) = Es(ug) o Es(ug).



Corollary 1.3.36. ([32] Chapter IV 2.4.2) If G = H and ug = Idg,, then Es(ug) = Idg.

The above two corollaries are proved by showing that the right hand sides of the equalities
are actually satisfying the condition in Theorem 1.3.34. The following corollary follows from
them.

Corollary 1.3.37. (/32] Chapter IV 2.4.3) Let G and H be p-divisible groups on S and ug :
Go — Hy an isomorphism. Then Eg(ug) is an isomorphism.

Let Sp be an arbitrary scheme with p locally nilpotent on it and Gy be in pdiv(Sp)’. Since
the f.p.p.f. groups form a stack with respect to the Zariski topology, it suffices to give the value
of the crystal E(Gy) on "sufficiently small” objects (Uy < U) of the crystalline site of Sy. Take
Up affine, we lift Go|y, to a p-divisible group Gy on U. From Corollaries 1.3.35 and 1.3.37,
E(Gy) is independent of the choice of lifting up to canonical isomorphism.

If Vj — V is a second object of the crystalline site and there is morphism

Uy — U

AR
Vob —V

then for a lifting Gy of Go|y, to U and a lifting Gy of Goly, to V the same corollaries give a
canonical isomorphism f*(E(Gyp)) = E(Gy).

Definition 1.3.38. We define the value of the crystal E(Gp) on a sufficiently small object
(Up — U) is simply E(Gy) for some choice of lifting of G|y, to U. We see that E is functorial.

Remark 1.3.39. Given Ty — Sy the diagram is commutative

pdiv(Sp)’ _E, (Crystals in f.p.p.f. groups on Sp)

| |
pdiv(Ty) SN (Crystals in f.p.p.f. groups on Tp)
Definition 1.3.40. Define other two crystals

E(Go) ety = (E(Go) wo—17))

D(GO)(UUQU) = Lle(E(GO)(UOC—»U))

Since E is functorial, we see that E and D are functorial.

Remark 1.3.41. We call D our covariant Dieudonné functor. It can be shown that D(G) is a
finite locally free crystal on S of rank the height of G.

Remark 1.3.42. If k is a perfect field of characteristic p > 0 and G is a p-divisible group over
k. Let W(k) be the Witt ring with coefficients in k, then W (k)/pW (k) = k. For p > 3 we
define W,, := W (k)/p"W (k). Then the surjective ring homomorphism W,, — W (k)/pW (k) =k



gives a nilpotent immersion Speck — Spec W,, with nilpotent divided powers on the defining
ideal pW (k)/p"W (k), see Example 1.3.13. The relation of the classical Dieudonné crystal and
the Grothendieck-Messing crystal is given by

D(G) = lim D(G")

If p = 2 we take W), := W(k)/4"W (k).

1.4 Deformation Theory

Let p be locally nilpotent on S and Sy < S be a nilpotent immersion defined by an ideal I
which is endowed with locally nilpotent divided powers. For G € pdiv(Sy), we denote D(Gy)s
the value of the Lie algebra crystal on (Sy — 95).

Definition 1.4.1. A filtration Fil' € D(Gyg)s is said to be admissible if it is a locally direct
factor vector subbundle of D(Gp)s which reduces to V(Go) C Lie(E(Gp)) on S.

Definition 1.4.2. We define a category whose objects are pairs (G, Fil') with Gy a p-divisible
group on Sy and Fil' an admissible filtration of D(Gg)s. The morphisms between two objects
are the pairs (ug, £) where ug : Gog — Hp is a morphism of Sy-group and ¢ : Fill (Gy) — Fil' (Hy)
which satisfying the following commutative diagram

Fil' (Go) —— D(Go)s

5J{ J{D(Uo)s

Fil' (Hy) —— D(Hy)s
and reduces to the commutative diagram

V(Go) — Lie(E(Gy))
V(UO)\L \LLie(E(uo))
V(Ho) —% Lie(E(Hy))

the morphism D(ug)s = Lie(E(ug)s) where E(ug)s is the unique morphism in Theorem 1.3.34

Theorem 1.4.3. (Grothendieck-Messing)([32]) The functor G — (Go = Gls,, V(G) — D(Go)s)
establishes an equivalence of categories between pdiv(S) and the category of admissible pairs

(Go, Fil').

By passing to the limit, one can consider the deformation theory on formal schemes which
are complete with respect to the p-adic topology. For example, let A be a complete discrete
valuation ring with residue field k perfect of characteristic p > 0 and K the fraction field of A,
which is of characteristic zero. Then A is p-adic and denote A, = A/p"*t'A. For any p-divisible
group Go over Sy = Spec(Ap), we define by passage to limit a finite locally free A-module M



such that M ®a An = D(Go)(Spec(Ag)—Spec(4,))- Here we equip (Spec(Ag) — Spec(Ay)) with
the canonical divided powers as in Example 1.3.7. Then to give a p-divisible group G over Spf A
is the same as to give

(1) A p-divisible group Gy = G ®4 Ap over Ay.

(2) A system of admissible filtration V;, of D(Go)(spec Ag—sSpec 4,) for each n € N, which is
compatible in the sense that V11 ®4,,., 4An = V.

Now we state a question of Grothendieck. Fix a p-divisible group X over F, of height
h and dimension d. Let W := W (F,) be the ring of Witt vectors and let Ky be its fraction
field. Let Ok be a complete discrete valuation ring with residue field F,, and fraction field K
of characteristic 0. To every p-divisible group X over Ok with X = X ®o, H‘Tp we associate an

extension

n+1

0 —(Lie X*)jy — D(X)x —(Lie X) g — 0
We denote by F = Grassp—q(D(X)g,) the Grassmannian of (h — d)-dimensional subspaces of
D(X)k,. Grothendieck [23] raised the following question:

Describe the subset of F formed by the points (Lie X*)). where X is any deformation of
X over any complete discrete valuation ring Ok with residue field F, and fraction field K of
characteristic 0.

We will return to this question in Proposition 3.2.13.






Chapter 2

Moduli Spaces for p-divisible Groups
and the Period Morphisms

In this chapter, we first give some generalities on formal schemes. Then we state the moduli
problem of p-divisible groups considered in [33] and prove its representability. Before introducing
the period morphism we recall the theory of rigid analytic geometry which is necessary in
the sequel. Then by using Grothendieck-Messing’s deformation theory we can describe the
construction of period morphism as in [33], we will prove that the period morphism is étale.

2.1 Generalities on Formal Schemes

We assume in this section that all the rings we consider are commutative.

Definition 2.1.1. Let A be a topological ring and {I,} a set of open ideals of A that form a
fundamental system of neighborhoods of zero in A. We say that A is a linear topological ring if
for any a € A, {a+ I,} form a fundamental system of neighborhoods of a. An element z € A
is called topologically nilpotent if ™ goes to zero as n tends to infinity.

Definition 2.1.2. An ideal I of A is called an ideal of definition of A if I is an open ideal
and for any open neighborhood V' of 0 there exists and integer n such that I C V. A linear
topological ring A having an ideal of definition is called a preadmissible ring. A preadmissible
ring is admissible if it is separated and complete.

Remark 2.1.3. A preadmissible noetherian ring admits a maximal ideal of definition. ([13]I
Chapter 0 7.1.7).

Definition 2.1.4. A preadmissible ring A is said to be preadic if there is an ideal of definition
I of A such that I™ form a fundamental system of neighborhoods of zero. Moreover if it is
separated and complete, A is called I-adic. In this case A is the projective limit of the discrete
rings A, = A/I""1 n > 0. This topology is independent of the choice of the ideals of definition,
since for any other ideal of definition J there exist positive integers p, ¢ such that J > IP D J4.

23



Definition 2.1.5. Let A be an I-adic ring and denote X the affine scheme Spec(A). Then one
can associate a topological ringed space (X, Ox), where X is the topological space V(1) and Ox
is the sheaf of rings limOx /I"*!. Here we consider each Ox /T "1 as a sheaf of rings on V(I),
and make them into an inverse system in the natural way. Such a locally ringed space is called
an affine formal scheme.

Definition 2.1.6. A formal scheme is a locally ringed space (X, Ox) which has an open covering
{44;} such that for each i, the pair (Ll;, Ox|y,) is isomorphic, as a locally ringed space, to an affine
formal scheme.

Remark 2.1.7. (1) We can also define formal schemes as functor. For a preadmissible ring
(A, {I,}), we define a contravariant functor Spf A on the category of schemes:

Spf A(Z) := lim Hom(Z, Spec(A/1,))

This is a local functor, i.e. a sheaf for the Zariski topology on the category of quasi-compact
quasi-separated schemes. If the ring (A, {I"}) is adic, Spf A is clearly our affine formal scheme.
A formal scheme is then a local functor which has a covering by open subfunctors which are
affine formal schemes. If a formal scheme is locally isomorphic to Spf A, where A is a noetherian
adic ring, we call it locally noetherian.

(2) If A is a p-adic ring, we may consider the category Nilp, of schemes S over Spec A
such that p is locally nilpotent on S. Then the category of formal schemes over Spf A is a full
subcategory of the category of set valued sheaves on Nilp,.

Definition 2.1.8. A morphism f : X — ) between two (locally noetherian) formal schemes
is a morphism of corresponding locally ringed spaces, which is continuous on the sheaves of
topological rings.

Definition 2.1.9. A morphism f : X — ) of formal schemes is of finite type, étale, lisse, etc
if for any scheme Z and any morphism Z — %), the fiber product X xg Z is a scheme and
X X9 Z — Z is of finite type, étale, smooth, etc in the usual sense.

Definition 2.1.10. Let X be a locally noetherian formal scheme, then there is a unique reduced
scheme X,.q and a unique morphism of locally ringed spaces X,eq — X, such that for any reduced
scheme Z the natural map Hom(Z, X,.q) — Hom(Z, X) is a bijection.

Definition 2.1.11. Let X and %) be locally noetherian formal schemes, a morphism X — ) is
called formally of finite type if X.cd — Dred is of finite type. We have the same definition of
locally formally of finite type.

The following proposition gives a condition to ensure that the completion of a preadmis-
sible ring (A, {I,}) is adic. It is a reformulation of [13]I Chapter 0 7.2.7.

Proposition 2.1.12. Let A be a preadmissible ring with a fundamental system of neighborhoods
given by a chain of ideals
LOoLD>---DI, D



Let I be an ideal of definition of A such that I/I?* is topologically of finite type, i.e. 1/I* + I
is a A-module of finite type for all r. If for each m € N the following chain of ideals stabilizes
and equals to ap,

L+I"D>L+I"D>- - DI, +1I"D -,

then the projective limit linA/ A 95 an I-adic ring.

Proof. 1t is easy to see that a; = I, a, D Gmt1, Gmt1 + a* = a,,. Moreover aj/az is an
A-module of finite type. Then by [13]I Chapter 0 7.2.7, limA/a,, is an [-adic ring. O

2.2 Moduli Spaces of p-divisible Groups

This section is essentially Chapter 2 and 3 of [33]. We will state and prove the case we need in
the sequel.

We fix a prime number p and let W := W (F,) be the ring of Witt vectors with coefficients
in IPT,. We denote by Kj the fraction field of W and ¢ the Frobenius automorphism on W and
K. For any complete discrete valuation ring O of mixed characteristic (0, p), we denote Nilp
the category of locally noetherian schemes S over Spec O such that pOg is locally nilpotent. We
denote S the closed subscheme of S defined by the ideal pOg.

Theorem 2.2.1. Let X be a fived p-divisible group over SpecF,. We define the contravariant
functor M over Nilpy, which associates to S the set of isomorphism classes of the pairs (X, p)
given by

(i) A p-divisible group X over S,

(ii) A quasi-isogeny p : Xg — Xg.

Then the functor M is represented by a formal scheme locally formally of finite type over

Spt W. Two points (X1,p1) and (Xa,p2) are isomorphic if py o pgl lifts to an isomorphism
X9 — X7.

We prove the theorem in several steps. First we consider isocrystals over a perfect field &
with characteristic p > 0.

Definition 2.2.2. An isocrystal (N, F') over k is called decent, if the vector space N is generated
by elements n satisfying an equation F*n = p"n for some integers r,s > 0.

Remark 2.2.3. An equation of the form F*n = p"n implies that n lies in some slope component
of N. Hence N is decent if and only if all slope components are decent. Any decent isocrystal
N is obtained by base change from a decent isocrystal over some finite field. If k is algebraically
closed, any isocrystal is decent. We call a p-divisible group over k is decent if the corresponding
isocrystal is decent. Therefore in the case we are interested in, we can assume our fixed p-divisible
group X is decent and defined over a finite field L.

