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Abstract

Quantum paraelectric materials like SrTiO3 and KTaO3 exhibit many
unusual material properties arising from their quantum fluctuations,
including a high dielectric constant and unconventional superconduc-
tivity. In combination with other unusual properties like strong spin
orbit coupling and charged ionic layers in KTaO3, this leads to the
observation of various intriguing phenomena. The primary goal of
this thesis is to investigate these ferroelectric and quantum paraelectric
states, with a focus on the evolution of polarization, quantum fluctua-
tions and electron-phonon coupling with chemistry and doping, using
computational first-principle methods and SrTiO3, KTaO3 and BaTiO3

as model systems.

To achieve this goal