We have a lemma to bound the points in M.



Lemma 2.2.4. Let N be a decent isocrystal over a finite field L. Then there is a natural number
¢ and a finite extension L' of L such that for any perfect field P containing L' and for any crystal
M C N@W(P), there is a crystal M' C N@W (L')g such that M C M' @ W (P) and has index
smaller than c.

Proof. The proof is reduced to the case where N is isoclinic, see [33] 2.18. O

We give an alternative definition of the functor M. Since X is defined over L = W (L) /pW (L),
by Grothendieck-Messing, one can choose a p-divisible group X over Spf W (L) such that X|;, = X.
Then a point of M with values in S € Nilpy, is given by the following data:

(1) A p-divisible group X on S
(2) A quasi-isogeny j : Xg — X of p-divisible groups on S. Here we use Theorem 1.1.13.

Definition 2.2.5. Let f: X — Y be an isogeny of p-divisible groups on S. Then the kernel of
f is of rank a power of p. If the rank is a constant and equal to p”, we call h := ht(f) the height
of the isogeny.

Lemma 2.2.6. Define M™ the closed subfunctor of M with the set of S-valued point the isomor-
phism classes of pairs (X, p) where X is a p-divisible group on S, p : Xs — X a quasi-isogeny
such that p"p is an isogeny. Then M =1limM™ and M™ is representable by the p-adic comple-
tion of a scheme locally of finite type over Spf W (L).

Proof. We write M™ = [[ M™™ as a union of closed and open subfunctors, where a point (X, p)
in M™™(S) satisfies that p”p is an isogeny of height m. Then by Proposition 1.1.11, to give a
point in M™™(S) is equivalent to giving a finite locally free S-group scheme G C Xg of rank
p™. By [34] every commutative finite flat S-group scheme G is killed by the rank of O¢g as an
Og-module, we have p™G = 0, which means that G C X(m) 5. Since the conditions making G
into a group schemes define a closed subscheme of the Grassmannian Grass,mnex_,m (§§(m))7 we
see that the functor M™™ is representable by the p-adic completion of a closed subscheme of
the Grassmannian . Therefore we have the representability of M" and M = limM™ follows
obviously. O

We still need another representability of M as a union of representable subfunctors. To
do this we define for any field extension P of L a quasi-metric on the set M(P).

Definition 2.2.7. Let o : X — Y be a quasi-isogeny of p-divisible groups over P. We define
q(a) = ht(p"«), where n is the smallest integer such that p"« is an isogeny.

Remark 2.2.8. (1) By definition ¢(a) = ¢(p"«) for any integer n.

(2) Since the rank of a finite locally free group scheme is invariant under base change, we
have ¢(a) = g(apr) for any field extension P’ of P.

Lemma 2.2.9. Let a : X — Y be an isogeny of p-divisible groups on a scheme S. Then for
any integer c the set of points s € S such that q(as) < ¢ is closed.



Proof. We prove that the set of points s € S such that g(as) > ¢ is open. By Remark 2.2.8(1)
we may assume that o is an isogeny, but p~'ay is not an isogeny. Then there is a neighborhood
U of s such that p~'a; is not an isogeny for ¢ € U and ht(cy) is a constant function on U. Let
nt be the smallest integer which makes p™*a; into an isogeny. Then it is easily seen that n; > 0
for any t € U. Then we have

¢ < q(as) = ht(as) = ht(ar) <ht(p™*ar) = q(o)
O

Definition 2.2.10. Let o : X — Y be a quasi-isogeny of p-divisible groups over P. We define
the function d(a) = g(a) + q(a™1). For any two points of M(P) we define d((X, p), (X', p)) =
d(p'p™").

Remark 2.2.11. If m, (resp. m_) is the smallest integer such that p™+a (resp. p™-a~!) is
an isogeny, then we have d(a) = (m4 + m_)htX. This is because the sequence of morphisms
of p-divisible groups

p"ta

y 2 . x

prHtm= L X
gives an exact sequence
0 — ker(p™a) — ker(p™+ =) = ker(p™-a ) — 0

Corollary 2.2.12. Lemma 2.2.9 remains valid with q replaced by d.

Proof. We have

{ses| dlas)<cb= |J ({sesl ala!) <npn{ses| qlas) <c—n})

0<n<c

Then Lemma 2.2.4 translates immediately into

Lemma 2.2.13. There is a natural number ¢ and a finite extension L' of L such that for any
perfect field P containing L', and any point X € M(P) there is a point Y € M(L') such that
d(X,Yp) <ec.

Definition 2.2.14. Let p: X — Y be a quasi-isogeny and n be an integer such that p"p is an
isogeny. We define the height of p

ht p :=htp"p — ht p"

This is independent of the choice of n.



Because d((X, p), (X, pp)) = 0, the function d is not a metric on M(P). To get a metric, we
should restrict ourselves to a subset of M(P). For k € Z we consider the subfunctor M (k) C M
of quasi-isogenies of height k. We define

!
M= [ M»)
h=0
Then the function d is a metric on M(P).

We define for any natural number ¢ a subfunctor M, of M
M.(s) ={(X,p) € M(S)| d(ps) < c for any s € S}

Lemma 2.2.15. The functor M, is representable by a formal scheme, which is locally formally
of finite type over Spf W (L).

Proof. Let M.(h) be the open and closed subfunctor of M, consists of points of quasi-isogenies

of height k. Then M, is a disjoint union of copies isomorphic to M, = H}ﬁtjéfl M. (h). Therefore

it is enough to show that M, is representable by a formal scheme formally of finite type.

We consider the functor M. = M" N M,. Let (X, p) be the universal p-divisible group
on M". Then the subfunctor M, is representable by the completion of the scheme M" along
the closed set of points s € M™ given by the condition that d(ps) < cand 0 < htps <htX — 1.
Hence it is represented by a formal scheme formally of finite type over Spf W (L).

Let (X, p) be any point of M, (P) where P is a field. Then p~!p is not an isogeny, otherwise
we would have ht p = ht p + ht p~'p > ht X. Hence the smallest integer m, such that p™+p is
an isogeny must be non negative. Since ht p~! = —ht p, we have —ht X+ 1 < ht p~! < 0. Again
we conclude that the smallest integer m_ such that p™—p~! is an isogeny is non negative. By
Remark 2.2.11 we have m4 + m_ < ¢/ ht X. Hence m is bounded by ¢/ ht X.

~ ~ n+1

Now we want to prove that for n > ¢/ ht X (Mcn)red = (./\/lanr )red-

First we introduce a representability lemma and prove its consequence.

Lemma 2.2.16. Let a: X — Y be a quasi-isogeny of p-divisible groups on a scheme S. Then

the functor F(T) = {¢ € Hom(T,S)| ¢*« is an isogeny} is representable by a closed subscheme
of S.

For the proof, see [33] 2.9.
Corollary 2.2.17. If S is a reduced scheme, a: X — Y be a quasi-isogeny of p-divisible groups
on S, then a is an isogeny if and only if o is an isogeny for any s € S.
Proof. The hypothesis that « is an isogeny clearly implies that «; is an isogeny for any s € S.
If oy is an isogeny for any s € S, we denote k(s) the residue field of s. Then

F(Speck(s)) = {Hom(Speck(s),S)| «s is an isogeny}

Hence we see that F' on the point level is actually S. Since S is reduced, we see that F' is
representable by S and the element Id € F(S) gives that « is an isogeny. O



In order to prove (Mcn)red = (/\;lan)

red for n > ¢/t X, by 2.1.10 we only need to
show that for any reduced scheme S, (M.")(S) = (/\;lcnﬂ)(S’). By definition a point (X, p) in
M."(S) satisfies that p™p is an isogeny. After Corollary 2.2.17 this is equivalent to p"ps is an
isogeny for any s € S. Since n > ¢/ht X, p"*lp, is an isogeny if and only if p"p; is an isogeny.
Then by Corollary 2.2.17 again, we have p"*1p is an isogeny. Hence (M,")(S) = (./\;lan)(S).
Now we prove that /\;lc = h_r)n./\;lcn is a formal scheme. We fix an affine open subscheme
U C (M.")seq for large n. For n big we get an affine open formal subscheme Spf R,, of M,
whose underlying set is U. Hence we have a projective system of surjective maps of adic rings
Ry,11 — R,. Let R = liLan be the projective limit. We write R,, = R/a, and let J be the
inverse image of an ideal of definition in some R,. We have to prove that R is J-adic. Since
R, is J-adic, we may write R = limR/(a, + J™). We claim that for fixed m, the following
descending sequence stabilizes

a+J"Da+J"D---Da,+J" D

Let X, be the universal p-divisible group on Spf R,. Then X = limX,, defines a p-divisible
group on R/J™. We get by the representability that there is a suitable N and a unique map
Ry — R/J™ such that the pull-back of X,, gives X. For any n > N the composite map

R,— Ry — R/J™ — R,/J"R,

has to be the canonical one. This implies that the first arrow induces an isomorphism R,,/J™R,, —
Ry /J™Ry, then a, +J™ = ay + J". Therefore by Proposition 2.1.12 R is an J-adic ring. This
completes the proof of Lemma 2.2.15. O

Now we prove Theorem 2.2.1.

Proof. Let c and L as in Lemma 2.2.13. It is enough to show that M is representable over L’.
As in Lemma 2.2.15, it is enough to show that the subfunctor M is representable by a formal
scheme locally of finite type. Obviously Lemma 2.2.13 remains valid for M.

Let a be an integer and X be the universal p-divisible group over M,. For a point
(Y,y: Xy — Y) of M(L') we denote by M,(Y) C M, the closed subset of points s € M, such
that d(X,,Y;) < c. By the triangular inequality, M,(Y) = 0 if d(X;,,Y) > a +c.

Let U be the open formal subscheme of M,, whose underlying set is the complement of

U Ma(Y)

YeEM(L),d(X.,Y)>f

Then U/ is locally formally of finite type over Spf W(L') as M, is. We claim that Ul =U ({ 41
ifa> f+ec

First we show the equality for the underlying sets. Let Z € U, C{ +1(P) a point with values
in some field P. We have to show that Z ¢ U({, ie. d(Xp,Z) < a. By Lemma 2.2.13 there

exists a point Y € M(L') such that d(Yp,Zp) < c. By the definition of U({H it follows that
d(Xp,Yp) < f. Hence dXp,Z) < f+c<a.



The equality of formal schemes follows because M, is the completion of Mg along the
closed image of the inclusion. Indeed, this implies that U({ is the completion of U({ 11 along the

closed subset U({ 11

Hence the claim follows.

We set U/ = U({ for any @ > f + c¢. Clearly U — U/t is an open immersion of
formal schemes of finite type. We have M = U iU !, because any point s of M such that
d(Xs, X,) < f —cis contained in the open set U7. Indeed, if s is in the complement of U7, there
isaY e M(L'), such that d(X,,Y;) < ¢ and d(X,,Y;) > f. Hence we get the contradiction
d(X,,X,) > f —c. Since we can write M as a union of increasing open sub formal schemes

locally of finite type over Spf W (L'), the theorem follows. O

One can also consider the variant of the moduli functor for p-divisible groups with addi-
tional structures of type (E): endomorphisms or of type (PE): polarizations and endomorphisms.

Case (E): We consider a finite dimensional semi-simple Q,-algebra B and a maximal order

Op of B. Suppose X has an action of Op and can be lifted to a p-divisible group X over O x with
a compatible action of Op where K is a finite extension of Ky. Let E be the field of definition

of the isomorphism class of Lie(X) as representation of B. E is a finite extension of Q,. Let
E = EK( and O}, the integer ring of E.

We consider the functor M on NilpOE which associates to S € NilpoE the set of isomor-
phism classes of pairs (X, p) satisfying:

(1) A p-divisible group X over S with an action of Op such that for any S-scheme S’ and
any element a € Op ® Ogr, we have

(2.1) det o, (a, Lie(Xg)) = det k (a, Lie(X) k)

(2) An Op-quasi-isogeny p : Xg — Xg

Case (PE): We suppose p # 2 and B with an involution x stabilizes Op. If X is a p-divisible
group with an action of Op, i.e. i : Op — End(X), we have on the dual X of X an action of
Op given by b — i(b*)". We call an Op symmetric quasi-isogeny X — X a *-polarization of X.
We suppose that X has a x-polarization A.

We consider the functor M defined as above with an additional condition that there exists
an Op isomorphism Ay : X — X and a constant cx € Qlf such that poAx op=rcxA.

Theorem 2.2.18. The functor M is representable by a formal scheme locally formally of finite
type over Spf(Oy).

Example 2.2.19. (1) We consider the Lubin-Tate case. Let X be a p-divisible group of dimen-
sion 1 and height h over I[Tp. We assume moreover that the isocrystal of X is isolinic of slope 1/h.
We consider the functor M'T defined in Theorem 2.2.1. Then M*T =[] _, Spf W (F,)[[T1,. .., Th-1]],
c.f. [33] Proposition 3.79.

(2) We consider the Drinfeld’s example which is of case (E). Let F' be a finite extension of
Qp and B:=D be a division algebra of center F' with invariant 1/d. We denote F an unramified
extension of F' contained in D of degree d and 7 the Frobenius automorphism of F over F. Let



7 be a uniformizer of O, ¢ the cardinality of the residue field of F' and II an element of Op
such that

Op = O0p <11 > /(1" = 7,Tla = (a)II for any a € OF)

Definition 2.2.20. Let S be an Op-scheme with p nilpotent on it and X be a p-divisible group
on S. We call X a p-divisible Op-module over S if it has an action ¢ : Op — End(X) such that
the action of Or on the tangent space Lie X induced by ¢ is given by the structure morphism
Or — Og.

Definition 2.2.21. The F-height of a p-divisible Op-module X is the quotient of ht X by
[F: Q). The F-height is actually the integer h such that rk(ker 7 : X — X) = ¢".

Definition 2.2.22. Let X be a p-divisible Op-module over S. We call X a special formal
Op-module if it has an action of Op and

(i) X is a p-divisible Op-module by the induced action of Op

(ii) the action of Oz on Lie X makes it into an Og ®0o, Op-module locally free of rank
one.

We assume S = Spec k, where k is an algebraically closed field in the following propositions.
Proposition 2.2.23. ([7]) A special formal Op-module if of F-height a multiple of d2.

Proposition 2.2.24. (/33] 3.60) Any two special formal Op-modules of F-height d* are isoge-
neous. The group of Op-quasi-isogenies of such a special formal Op-module is isomorphic to
GLy(F).

Now we define Drinfeld’s functor. We choose an embedding ¢ : F' — @ of F. Let k = }FT)
be the residue field of @, Ko = W (F,)g. Let E = F and E = EKy. Fix X a special formal Op-
module over F,,. We consider a functor MP* on NilpOE which associates to every S € NilpOE
the set of isomorphism classes of pairs (X, p) satisfying:

(1) a special formal Op-module X over S of F-height d?
(2) an Op-quasi-isogeny p : Xg — Xg.

Remark 2.2.25. The condition (1) can be expressed as a condition of the determinant of the
action of Op on Lie(X) as in 2.1, see [33] 3.58.

Proposition 2.2.26. In the Drinfeld example MP" s a p-adic formal scheme locally of finite
type over Spf Op.

Geometrically, the generic fiber of MP" can be used to p-adically uniformize the rigid
analytic spaces corresponding to Shimura varieties associated to certain unitary groups, cf. [8].

Remark 2.2.27. The formal schemes M are not necessarily p-adic, as pO ; may not be an
ideal of definition.



2.3 Rigid Analytic Geometry

Let O be a complete discrete valuation ring which is an extension of Z, of finite type and F' be
its fraction field. Let k be the residue field and 7 a uniformizer.

Definition 2.3.1. The F-algebra
Flyy,...,yn} ={f = Zaih_,’inylf . yf{”‘\ a; € Fyi; >0 and |ay,,. 4,| — 0 for iy + -+ + i, — oo}
is called the Tate algebra in n variables over F.

A Tate algebra is Noetherian and carries the Gauss norm | f| := sup{|a;, .. ;,|} with respect
to which it is complete. The Gauss norm extends the valuation on F.

Definition 2.3.2. An affinoid F-algebra is an F-algebra B which can be described as a quotient
of a Tate algebra for some n.

Remark 2.3.3. For every presentation B = F{y1,...,yn}/I, the residue norm of the Gauss
norm is a complete F-algebra norm on B. All these norms induce the same topology on B.

More generally any F-algebra norm on B defining this topology is called an F'-Banach norm on
B.

Let B be an affinoid F-algebra. In rigid analytic geometry one equips the set Spm B of
all maximal ideals of B with a Grothendieck topology and a structure sheaf. One calls Spm B
an affinoid rigid analytic space. Every point # € Spm B has residue field B/x which is a finite
extension of F. Every F-algebra homomorphism B — C' induces a map Spm C — Spm B and
these are precisely the morphisms between affinoid rigid analytic spaces.

Definition 2.3.4. An affinoid subdomain of Spm B is an affinoid space Spm B’ together with
an F-algebra homomorphism B — B’ which identifies the set Spm B’ with a subset U of Spm B
and which is universal for morphisms Spm A — Spm B of affinoid rigid analytic spaces whose
image lies in U.

Any covering in the definition of the Grothendieck topology is called an admissible covering
and any finite covering of Spm B by affinoid subdomains is admissible.

Definition 2.3.5. A rigid analytic space over F'is a set X carrying a Grothendieck topology and
a structure sheaf, such that X possesses an admissible covering (covering in the Grothendieck
topology) by affinoid rigid analytic spaces.

Definition 2.3.6. An admissible covering of a rigid analytic space is said to be of finite type if
every member of the covering meets only finitely many of the other members.

Definition 2.3.7. A rigid analytic space over F is called quasi-paracompact if it possesses an
admissible affinoid covering of finite type.

Definition 2.3.8. A rigid analytic space is called quasi-separated if the intersection of any two
affinoid subdomains is a finite union of affinoid subdomains.



Definition 2.3.9. A morphism of rigid spaces f : Y — X is smooth (resp. étale) if there exist
admissible affinoid coverings {Y;}; and {X;}; of Y and X such that

(i) f(¥s) € Xi
(ii) If A; =T(X;,0x), B; =T'(Y;, Oy), there exists an isomorphism

Bi = A{Ty,... . T}/ (fr.- - fr)

and locally on X; a suitable r x r minor of (0fx/01})1<k<r1<i<n With determinant an invertible
element of B; (resp. and r = n).

Proposition 2.3.10. (/33] 5.10) The morphism of rigid spaces f : X — Y is étale if and only
if the following condition is satisfied. Let Z be a rigid analytic space with only one point and
Zy C Z be a closed subspace. Then any commutative diagram of morphism below with solid
arrows can be completed in a unique way by a dotted arrow into a commutative diagram

Zo—=X

7—Y

Rigid analytic spaces can be viewed as generic fibers of formal schemes which are lo-
cally formally of finite type over Spf O. This is Raynaud-Berthelot’s functor. We first explain
Raynaud’s construction.

Definition 2.3.11. A topologically finitely presented (tfp) O-algebra is an O-algebra of the form
A=0{Xy,..., X, }/I

where I is a finitely generated ideal in the ring O{Xj,..., X,,} of restricted power series in n
variables over O: power series Y a; X7 € O[[X1,...,X,]] with X7 = X{l .- X{" such that
ay—0as ||J||:=J1+ 4 jn — 0.

Such an A is a m-adic noetherian ring, see [13] I Chapter 0 7.5.5.

Definition 2.3.12. (i) A tfp affine formal scheme over O is a locally ringed space isomorphic
to Spf A, where A is a tfp O-algebra.

(i1) A locally of finite type (resp. finite type) tfp O-formal scheme is a locally ringed space
with an open covering (resp. finite covering) by tfp affine O-formal schemes.

To every tfp O-formal scheme X locally of finite type one can associate an F-rigid analytic
space X' called Raynaud’s generic fiber. To describe the construction we start with the affine
case.

If X = Spf A is a tfp affine formal scheme over O, A ® F is clearly an affinoid F-algebra.
Then we define X8 = Spm(A ® F). We observe that the points of X™# is in bijection with
the quotients of A which are integral domains, finite and flat over O. Moreover we have a
specialization map sp : X" — X. On the set level, sp is constructed as follows: For any



x € Spm(A® F) defines a homomorphism A® F — k(xz) where k(z) is the residue field of z and
a finite extension of F. This homomorphism maps A to the valuation ring O(x) of k(z) and we
have a homomorphism A/(7) — k() where k(z) is the residue field of k(z). This gives a point
sp(x) € Spec A/(m) C X.

Then for general locally of finite type tfp O-formal scheme X, we define the set X"& to
be the set of closed formal subschemes 3 which are irreducible reduced finite flat over O. The
support of such a formal subscheme 3 is a closed point of X, called the specialization of the
point z € X"8 corresponding to 3. This gives the specialization map sp : X" — X. For any
affine open 4 = Spf(A) C X, sp~1(4) can be identified with Spm(A4A ® F).

Proposition 2.3.13. (/33]) Let X be a tfp formal scheme locally of finite type

(i) There exists a unique rigid analytic structure on X™8 over F with the following prop-
erties:

a) The inverse image under sp : X' — X of an open subscheme (resp. of an open
g
covering) of X is an admissible open subset (resp. an admissible covering) of X"8.

(b) For any affine open subscheme {4 = Spf A C X the structure on U8 = sp~1(4l)
induced from X118 coincides with the one on Spm(A ® F).
(i) The map sp defines a morphism of ringed sites X"& — X with sps(Opiz) = Ox @ F.
This morphism has the following universal property, let ) be any rigid analytic space and let
u Y — X be a morphism of ringed sites. Then wu factors in a unique way through sp.

(iii) The functor X — X'& has the following properties,
(a) If X is of finite type, then X"8 is quasi-compact.
(b) It commutes with products and transforms open (resp. closed) immersions to open
(resp. closed) immersions.

Remark 2.3.14. For any coherent Ox-module F, we denote F'& the coherent O yrig-module
sp*(F).

Now we consider the case of a locally noetherian formal scheme X locally formally of finite
type over Spf O. As before we start with the affine case.

Let X = Spf A and fi,..., f» be a system of generators of a defining ideal. For each n,
take

(2.2) Bp=A{T1, ..., T (f" —xT4,..., f* —T})

where A{T},...,T,} is the m-adic completion of A[T},...,T;]. The hypothesis implies that B,,
is topologically finitely presented over O, hence B,, ® F is an affinoid F-algebra. For n’ > n
we have a canonical homomorphism B, — B,, by sending 77 to fl."/_”TZ-. The corresponding
morphism Spm(B,, ® F') — Spm(B,y ® F') identifies Spm(B,, ® F') with the special domain
defined by |f;(z)| < |7|"/". The rigid space X" is then defined as the union of Spm(B, ® F),
with the Spm(B,, ® F') as an admissible open coverings. One shows easily that this definition
is independent of the choice of the defining ideal and of the set of generators. This definition
coincides with the usual one in the case where X is a tfp O-formal scheme.



We can also define the specialization map in this case. For n’ > n we have natural
homomorphism A — B, — B, which gives the commutative diagram

Spm(B, ® F) ~2— Spf(B,

| l

)
Spm(By ® F) > Spf(By)

Since we have Spf(A) = li
. —
sites sp : X"8 — X.
As before, we can generalize the construction to general formal schemes and the Proposi-
tion 2.3.13 carries over.

Spf(By,), by passing to the limit, we get the a morphism of ringed

Example 2.3.15. (1) Let X = Spf O{T},...,T,} then X" is the closed unit ball.

(2) Let X = Spf O[[T1, ..., T,]] with ideal of definition (7,71, ...,T,) then X™# is the open
unit ball regarded as the increasing union of closed balls of radius |x|*/™.

There is another variant of rigid analytic geometry which remedies the problem that rigid
analytic spaces are not topological spaces in the classical sense and provides more underlying
points. The theory was developed by Berkovich.

Let B be an affinoid F-algebra with F-Banach norm |-|. B is called strictly F-affinoid
algebra by Berkovich.

Definition 2.3.16. An analytic point x of B is a semi-norm |- |, : B — R>( which satisfies
(1) [f + gle < max{[f]s, |g]s} for all f,g € B

(ii) [ fgle = |flz|gle for all f,g € B
(iii) Az = |A| for all A € F
(

iv) |- |z : B — R is continuous with respect to the norm |- | on B.

The set of all analytic points of B is denoted by M(B). On M(B) one associates the
coarsest topology such that for every f € B the map M(B) — Rxg given by = — |f]|; is
continuous. Then M(B) is a compact Hausdorff space, such a space is called a strictly F-
affinoid space.

Every morphism ¢ : B — C of affinoid F-algebras is automatically continuous and hence
induces a continuous morphism M(p) : M(C) — M(B) by mapping the semi-norm C' — Rxq
to the composition B — C' — R>(. By definition the M(y) are the morphisms in the category
of strictly F-affinoid spaces. In particular, for an affinoid subdomain Spm B’ C Spm B this
morphism identifies M(B’) with a closed subset of M(B).

For every analytic point € M(B) we let ker| - |, := {b € B| |bl, = 0}. It is a prime
ideal in B.

Definition 2.3.17. We define the (complete) residue field k(x) of = as the completion with
respect to | - |, of the fraction field of B/ ker| - |,.



Hence there is a natural continuous homomorphism B — k(z) of F-algebra. Conversely,
let K be a complete extension of F', by which we mean a field extension of F' equipped with an
absolute value |- | : K — Rx>q which restricts on F' to the norm of F' and K is complete with
respect to | - |. Any continuous F-algebra homomorphism B — K defines on B a semi-norm
which is an analytic point.

Remark 2.3.18. Every maximal ideal of B, i.e. every rigid analytic point of Spm B, clearly
defines an analytic point with the residue field a finite extension of F. For general analytic point
x € M(B), k(x) may be quite large. For example, one can see [28] A 2.2 (d) that there exists a

point in M(F{y}) with residue field F' the completion of an algebraic closure of F.
Definition 2.3.19. (i) A strictly F-analytic space is a topological space which admit an atlas
(covering by compact subsets) homeomorphic to strictly affinoid F-analytic charts.

(ii) A good strictly F-analytic space is a strictly F-analytic space such that every point
has a strictly F-analytic neighborhood.

Definition 2.3.20. We call good strictly F-analytic spaces as Berkovich spaces. A covering
{U;}; of X by strictly F-affinoid subspaces U; C X is an affinoid covering if the open interiors
of the U; in X still cover X.

One can associate a Berkovich space Y?" to schemes Y which are locally of finite type
over F'. Moreover Y*" is Hausdorff if and only if the scheme is separated. To every strictly
F-analytic space X which is Hausdorff one can associate a quasi-separated rigid analytic space

X"8 .= {z € X| k() is a finite extension of F'}

Definition 2.3.21. A topological Hausdorff space is called paracompact if every open covering
{Ui}; has a locally finite refinement {V;};, where locally finite means that every point has a
neighborhood which meets only finitely many of the V;.

The relation between Berkovich spaces, rigid analytic spaces, and formal schemes is ex-
plained in the following theorem
Theorem 2.3.22. The following three categories are equivalent:
(i) the category of paracompact strictly F'-analytic spaces,
(ii) the category of quasi-separated quasi-paracompact rigid analytic spaces over F, and
(iii) the category of quasi-paracompact admissible formal O-schemes, localized by admissi-

ble formal blowing-ups.

Remark 2.3.23. Parallel to Berthelot’s construction, we can associate to X a formal scheme
locally formally of finite type over Spf O an F-analytic space X?" as a union of the Berkovich
spectra M(B,, ® F'), where B, is as in (2.2).

Regarding paracompactness the following lemma will be useful.

Lemma 2.3.24. [28] Let X be a Berkovich space over F. Assume that X admits a countable
affinoid covering. Then X possesses a countable fundamental system of neighborhoods consisting
of affinoid Berkovich subspaces. In particular if X is Hausdorff every open subset of X is a
paracompact Berkovich space.



2.4 Period Morphisms

First we prove a main theorem that enables the construction of the period morphisms.

Let (F, O, k,m) be a complete discrete valuation ring of unequal characteristic with perfect
residue field of characteristic p > 0. Let M be a formal scheme locally formally of finite type
over Spf O. Let X be a p-divisible group over M and My the Lie algebra of the universal
extension of X. Let X be a (fixed) p-divisible group over k and we are given a quasi-isogeny

P Xpme — XMy

where M| denotes the k-scheme defined by an ideal of definition of M containing the uniformizer
7. By the rigidity of quasi-isogenies (Theorem 1.1.13), p is independent of the choice of such an
ideal of definition.

Theorem 2.4.1. The quasi-isogeny p induces a canonical and functorial isomorphism of locally
free O pqrig-modules of finite rank, compatible with base change

p: E(X) @aq Oppre = (My)"™
Here E(X) denotes the isocrystal associated to the p-divisible group X, cf Section 1.3.

Proof. We first assume M is a tfp m-adic formal scheme. Let Mg be defined by the image of
7 and M, be defined by the image of p. Then My C Mj is a nilpotent immersion. By the
rigidity of quasi-isogenies the quasi-isogeny p extends uniquely to a quasi-isogeny of p-divisible
groups over M,
P Xy — Xy

Then by Proposition 1.1.10 there exist n > 0,m > 0 and an isogeny f : XM6 — X/V% such that
P, =p"p is an isogeny and p), o f = fopl =p™Id.

Since the closed immersion M{; C M has a canonical divided power structure. We may

apply the theory of Grothendieck-Messing. Therefore D(p!,) and D(f) induces an isogeny of
locally free O pq-modules of finite rank below and D(p],) o D(f) = D(f) o D(p,) = p™1d

D(X) ® Op — Mx
Applying sp* on each side we get an isomorphism of O y;ig-modules
D(p)™ : B(X) © O pqris = (Mx )"

this is because the consideration of rigid spaces means tensoring F' with the algebra and hence
we can invert p. Then we define our isomorphism p = #D(p;)“g .

For p = 2, we consider M is the subscheme defined by 4.

For the general case, i.e. M is locally noetherian locally formally of finite type over Spf O.
We may assume M = Spf A is affine. Then M is the union of the open subspace Spm(B, ® F)



and Spf B,, comes with a morphism to M. Since Spf B,, is a tfp m-adic formal scheme, we take
X, the pull-back of X to Spf B,,. Then we have canonical isomorphisms

pn : B(X) ® Ospm(B,oF) —(Mx, )"
By passing to the limit we can define the isomorphism
p: B(X)® O i —(Mx)"8
O

Remark 2.4.2. When considering Berkovich’s F-analytic space, we have E(X) @y ) 0 Omen =
(MX)E%H.

Now consider the locally noetherian formal scheme M as in Section 2.2. Then M is locally
formally of finite type over Spf O;. We take (X", p"™V) as our universal p-divisible group on
M. Then we have .

B(X) © O gy = (M)

The kernel of the epimorphism
E(X) ® O_/\;lrig = (]\4}<univ)rig — (Lie(XuniV))rig

defines an M"&-valued point of the Grassmannian Grass;_q(E(X)), if our fixed p-divisible group
X is of height h and dimension d.

Definition 2.4.3. By the universal property of the construction of rigid analytic spaces associ-
ated to locally of finite type E-schemes, the M"&-valued point defined above gives a morphism
of rigid analytic spaces 7 : M8 — Grass;,_q(F(X))"8. We call % the period morphism.

Remark 2.4.4. The period morphism in Berkovich’s sense is denoted by #®" : M@ — Grass),_q(E (X)),

Theorem 2.4.5. The period morphism 7 is étale. In particular M€ s q smooth rigid analytic
space.

Proof. We are going to use the infinitesimal criterion 2.3.10. Let Z be as in the statement of
this criterion. Then Z is of the form Z = Spm(R ® E), where R ® F is the affinoid algebra
associated to a finite flat O -algebra R. Denote by n C R the nilradical, R/n is a complete
discrete valuation ring. The difficult of lifting the morphism is to choose formal models with
generic fibers our critical rigid spaces. Consider the set of R-algebras R’ which are finite flat
O -algebras with R/n = R'/nR' and with R®o,, E~R ®0, E. Then these form in an obvious
way an inductive set S under the inclusion relation.

We fix a free R/n-module My of finite rank. There is an obvious functor (associated
rigid module) from the category of inductive system of locally free R’-modules M’ of finite rank
isomorphic to My after tensoring R/n to the category of locally free Oz-modules M of finite
rank isomorphic to Méig after tensoring with Og,. This functor is exact and an equivalence of
categories, compatible with base change.



We now prove the existence of the dotted arrow in the diagram of Proposition 2.3.10.
Replacing R by a larger R’ € S, we may assume that the morphism Zy — M"8 is induced from
a morphism of formal schemes

Spf R/a — M,

where a C n is a nilpotent ideal. We may assume a?> = 0. By pull-back of the universal p-
divisible group along the above morphism, we obtain an object (Xo, pg) of the moduli problem
over Spf R/a. The morphism Z — Grass;,_q(F(X))"'® making the solid diagram commutative
defines a locally free factor module

EX)® 0z — L'

We equip a with trivial divided powers. Let M be the value of the crystal associated to Xy on
Spf R and My be the universal extension of Xy. Then we have a natural identification

EX)® 0z = M8

Then at least after replacing R by a larger R’ € S, the surjective morphism M"& — L/ is induced
from a unique surjective homomorphism of locally free modules

M—L

which reduces to My — Lie(Xp) after tensoring R/a. By Grothendieck-Messing (Theorem 1.4.3),
there is a unique p-divisible group X over Spf R such that the above homomorphism M — L
is actually Mx — Lie(X) and restricting to Xy. The quasi-isogeny pg lifts automatically by
rigidity. It is obvious that (X, p) is an object of M(Spf R). The induced rigid analytic morphism
Z — M"8 renders the diagram commutative. The uniqueness assertion is also clearly seen from
above. O

Remark 2.4.6. There are different notions of étaleness for morphisms between rigid spaces and
morphisms between analytic spaces. For example the inclusion of the unit ball D(0,1) < Al
is not étale in Berkovich’s theory but is in the classical theory of Tate (since it is an open
immersion). But for our period morphisms both notions coincide.






Chapter 3

The Conjecture of Rapoport-Zink

In this chapter, we first introduce some basic constructions in Fontaine’s theory of p-adic Galois
representations. Then we define the p-adic period spaces (]t"g”“)rig through which our period
morphisms factors. After that we state the conjecture of Rapoport-Zink which conjectures the
existence of an étale morphism (Jz"lf)rig — (ﬁé"“)rig of rigid analytic spaces with interesting local
system on (flf)rig.

3.1 Fontaine’s Rings

We recall some of the rings used in p-adic Hodge theory. Let Ok be a complete valuation ring
of rank one which is an extension of Z, and K be its fraction field. Let v, be the valuation on
Ok which we assume to be normalized so that v,(p) = 1. Furthermore we assume that for some
perfect field k of characteristic p the Witt vectors W (k) are contained in O, with fraction field
Ky. Then Ky admits a Frobenius automorphism ¢. Let C be the completion of an algebraic
closure K of K and let O¢ be the valuation ring of C. Let u,, denote the subset of K defined
by ptm = {x € K,2™ = 1}. We will choose once and for all a compatible sequence of primitive
p"-th roots of unity, e(® =1, and ™ e ppn C K, such that ¢ #£ 1 and (6(”“))1” = &™) This
means we choose an ”orientation” in p-adic Hodge theory. Let Gk = Gal(K/K).

Definition 3.1.1. We define the ring

E" :=E"(C) == {z = (2™)nen| 2™ € Oc, (z"HV)P = 2}
with multiplication zy := (z(™y(™),en and addition z 41y = (lim,, e (™) 4yt ™)

Remark 3.1.2. If we define the valuation on E* by vg(z) := vp(2()), then ET becomes a
complete valuation ring of rank one. One can show that ET isa perfect ring of characteristic p
and with algebraically closed fraction field, called E := E(C). It is obvious that & := (¢(),cy €
ET and gives the cyclotomic character x : Gx — Z, by the relation g(¢) = eX9) for any g € Gg.

41



Definition 3.1.3. We define the following rings
At = AT(C):= W(ET(C))
A = A(C):= W(E(C))
B = B*(C) = AH(O)[1/1]

B := B(C) := A(C)[1/p] the fraction field of A(C)

Since ET and E are of characteristic p, we have the absolute Frobenius automorphism
x — zP on them. Furthermore, we have an Galois action of G on ET and E given by the
natural action on each coordinate. By functoriality of Witt rings, the Frobenius automorphism
and Galois action extends to _/Sﬁ', _/1, Bt and B. We also denote the extended Frobenius map
by ¢. It is easily seen that ¢ commutes with the action of G .

For = € E(C) we let [z] € A(C) the Teichmuller lift of x. Then every element = € B*(C)
can be written uniquely as > ;oo pFlxy], with 2, € ET. We define a homomorphism of rings

0: A" — O¢
Zpk[ﬂfk] . Zpkxl(v())
k>0 k>0

Proposition 3.1.4. (/22]) The homomorphism 0 is surjective. The kernel of 0, ker is a

principal ideal. An element x € A™ is a generator of ker @ if and only if UE(:L'(O)) = 1. For

[e] -1
[51/(1]_1

example the element w = is a generator of ker 6. Moreover, ((ker )" = 0.

Remark 3.1.5. The surjective homomorphism ¢ extends naturally to a surjective homomor-
phism 6 : BT(C) — C.

Definition 3.1.6. The ring B:{R is defined to be

B;{R = mneNB+/(ker Q)n

Note that 6([c] — 1) = 0, the series Zn>1(—1)”*1w converges to an element ¢t € B

One should think of ¢ as t = log([¢]). It can be shown that 0(t) = 0 and ¢ is a generator of ker 6.
t is a period for the cyclotomic character as g(t) = x(g)t for any g € Gx. We define

Bug := B [1/1]

Since G i stabilize ker 6, we have an action of Gg on Byr. We can show that Bgg is a field with
filtration Fil* Bgr = tiB(‘j*'R and ng = K. Note that it is impossible to extend the Frobenius
map ¢ on Bgr. In order to extend ¢, we need to introduce the ring B yis.

Definition 3.1.7. (i) We define the ring Aeis = Acris(C) to be the p-adic completion of
the divided power envelope of K*(C) with respect to ker#, i.e. the p-adic completion of
At (C)[<;,n €N].

(ii) The ring BT, := B (C) is defined to be Aeis(C)[1/p).

(iii) We define Beis := Beis(C) = B (C)[1/1].

Cris



If we write [¢] — 1 = b - w for some b € AT, w = (n— 1)< and (n—1)! — 0
p-adically. From this we see that ¢ is in Ags. We can view A, B;;is and B;js as subrings of
Bgr. Since they are stable under G, we have the G action on them. Moreover, ¢ extends
to Acris, B;is and Byis, see [22]. The Frobenius map ¢ commutes with the action of Gx and
BYE 5 K.

cris

We now introduce the concept of filtered isocrystals.

Definition 3.1.8. (i) A filtered isocrystal over K is an isocrystal (D, ¢p) over k as in Definition
1.3.2 with an exhaustive separated decreasing filtration of D := D ®g, K by K-subspaces, i.e.
there exist r,s € Z with s < r such that Fil" Dxg = Dg and Fil® Dg = (0). We denote this
filtered isocrystal D := (D, ¢p, Fil®* D).

(ii) The integers h for which Fil™" D # Fil™"*! Dy are called the Hodge- Tate weights of
D.

(iii) Let tn(D) = vp(det p) (the Newton slope of D) be the p-adic valuation of det ¢p
(with respect to any basis of D) and let ty(D) = Y,c, i - dimg gri« (Dk) the Hodge slope of
D. The filtered isocrystal D is called weakly admissible if

tg(D) = tn(D) and ty(D') <ty (D)

for any subobject D' = (D', pp|ps, Fil®* D) of D, where D’ is any ¢p stable Ky-subspace of
D equipped with the induced filtration Fil®* D} on D} := D' @ K. The category of weakly
admissible filtered isocrystals over K is denoted by MF(K).

Example 3.1.9. Let X be a p-divisible group over F, of height h and dimension d. Set D :=
D(X)k, and ¢p := D(Frobx)g,. Let X be any deformation of X over any complete discrete
valuation ring Ok with residue field I[Tp and fraction field K of characteristic 0. Let Lx :=
(Lie X*)}. and view it as a K-subspace of Dg := D ®, K. We define the filtered isocrystal
D := (D, ¢p,Fil* D) of Hodge-Tate weights 0 and 1 by Fil™! Dy := Dk, Fil® Dg := Lg and
Fil' Dg = (0). Then the Newton slope tx(D) = v,(det¢p) and the Hodge slope ty (D) =
dimg L — dimg D = —d. Then D is weakly admissible if

ty(D) = —d and tx(D',¢p|p, Lx N D) >ty (D', ¢plp, Lx N D)
for all pp-stable Ky-subspaces D' C D.

Let Repr(G k) be the category of p-adic representations of Gk, i.e. finite dimensional
Qp-representations of Gk . For any V € Repr(G K ), we can define a K-vector space Dgg(V) :=

(Bar ®g, V)9 with a filtration Fil' Dar (V) := (Fil' Bar ®g, V)%. To the same Q,-vector
space V, we can similarly associate a Ko-vector space Deis(V) := (Beris ®q, V)Gx

Definition 3.1.10. (i)A p-adic representation V of G is called de Rham if
V ®x;, Bar = B{g

as a Byr|[Gx]-module which respects filtration.



(ii) A p-adic representation V' of G is called crystalline if

cris

V ®Ko BCrlS Bd

as a Bis[G k]-module which respects filtration and Frobenius.

We denote Rep?Qf;S(V) the category of crystalline representations of G .

Remark 3.1.11. If K is a finite extension of Kj, the above definitions are equivalent to the
usual definitions of being de Rham and crystalline. That is to say a p-adic representation is de
Rham if dimg Dgr (V) = dimg, V' and is crystalline if dimf, Deris(V) = dimg, V.

Remark 3.1.12. A crystalline representation is always de Rham and in this case Dgg (V) =
Dcris(v) ®Ko K.

Let V be any p-adic representation of Gx. We can define a filtered isocrystal over K
(Dcris(V)v PDeris(V)> Fil* DcriS(V)K)

Indeed, the filtration is given by Fil' Deyis(V)x = Deris(V)x N Fil' Dgr (V). For the Frobenius
map, first one can define an endomorphism ¢ on Beris ®g, V' which sends b® v to ¢(b) ®v. This
endomorphism commutes with the Galois action and hence stabilize D¢yis(V'). The Frobenius
map ¢p,,;,(v) comes from the restriction of ¢ on Dgs(V). Such a filtered isocrystal is always
weakly admissible.

Definition 3.1.13. A filtered isocrystal over K is called admissible if it comes from a crystalline
representation of G . We denote by MF“d(K ) the category of admissible filtered isocrystals over
K.

Hence we have an exact ®-functor
Deis - Repa;s Gxg — MFad(K)
Fontaine also constructed the quasi-inverse of Dgs
F : MF*(K) — RepG*(Gk)

by setting F (D) := (FilO(D ® K, Beris))¥~ 1, which inherits the action of G from Beyis.

Example 3.1.14. Let X be a p-divisible group over Og and define the Tate module T},(X) :=
@X(n)(?) = Hom(Q,/Zy, X) of X. The vector space V,,(X) := T,(X) ®z, Q, gives a p-adic
representation of Gx. Fontaine proved that Deis(V, (X)) = (ID)(Xk)KO, o, Fil* D(Xk) ), where
X, is the special fiber of X and the filtration is given by Fil ! ID(X},) g = D(X) i, Fil' D(X}) x =
(Lie X*)}. and Fil' D(X;)x = (0). In particular Dms( »(X)) is a Weakly admissible filtered
isocrystal over K and (Fil®(Deris(Vy(X)) @ Beyis))¥ = = V,(X).

Remark 3.1.15. The category of weakly admissible filtered isocrystals over K is an abelian
category which is closed under extensions and under passage to the dual object. Faltings proved
that it is closed under tensor product. The subcategory consisting of admissible filtered isocrys-
tals is clear closed under extensions, dual and tensor product.



If K is a finite extension of K, we have the following theorem of Colmez-Fontaine.

Theorem 3.1.16. (/10]) If K is a finite extension of Ky, any weakly admissible filtered isocrystal
s admassible.

Now we define more Fontaine’s rings which will be used in our construction in Chapter 4.
Definition 3.1.17. (i) For z = Y32 p*[zy] € A(C), z; € E, k € N, define

wk(.fE) = Iglglllgl{vE(xz)}
(ii) For a real number r > 0, define
(0,7] : k . k
v () = inf{wg(x) + ;,k € N} = inf{ug(zg) + ;,k: € N} e RU {£o0}
(iii) Define
~ ~ ~ k
AT .= AOT(C) .= {2 € A(C)] Jim () + = +oo}

One can easily prove the following

Proposition 3.1.18. A0 g g ring and v°7 satisfies the following properties:

(i) v (z) = 400 © =0

(i) 107 (ay) > w071 () +007y)

(iii) v (@ + y) > min{oO7(z), 07 (y)}

(iv) v (p(z)) = po®P(z).
Remark 3.1.19. If we define BOr .= BO(C) := AO(C)[1/p], then v extends to a
valuation on B(®"(C) by defining

(0.7] , k : k
v (x) = min{wg(z) + ;,k € Z} = min{vg(x) + ;,k ez}

for any z = > /22 pFlay] € BO71(C).
Definition 3.1.20. Since for r > s, BO7] ]:3;(0’5], we define

Bf := Bf (C) := U B7(C)

r>0

the field of overconvergent elements.
For0<s<r,and z € ﬁ(oﬂ(@), set

,U[S,T} (f]f) = min{v(o’s] (x>7 /U(OJ,} (x)}



Let Bl be the completion of B(07] by the Fréchet topology induced by the family of semi-
valuations v[*7] for all 0 < s < r. In concrete terms this means that a sequence of elements
2, € BO(C) converges in BIO7] (C) if and only if limy, oo 0241 — 2,) = 400 for all
0<s<r Alsoif0<s<r welet Bl 7'}((C) be the completion of B(O7(C) with respect to vl*7].
Hence we view Bl%")(C) as a subring of B(C) for any closed subinterval I C (0, 7].

If I =]0, ] or I = [s, 7] the functions f; : BO(C) — E(C) defined by = = Y2 G Pfi(z)]
extend by continuity to B(C) and for any = € BY(C) the sum S P[fi(x)] converges to
in B!(C); see [31]. Let

]§T. — BT U B/

r>0

B By Proposition 3.1.18, the homomorphism ¢ gives rise to bicontinuous 1somorphlsms p:
BIOP1(C) = BIO"(C) and ¢ : BPP7(C) = Bl7)(C) defining an automorphism of Bng((C)
The restriction of 6 to BO1(C) defines a homomorphism 6 : BO1(C) — C which extends by
continuity to BI%!(C), we have t = log([¢]) € BI%Y(C).
Finally, we define
Bt — B+ m (pnB+

rig rlg CI‘lS
neN

For any r > 0, B;tg((C) c BI%7(C). More precisely, BI%"/(C) equals the p-adic completion of

B;tg((C)[[Efl]] and is hence a flat B;tg(C)—algebra.

3.2 p-adic Period Spaces

In this section, all the isocrystals we consider are assumed to be over F,,. Let K¢ := W (F,)[1/p]
the fraction field of the ring of Witt vectors over F,,. Let ¢ be the Frobenius lift on Ky. We
denote by Isoc(Kp) the category of isocrystals over IF,,.

Let G be a reductive linear algebraic group over Q, and let Repg, (G) the category of
finite dimensional Q,-rational representations of G.

Definition 3.2.1. An exact faithful ®-functor Repg, (G) — Isoc(K)p) is called an isocrystal with
G-structure over Kj.

Let b € G(Kj), then the functor
Repg, (G) — Isoc(Ko)

associated to b, defined by V ~— (V ®q, Ko,b(Id ®¢)), is an isocrystal with G-structure over
Ky. Two elements b and b in G(K) are conjugate if and only if there is an element g € G(K))
such that gbp(g)~! = b'. In this case g defines an isomorphism between the isocrystals with
G-structure associated to b and b'. If G is connected, any isocrystal with G-structure over K
is associated to an element b € G(Kj) as above.



Let D = limG,, be the pro-algebraic group over Q, whose character group is Q. For any
element b € G(K)), Kottwitz defined a morphism of algebraic groups over Kj

v:D— Gk,

which is characterized by the property that for any object V in Repr(G), the Q-grading on
the vector space V' ® Kj is the slope decomposition of (V ®q, Ko, b(Id ®¢)) an isocrystal over
IFT,, cf Theorem 1.3.8. The group Q* acts on D, since it acts on the character group Q. For
s € Q* we denote sv for the composite D = D < G. Let D — G,, be the projection to the
multiplicative group induced by the inclusion of the character group Z C Q. Then for a suitable
positive integer s the morphism sv factors through this projection sv : G,, — G. Hence sv is
regarded as a one parameter subgroup of G over Kj.

Definition 3.2.2. A p-conjugacy class b of G(Kj) is decent if there is an element b € b such
that

(bp)® = sv(p)e®
for some positive integer s.
Proposition 3.2.3. [33] Assume that b is decent and that b and s are from Definition 3.2.2.
Then b € G(Qps) and v is defined over Qps. If G is connected, any p-conjugacy class is decent.

We now fix a conjugacy class of a one parameter subgroup p : G,, — G over Kj. Here
two one parameter subgroups j, u' are conjugate if and only if there exists some g € G(Kj)
such that gug~' = 1. Then there is a finite extension E of Q, in Ky such that the conjugacy
class {u} of p is defined.

For a one parameter subgroup p : G, — G over K we can define a filtration on Vi =
V ®q, K, where V' is any Q,-representation of G. We let Vi ,, ; be the subspace of Vi of weight
7 with respect to p, i.e.

Vic i = 1{v € V| p(z)-v =270 for all z € Gy, (K)}
Then we define the filtration Fil; Vi = @jzi VK -

Definition 3.2.4. Two one parameter subgroups of G over Ky are called equivalent if they
define the same weight filtration for any object in Repr(G). Note that two equivalent one
parameter subgroups belong to the same conjugacy class.

Consider the functor
R +—— { the equivalent classes in the conjugacy class {u} defined over R}
on the category of E-algebras. If one defines an algebraic subgroup of G over E by
P(u)(Ko) = {g € G(Ko)| gug™" is equivalent to s}

then P(u) is parabolic and the functor above is representable by the projective variety Gg/P(u).
We denote this homogeneous space over E by F. If V' is a faithful representation in Repg, (GQ)



and if we denote by Flag(V') the partial flag variety over Q, which represents the functor which
associate to any Qp-algebra R the filtration Fil®* of V ® R as R-modules such that Fil* is a direct
summand and rkg Fil* = dimg Filz Vi . Then there is a natural F-closed immersion

F — Flag(V) ®q, E

Combine the discussion above, to any pair (u,b) where p is a one parameter subgroup
over K and b € G(Kj), we have an exact ®-functor

7 : Repg, (G) — MF(K)
Vi— (V@ Ko, b(Id @), Filj, Vi)

Definition 3.2.5. We call a pair (i, b) weakly admissible if the filtered isocrystal Z(V') over K
is weakly admissible for any object V' in Repg, (G).

Remark 3.2.6. To see the weakly admissibility for (u,b), it is enough to check the weak
admissibility of Z(V') for a faithful representation V' of G. Indeed, any representation of G
appears as a direct summand of V™ @ (VV)®" and Z(V)®™ @ (Z(V)¥)®" is weakly admissible
by Faltings. Here V'V (resp. Z(V)V) is the dual of V' (resp. Z(V)).

In what follows, we fix an element b in G(Kj) and a conjugacy class of one parameter
subgroup {u} of field of definition E. Let E = EKy = EW be the completion of the maximal
unramified extension of E. We denote 7 = F @ E. We consider one parameter subgroups u
defined over finite extensions K of E.

Definition 3.2.7. A point £ in f(K) is called weakly admissible if the pair (£,b) is weakly
admissible. This condition is independent of the choice of the representative in the equiva-
lence class of £&. We denote by F;"*(K) the subset of weakly admissible points associated with

(G, b, {u})-

Definition 3.2.8. For any point £ € f"g“"(K) where K is a finite extension of Ky, we have a
fiber functor Repg, (G) — (Qp — vector spaces) given by the composition

Repg, (G) — MF*(K) Z Rep?Qf;S(GK) C (@, — vector spaces)

Here we use Theorem 3.1.16 and F is the quasi-inverse functor of Dgs : Reprf;S(G K) —
MF*(K).

Definition 3.2.9. We define the p-adic period space associated with (G,b,{u}) as
(Fraytie .= (¢ € FU8| (¢,b) is weakly admissible}

Proposition 3.2.10. (/33] 1.34) The set (ﬁg”a)rig of weakly admissible points with respect to b
n .7:"((Cp) is an admissible open subset off as a rigid analytic space.



One may specify the algebraic groups G over @, used in this section as in [33]1.38 which
are related to classifying p-divisible groups with additional structures as in Chapter II. Here
for our use, we only assume that G = GL(V') for a finite dimensional Q,-vector space V. Let
be G(Kyp) and (D, ¢p) = (Vk,,b(Id ®¢)). Assume that there exists a p-divisible group X over
F, of dimension d whose covariant Dieudonné isocrystal is (D, ¢p). Then we consider the period
morphism, we have

Theorem 3.2.11. The period morphism factors through (J’Eg"a)rig and surjective on rigid points.

Proof. We first consider the period morphism associated to the moduli problem without addi-
tional structures. Let X"V be the universal p-divisible group over M. For any point = € Mrig,
k(z) is a finite extension of E. Then the image #(z) € "% is the point associated to the pull
back of (Lie X"V *)V¥is s B(X) ® O ypg = (Mxuniv)™® — (Lie(X"V))18 via Spf Op(py — M.
This is actually the canonical filtration associated to the p-divisible group which is the pull back
of the universal p-divisible group. Then from Example 3.1.14 #(z) € (F%)".

It remains to show that every K-valued point y := (D, ¢p,Lk) of (ﬁg"“)rig for K/E
finite lies in the image of 7. By the theorem of Colmez-Fontaine (Theorem 3.1.16) the filtered
isocrystal y is admissible, i.e. arises from a crystalline p-adic Galois representation V. By Breuil
[9] Theorem 1.4 there is a p-divisible group X over O and an isomorphism 7},(X ) ®z, Q, =V
if p > 2. Kisin extended Breuil’s theorem to p = 2 and reproved the Colmez-Fontaine Theorem.
Fontaine’s functor Dejs transforms the isomorphism T),(Xk) ®z, Q, =V into an isomorphism

Px - (D(X)E,D(Frobx)é, (LieX*)}) —>(D, SODyLK)

of filtered isocrystals. This defines a quasi-isogeny p : X — XE which by rigidity lifts to a
unique quasi-isogeny p : Xo, /) — Xoy /(p)- S0 ¥ is given by (X, p: Xo, /() — X0y /(p)), hence
lies in the image of the period morphism.

For the p-divisible group X with additional structures the proof is similar, see [33]. O

However, the rigid analytic structure is not decided by the set of rigid points. For example,
we consider the rigid space X1 [[ X2 over K where X; = {z € K| |z| < 1} and X5 = {z €
K| |z| =1}. Let f be the natural morphism from Xj [] Xs to the unit ball X = {z € K| |z| <
1}. Then f is bijective on points but never an isomorphism, since X is connected. This indicates
that we need to work with Berkovich’s E—analytic spaces instead of rigid analytic spaces, since
in Berkovich spaces the analytic structure is completely determined by the underlying points.

In the spirit that it is better to work with Berkovich spaces, we have the following

Proposition 3.2.12. (/25] 1.3) There exists an open E-analytic subspace fg"“ of 2 whose
associated rigid analytic space is the period space (}"g”a)rig.

To end this section, we reture to Grothendieck’s question at the end of Chapter 1.

Proposition 3.2.13. The subset of F formed by the points (Lie X*)Y. where X is any deforma-
tion of X over any complete discrete valuation ring O with residue field F), and fraction field
K of characteristic 0 is contained in the subset (F¥%)"8.



Proof. Let L = (Lie X*)}, be a point in Grothendieck set, given by a p-divisible group X
over O with X & XE' Over Og/(p) this isomorphism lifts by rigidity to a quasi-isogeny
0 Xok /) — Xog/p) and (X, p) gives a point of M(Ok). By construction #8(X, p)x = L.
So the point Ly belongs to the image of 78 which in turn lies in (F%¥%)"e.

O

3.3 The Conjecture of Rapoport-Zink

Let (F,O,k,m) be a complete discrete valuation ring. We first recall the definition of the étale
site Xt of a rigid analytic space X over F' from [30].

The underlying category of the site X¢t is the category of all étale morphisms f:Y — X
of rigid analytic spaces over F'. A morphism from f to f’ is a morphism ¢g : Y — Y’ such that
/"o g = f. The morphism g is automatically étale.

Definition 3.3.1. A family of étale morphisms {g; : Z; — Y }ier is a covering for the étale
topology if for every (some) choice of admissible affinoid covering Z; = Uj Zi; one has Y =
U;; 9i(Zi ), and this is an admissible covering in the Grothendieck topology of Y.

Remark 3.3.2. The above definition is local on Y in the following sense: if Y = (JY] is an
admissible affinoid covering, then {g; : Z; — Y} is a covering for the étale topology if and only
if for all I the same is true for the covering {g; : g; '(¥;) — Y;}. This implies that if {Z; — Y}
and {W; ; — Z;} for all i are coverings for the étale topology, then {W; ; — Y} is a covering for
the étale topology.

Clearly any admissible covering of Y is a covering for the étale topology.

Definition 3.3.3. The category X, equipped with the family of coverings for the étale topology
is thus a site, called the étale site of X. The sheaves on this site are called étale sheaves on X.

Definition 3.3.4. Let X be a quasi-separated quasi-paracompact rigid analytic space over F
whose associated strictly F-analytic space X2 is good. A geometric point T of X is a morphism
Z:Spm K — X ®p K for an algebraically closed complete extension K of F.

Remark 3.3.5. The geometric point Z can be viewed as a morphism B — K for a suitable
affinoid subdomain Spm B C X. Then the absolute value on K defines an analytic point
x € M(B) which we call the underlying analytic point of . We may even choose B such that
M(B) is an affinoid neighborhood of = in X?".

Definition 3.3.6. Let X be a rigid analytic space and Z be a geometric point of X. A pair
(f,y), where f: U — X is an étale morphism of rigid analytic spaces and ¥ is a geometric point
of U, is called an étale neighborhood of T if the following diagram is commutative:

Smei>U®FK

e

X K



Definition 3.3.7. If F is a sheaf on X and Z is a geometric point of X the stalk Fz of F at
Z is the inductive limit

Fz = h_H)lU]: U)
over all étale neighborhoods U of Z.

Corresponding to the definitions above one can also define the étale site of a Berkovich
space; see [5] Section 4.1.

Now we define the notion of local systems of Q,-vector spaces on X.

Definition 3.3.8. Let X be a rigid analytic space. We define a local system of Z,-lattices on
X as a projective system F = (F,,iy) of sheaves F, of Z/p"Z-modules on X such that F, is
a locally constant free Z/p"Z-module of finite rank and i,, induces an isomorphism of sheaves
of Z/p"1Z-modules

in ®Id: fn ®Z/p"Z Z/p"*12 —)fn_l
(Of course locally constant means locally for the étale topology.) The category Z, — Locy of
local systems of Z,-lattices with the obvious morphisms is an additive Z,-linear tensor category.
If z is a geometric point of X we define the stalk Fz of F at T as

Fz = lin(]:ni,zn)
It is a finite free Z,-module. Starting from Z,-lattices one defines local systems of Q,-vector
spaces as in [29]. In concrete terms a local system of Qp-vector spaces on X is given by the
following data
V= ({Ui — X}, Fi, 0i5)

where

e {U; — X} is a covering for the étale topology on X,

e F; is a local system of Z,-lattices over U; for each 1,

e for each pair i, j, ¢;; is an invertible section over U; x x U; of the sheaf

Homzp—@){ (*7:i|Ui><XUjv‘7:j‘Ui><xUj) ®7le @P

These data are subject to the cocycle condition pry;(vi;) o prig(¢jk) = prij.(¢ix) on the triple
product U; x x U; x x Uy.

A refinement of the covering gives by definition an isomorphic object. Therefore morphisms
V — V' need only be defined for systems given over the same covering {U; — X }. In this case
after possibly refining the covering, such a morphism is defined by a collection of sections ;
of the sheaf Homgz, —poc, (Fi, F}) ®z, Qp over U; satisfying ¢}; o pri(wi) = pri(p;) o pi; over
Ui XX U je

If z is a geometric point of X we define the stalk Vi of V at T as follows. Choose a lift y
of Z in some U; and put

Vi = Fig ®z, Qp

One easily verifies that Vz is a well defined finite dimensional Q,-vector space.

The local systems of Q,-vector spaces form a category Q,—Locy. It is an abelian Q,-linear
tensor category. Rapoport and Zink make the



Conjecture 3.3.9. (£33] 1.37) There exists an étale morphism (F#)"8 — (F2)"e of rigid
analytic spaces over E which is bijective on (rigid analytic) points and there exists a tensor
functor from Repg, (G) to the category Q) — M( Foyis of local systems of Q,-vector spaces on
(F¢)r'e with the following property:

For any point p € (F*%)"8(K) with K/F finite, the fiber functor which associates with a

representation in Repg, G the fiber at the corresponding point of y in (fg)rig of the local system
is isomorphic to the fiber functor defined in Definition 3.2.8.

Correspondingly one can define the category Q, — Locyan of local systems of Qp-vector
spaces on the Berkovich space X?" associated to X as in [29] Section 4. A.J. de Jong pointed
out that it is best done working with Berkovich spaces rather than rigid analytic spaces. We
have the following propositions indicating the relations.

Proposition 3.3.10. (/29] 5.1) There is a natural tensor equivalence of categories Q,—Loc yan —
Qp - @X .

Proposition 3.3.11. (/29] 4.4) A local system of Qp-vector spaces V on X can always be given
as V = ({Ui — X}, Fi,pij) where the U; are affinoid subdomains of X and the associated
Berkovich spaces U™ form an affinoid covering of X*".



Chapter 4

Hartl’s Construction

In this chapter, we give Hartl’s construction of proposed substitute for Rapoport-Zink’s conjec-
ture. We give the proof that the period morphism factors through this subspace and surjective
on points. The construction is inspired by solving the same problem in equal characteristic case
[28].

4.1 From Filtered isocrystals to p-Modules

We recall some definitions and facts for ¢®modules over B!

rig”
Definition 4.1.1. Let a be a positive integer. A % module over ﬁiig is a finite free ﬁiig—
module M with a ¢%semilinear map ¢ : M — M. The rank of M as a ]Agiig—module is

denoted by kM. A morphism of ¢*-modules is a morphism of the underlying ﬁiig—modules
which commutes with the ¢n’s. We denote the set of morphisms between two ¢*-modules M
and M’ by Hom. (M, M’).

Definition 4.1.2. For any positive integer b, we define a restriction of Frobenius functor [b].
from ¢®modules over BLg to p®-modules over BLg sending (M, pn) to (M, @4y)-

Example 4.1.3. (1) Let ¢,d € Z with d > 0 and (¢, d) = 1. Define the p*-module M(c, d) over

]N3Iig as M(c,d) = @?:1 ﬁiigei equipped with
(4.1) em(er) = ez, ...,pm(e4-1) =eq, om(eq) = per.

(2) We have a rank one ﬁiig—module ]A?;Iig -t. Since pt = pt, ]A?;Iig -t is isomorphic to M(1, 1).

Lemma 4.1.4. ([31] 4.1.2 and 3.2.4) The p*-modules M(c,d) over ]§Lg satisfy
(Z) M(C7 d)v = M(_Ca d)
(ii) [d):M(c, d) = M(c, 1)%7.

53



Definition 4.1.5. For a ¢*-module M over ]NBIig, we define the set of p®-invariants as

H?pa(M) ={zreM| om(x) =1z}
Remark 4.1.6. H).(M) is a vector space over H.. (M(0,1)) = W (Fpa)[1/p].

Proposition 4.1.7. (/31] 4.1.3 and 4.1.4) The ¢®-modules M(c,d) over ﬁIig satisfy

(i) Homga (M(c,d), M(c',d’)) # (0) if and only if §> 5
(ii) H?Da(M(C, d)) # (0) if and only if § <O0.

Proposition 4.1.8. ([25] 3.6) If ¢ > 0, then the ¢*-module M(—c,1) over ]A?;Iig has ¢®-
muvariants

H ( -G, 1 _{ZpCVijSO o ':L'] | Oy -y Le—1 GE,UE(ZEJ) >O}
VEZL 7=0

For ¢%-modules over B! Kedlaya proved the following structure theorem.

rig?

Theorem 4.1.9. (/31] 4.5.7) Any ¢*-module M over Brlg is isomorphic to a direct sum of p®-

modules M(c;, d;) for uniquely determined pairs (c;, d;) up to permutation. It satisfies N"“MM =2
M(c,1) where c =3, ¢; and tkM =", d,.

Definition 4.1.10. We define det Ml := A'®*MM = M(c, 1) and we call degM := c the degree
of M and wt M := degM the weight of M.

Proposition 4.1.11. (/31] 3.4.9) Fvery ¢®-submodule M' C M(c,d)®" over ﬁiig satisfies
wt M’ > wt M(c,d)®" = §.

Let MI%"] be a finite free Bl®"-module and for 0 < s < r let MIOs] .= MO Qgplor , BI0:s]

be obtained by base change via the natural inclusion ¢ : B0l < BlOsl, Furthermore we assume
an isomorphism

S0}13[,7~1)—f1] : M]O,r] ®]§]O,r]’¢a ﬁ}o,rp*a} . M]O,rp*a]

777,(1]_

By tensoring ¢ : BOrp ™l _ BIOP ™ for any n € N, this gives an isomorphism of Bl0P
modules

—(n—1)a ~ —na —na
Mlorp ] Blo.rp—(nDay o Bl \plOrpT ]

Since ﬁiig = U0 E]O’S], go]l&’rpia] extends to an isomorphism of ]A?;Lg—modules

Bt
i B, —M
Brlg’sa I‘lg

M ®x

where M := M0 Qplo , ﬁiig. Therefore this gives a ¢%-semilinear map @n : M — M.



Definition 4.1.12. A ¢module (M, ¢op) over B!

rig

(M]O””},tp]l&’rpia]) if (M, @) is isomorphic to the ®module MIO7] 1o BLg constructed

from (M0, gp]&rpia}) as above.

is said to be represented by the pair

Proposition 4.1.13. (/25] 3.10) If M is represented by (M%7, (p]l&,rp*a]% then
r O,T’ -a
HY.(M) = {z e M| Q07 Nz 0. 1) =201}

Now assume that K is a (not necessarily finite) extension of Ky and C be the completion
of a fixed algebraic closure of K. To any filtered isocrystal D over K of Hodge-Tate weights
0 and 1, we will associate a ¢®module M(D) over Biig(C). The construction is based on the
following

Proposition 4.1.14. (/25] 4.1) Let N be a p-module over ﬁiig(C’) represented by a finite free
B9 module NI%U gnd an isomorphism go%?{pil] : NJO1] ®DFl0.1] BIO»™' = NIOPT] | et Wwm be
a C-subspace of W := N0 ®@groa) g C- Then there exists a uniquely determined p-submodule

M C N over Eiig(C’) with tN C M which is represented by a B9 _submodule tN1%1 ¢ MY

NI sych that MI0] ®g10.1] g C =Wwm.

Now let (D,¢p) be an isocrystal over IFTD and let Fil Di be a K-subspace of D =
D ®k, K. Let Fil'' Dg = Dy and Fil'! Dg = (0). We denote D = (D, ¢p,Fil® Dx) the
filtered isocrystal over K and set DI .= D QK BIOH cp]]g’” =ep®Id, D:=D ®k, BLg(C)
and pp := pp ® ¢. Then the Eiig(C’)—module (D, op) is represented by the Bl%l-module
(D01, o5 ).
Definition 4.1.15. By Proposition 4.1.14, we define M(D) be the -submodule of D over
BLg(C) represented by the B!%-module M%) with M0 Dploa1 9 C = (Fil’ D) @ C inside
Dc =D @go, , C.

Lemma 4.1.16. Let M; and My be p-module over B! (C) represented by Bl _module Mlo’l].

rig
Assume that M]lo’l] D) M]Qo’l] D) tM}IO’H. Then

deg M2 — deg M1 = dimc(M]IO’l}/M]QO’H) ®]§]0,1]79 C

Proof. Clearly the equality holds for My = tM; = M; ® M(1,1), since degtM; — degM; =
rkM;. We claim that is suffices to prove the inequality

(4.2) deg My — degM; > dim¢ V

where we abbreviate V' := (M]lo’l] / M}QOJ]) ®@glo.) o C- Indeed we apply the inequality to the two
inclusions
M S MPY 5 avPY and MY o e 5 el



and the lemma follows from the exact sequence of B2 modules
0 — MU /00— MO 0 0 vl g

To prove the inequality (4.2) we argue by induction on dim¢ V. Let dimgV = 1. Since
det My — det M is an inclusion, we have from Proposition 4.1.7 that deg My > deg M. If we
had deg My = deg M; then My = M; by [31] 3.4.2. Hence degMs — degM; > 1 = dim¢ V.
Let now dime V' > 1 and choose a C-subspace V' of dimension 1 of V. By Proposition 4.1.14
there is a unique ]A?;;rig(C’)—submodule My C M3 C M; corresponding to V’. By induction
degM3 — degM; > dimg(V/V') and degMs — degM3 > dime V' and then the inequality
follows. O

Theorem 4.1.17. degM(D) = tn(D) — tg(D)

Proof. By the Dieudonné-Manin’s classification [14] there exists an isocrystal (D', ¢pr) over F,
of rank one with ¢p = p!¥©2) . ¢ which is isomorphic to det(D,¢p). Then by construction
degD =ty (D). From Lemma 4.1.16 we have

deg M(D) — deg D = dim¢ (D' /M(D)" V) @550, , C
= dim¢(Dg/Fil' Di) ® C = —tg (D) (Example 3.1.9)

O]

Remark 4.1.18. Since we do not know how to construct M(D) for filtered isocrystal D with
Hodge-Tate weights other than 0 and 1. We cannot make D — M(D) into a tensor functor.

If K/K) is a finite extension, one can check that M(D) equals the ¢-module over B! (©)

rig
constructed by Berger [3]. One of Berger’s main theorem is the following criterion.

Theorem 4.1.19. (/3]) Let K be a finite extension of Ko. Then D is admissible if and only if

M(D) = M(0,1)®m P

We make explicit what happens otherwise.

Proposition 4.1.20. Assume that tx(D) = tg(D). Then M(D) 2 M(0,1)®4mD 4f and only
if for some (any) integer e > (dim D) — 1 there exists a non zero x € Hoc([e].D ® M(1, 1)) with
0(pp (7)) € (Fil’ D) @k C for allm=0,...,e— 1.

Proof. Let M(D) 2 M(0,1)®4mD By Theorems 4.1.19 and 4.1.9 there is a ¢-module M(c, d)
over ﬁiig(C) with ¢ < 0 and d < dim D which is a summand of M(D). Then by Proposition 4.1.7
for any e > (dim D)—1 there exists a non zero morphism of ¢-modules f : M(—1,e) — M(c,d) C
M(D) C D. Let ey,...,e. be a basis of M(—1, e) satisfying the relation (4.1) in Example 4.1.3
and let 2 be the image of e; in D under f. Then ¢, (z) = p~ 'z, that is © € HL. ([e].D®M(1, 1)).
Moreover f(ent1) = ¢f(x) in D for 0 < m < e. Now the fact that the morphism f factors
through M (D) amounts by Proposition 4.1.14 to 6(¢(z)) € (Fil° D) @k C.



Conversely assume that for some integer e > (dim D) — 1 there exists a non zero element
z in H). ([e].D ® M(1,1)) with (3 (x)) € (Fil’ Dg) @ C for all m = 0,...,e — 1. Define the
non trivial morphism of p-modules f : M(—1,e) — D by f(em+1) := ¢p(z) for 0 < m < e.
Since 0(¢(2)) € (Fil° Di) @k C, the morphism f factors through M(D) by Proposition 4.1.14.
By Proposition 4.1.7 we have M(D) 2 M(0,1)®dm D, O

4.2 Construction of F¢

Let G be a reductive group and {u} be a conjugacy class of one parameter subgroups of G. We
make the following assumption on the pair (G, {i}) and assume that this assumption is satisfied
throughout this section:

There exists a faithful Qp-rational representation V' of G such that all the weights of {4}
on V are 0 or —1.

Let G' = GL(V) and b € G(Kj). Then G is a closed subgroup of G’ and b can be viewed
as an element of G'(Ky). We have a closed embedding F «— F’ := Flag(V) of flag varieties.
Here Flag(V) is actually a Grassmannian. We denote by Fan the E- analytic space associated
with F ®p E.

Let 1 € F* be an analytic point. Let K = k(u) be the (complete) residue field of p
and let C' be the completion of an algebraic closure of K. Let D, := (Vk,,b- ¢, Fil} V). In
particular, Fil™' Vi = Vi and Fil’ Vi = (0). We let M, = M(D,) be the p-module over

B!, (C) in Definition 4.1.15.

Definition 4.2.1. We define
Fii={pe F™ analytic points | M, = M(0,1)%%}
where d = dime V.

If b = gbp(g~') for some g € G(Kp) the map p — g~ 'ug maps .7:"5“ isomorphically onto
5. The Newton slope and Hodge slope are determined by the conjugacy class {u}. If ¢y (D ) #
tr(Dy) the sets F¢ and (F*)"8 are empty. So from now on we assume tN(Dy) = tu(Dy) for

all p e Fa The main theorem is the following

Theorem 4.2.2. (Hartl) The set .7:"{;’ s an open E—analytz’c subspace of Fan, If b is decent with
the integer s, then .7:“5‘ has a natural structure of open Es-analytic subspace of (F @ Eg)* from
which it arises by base change to E.

Proof. Step 1: Let V be a faithful representation of GG satisfying the assumption. We may reduce
to prove the case where G’ = GL(V). Indeed, G is a closed subgroup of G’ and this identifies a
closed embedding F — F' := Flag(V) ®q, E. Here Flag(V) is a Grassmannian isomorphic to
G'/S’, where S’ = Stabg (V)) is the stabilizer of an appropriate subspace Vj of V. By definition
fg = Fann F Z. So it suffice to prove the theorem for G’ instead of G. Since G’ is connected we



may assume by Proposition 3.2.3 that b is decent, say with integer s. We let F. := (F' ®@p FEq)*"
and define the subset F;* C F,*" by the same condition as in Definition 4.2.1. We only need to
show that it is open.

Choose an integer ¢ > (dim V') — 1 which is also a multiple of s. Then by Proposition
4.1.20, the set F;* C F.* equals the set of analytic points p € F.*" such that there exists an
algebraically closed complete extension C' of k(u) and a non zero element € Hl.([e].D¢ ®
M(1,1)) with 8(ep(x)) € (Filz View)) @r(p) C for all m = 0,...,e — 1. Here [e],D¢ is the
p°-module (D, ¢%) @, ]A?;Iig(C') over ]A?;Lg(C).

Step 2: We identify V ®q, A}ES with affine d-space AdES over Fs. For n € E; consider the
E-analytic polydisc with radii (|5, ,[n])

h

D(n)% = M(E{ j;”

| i=1,...,d; mZO,---ye—l})C(AdEs)e

We will construct a constant € E, and a compact subset Z of ID(1)% in step 3 with the following
property: If C'is an algebraically closed complete extension of E; and z € H?Oe ([e]«Dec®@M(1,1))
with x # 0, then for some integer N

(Ao = (B, - ham) ) do 2= (WY (0B ()20

is a C valued point of Z and Z consists precisely of those points.

Now let G.2" be the Es-analytic space associated with the group scheme G’ ®q, Fs and
consider the morphism of Es-analytic spaces

B: G xp, D(n)%™ — (A% ) = (V ®q, Ap,)°
(9, (hm)Gr20) ¥ (97 ham) 5

Let Y be the closed subset of G2 x . D(n)% defined by the condition that (k)% belongs
to Z and that 3(Y) C (Vo ®q, Aj,)¢. Furthermore consider the projection map

pri: G/San X B, D(n)de — G/San

onto the first factor and the canonical map v : G/** — F.*" coming from the isomorphism
Fo = G/ Stabgr (Vo). Then p € F{™ does not belong to F® if and only if p € o
pr1(Y). Since D(n)% is quasi-compact the projection prj is a proper map of topological HausdorfF
spaces, pri(Y) is closed. Note that F.*" carries the quotient topology under v since ~ is a
smooth morphism of schemes, hence open by [5] Proposition 3.5.8 and Corollary 3.7.4. Since
by construction pri(Y) =y~ 1(y o pri(Y)) we conclude that F;* = F/2 — v o pry(Y) is open in
Fia™ as desired.

Step 3: It remains to construct the compact set Z. Since b is decent, the ¢-module
[e]«D ® M(1,1) is isomorphic to @;1:1 M(—c¢;, 1) for suitable integers ¢;. We assume that the
identification of V' ®q, AlES with AdES in Step 2 was chosen compatible with this direct sum



decomposition. Let ¢q,...,c4 >0 =cpy1 =+ =c¢ > ¢41,...,¢4. Then by Proposition 4.1.8

c;i—1

H o([elsD ® M(1,1)) @{ZPCW ZP]SO (lug])| wi; € E ,vE(u;) > 0}

@@W )[1/p]

i=k+1
d
® P o
i=1+1
For 1 <4 <k,0< 75 <c¢ — 1 consider the compact sets
0 0 0
Uy = M(Es{u) /p}) = {|lu)'| < Ipl} and
(n) (my _ g1.,(0)
Uii” = M(Es{u;"}) = {|u;;’| <1} forn >1

Then the sets

Uij == {(ug-l))neN € H Ui(j")\ (u%ﬂ)p = ugb) for all n > 0} and

neN
k c¢;—1 d
U = HHUZJXHW < [ {0}
i=1 7=0 i=k+1 i=l+1

are compact by Tychonoff’s theorem. For an arbitrary algebraically closed extension C' of Fj
consider a C-valued point u of U given by

(U nen)imtbijtssci 1 (1) i1,y (0)ictin, )

with u( ") e C and a; € W(Fpe). We assign to u the C-valued point y of A‘é@ with (hy, )fn;lo =

(0(ep(x)))5=o Where z is the element of H0 (le]«D ® M(1,1)) associated with the u( ") and a;.
This defines a map

a:U— AE

ul—)y

of topological Hausdorff spaces. One can prove that « is a continuous map, for this we refer to
[25].

(n (n) forj=1,...,¢—1,

Now multiplying (hip )im with p amounts to replacing U ) by u, -1

and uz(?f)) by (uz(jzzfl)pe, and a; by pa;. Thus we may take

=a(U—{uecU| \u \ < |pl”",a; € pW (Fye) for all i and j}).

Then Z is the continuous image of a compact set and satisfies the property required in Step 2.
This proves the theorem. ]



Proposition 4.2.3. Let fg“a be as in Theorem 3.2.12. Then the set ff 18 an open E—analytic
subspace of ]t"g““.

Proof. After Theorem 4.2.2 we only need to show that ff is contained in .7:";”“. Let 1 € f,f‘ be
an analytic point and set K = k(u).

Let D' C D be a ¢p-stable Ky-subspace and let Filz D == Dl N FilL Dg. We have
to show that ¢y (D) < ty(D') for any subobject D' := (D', pp|pr, Fil}, Dj;) C D, and with
equality if D’ = D,,. Consider the ¢-submodule M’ := M(D’) € M(D,,). Then by Theorem
4117 ty (D)) —tg(D') = degM’ =tk M’ - wt M. If D' = D,,, since i1 € ¢, we have M(D),)
M(0,1)®4mD and thus ty(D,) = ty(D,). If D' C D,, we have wtM' > wtM(D,,) by
Proposition 4.1.11 finishing the proof. o SO

Corollary 4.2.4. The open immersion flf C ]t"g"“ induces an étale morphism of rigid analytic
spaces (]i'l‘f)rig — (}U'g”a)rig which is bijective on rigid analytic points. It is an isomorphism if
and only if ‘7-v"ba = f;"“.

Proof. The functor (-)"® takes étale morphisms to étale morphisms. The rigid analytic points
are Berkovich analytic points with residue field finite over . Then by Definition 4.2.1, The-
orem 4.1.19 and 3.1.16 that the morphism is bijective on rigid analytic points. The rest is a
consequence of Theorem 2.3.22 since J’Eg and fg”“ are paracompact by Lemma 2.3.24. O

4.3 Relations with Period Morphisms

Let G = GL(V) for a finite dimensional Q,-vector space V. Let F be the Grassmanian over
Ky of d-dimensional subspaces of Vi,. Let b € G(Ky) and (D, ¢p) = (Vk,,b- ¢). Assume that
there exists a p-divisible group X over F, of dimension d whose covariant Dieudonné isocrystal
is (D, ¢p). We consider the moduli problem of deformations of X as in Theorem 2.2.1 and the
period morphism #* : M2 — Fa0 in Remark 2.4.4.

Theorem 4.3.1. (Hartl, Faltings) The period morphism factors through fg and surjective on
analytic points of ]i}?

Proof. Let € M® be an analytic point and let = 7 (z) € F2". Let K = k(z) and let C
be the completion of an algebraic closure of K. Let X, be the fiber of the universal p-divisible
group X at z and consider the Tate module 7),(X,) of X,. An element A € T},(X,) corresponds
to a morphism of p-divisible groups A : Q,/Z, — Xo,, over O¢. By functoriality of the universal
vector extension this yields the following diagram of C-vector spaces

0 — D(@p/ZP)C X D(QP/ZP)C E— 0

| |

0 —— (Fﬂ;DK) g C —— D®KOC — (LieXx)C — 0



Note that Lie(Q,/Z,) = (0), since Q,/Z, is ind-étale. By the crystalline natural of the covariant
Dieudonné module, we evaluate D(\) : D(Q,/Z,) — D(Xo..) on the pd-thickening B, (C) of
Oc¢ (here we use the crystalline theory of Berthelot-Messing) and get

© =PXe)ps ()

cris

D(QP/ZP)B;iS(c) — D(Xo.)g+

cris

We have D(Qp/Zp)Bctis(C) =B’

+.,(C) since the universal vector extension of Q,/Z, over B, (C)

cris
is obtained from the sequence 0 — Z, — Q, — Q,/Z, — 0 by pushout via Z, — B;iS(C).
Then we have a morphism

T, Xy ®z, BY,

cris

A®a— D) (a)

(@)

cris

(C) —D(Xs)p+ (o) = D @K, B

Here the isomorphism on the right arises from the quasi-isogeny p,., since p is invertible in
+ . . . o .
B/ .(C) (Theorem 2.4.1). By Faltings [17] Theorem 7, the morphism on the left is injec-

(C) and BIg(C) equals

tive. Since the elements of T, X, are p-invariant inside T, X, ®z, Bjris

MNhen "B (C), we get a monomorphism

T, X, ®z, B}, (C) — D ®x, Bf,

().
It gives rise to a monomorphism

T, Xy — TpX, @z, BPY(C) — D @, BOY(0)
A— AR 1+— D(N)(1)

since BI%U(C) is a flat ﬁ;tg(C)-algebra. Consider the morphism 6 : D @, B — D @, C.
From Diagram 4.3 we see that 6(7,(X;)) C (Filg Dg) ®k C and we have Tpr.®Zp ﬁiig(C’) —
M, = M(D,ng,Filg D) by Proposition 4.1.14. This forces M, = M(0,1)4mV. Otherwise
we have M, = €P; M(c;,d;) with ¢; > 0 (note that degM = 3, ¢; = 0). Since the elements of

T,X, are p-invariant and Hg(M(cl, d1)) = (0) by Proposition 4.1.7, the projection

T,X, ®z, B!

1ig (C) — M(cy, dr)

is zero. Thus T,X, ®z, ]A'D;Iig(C) — ;.1 M(cj,d;), but this is impossible since we have
rkz, Tp Xy = dimV > 1k, M(c;,d;). This proves that the image p = 7#*"(z) of z is in
Fi.

The proof of surjectivity of 72" is paurallel to Theorem 3.2.11 but the difficulty is to find
the p-divisible group over O where K/FE may be infinite. The proof is essentially due to
Faltings. Let p be any point in fg The morphism (ﬁlig(C))@dimV =M, — D ®kg, ﬁiig
is represented, with respect to a Ky-basis of D, by a matrix M € Mathxh(BIig(C’)) with

tM~t € M&thxh(BLg(C)). Then by Proposition 1.4.1 of [4], we have in fact M,tM~! €
Mathxh(ﬁ;tg(C)) C Matyxn(BF.). So M defines an isomorphism Bes(C)®4mV = D @y,

cris



Beris(C) compatible with Frobenius, which maps (B, (C))® 4™V onto the preimage of Filg Di®xk
C under the map Id®60 : D ®k, B, (C) — D ®f, C. This means that (D,@D,Filg Dg) is
admissible in the sense of Definition 3.1.10(ii). By [16] Theorem 9 and 14, there is a p-divisible

group X over Ok and a quasi-isogeny p : Xo, /() — X0 /(p) Such that
(VngO: (LleX*)% - V®Qp K) = (D,@D,Fllg DK)

Therefore p lies in the image of 7.
O

For a p-adic period space (]:"g”“)rig possessing period morphism, we have the following
consideration on Rapoport-Zink’s conjecture 3.3.9.

We choose and fix a faithful p-adic representation V of G of Hodge-Tate weights 0 and 1.
Consider the moduli problem associated to X, where X is a p-divisible group over IETP such that
(D(X), D(Frobx)) = (V ® Ko, b(Id ®¢)). Let X be the universal p-divisible group over M?" and
the Tate module T, X gives a local system of Q,-vector spaces on .’é;‘ We extend V' — T,(X)
to a functor Repg, G—Q,— m}“—g by the same reason as in 3.2.6.

Conjecture 4.3.2. ([25]) The set .7-v"l§1 is the unique largest open E-analytic subspace of ]i"g”“ on
which the tensor functor from Repg, G to Qp — Loc . with property in Conjecture 3.3.9.
b

Remark 4.3.3. This was shown to be true by A.J. de Jong in the Lubin-Tate situation where
Fo = Fpa = Fon,

Remark 4.3.4. In general ]i"g is strictly open subspace of fg”a, for example one can see [25].
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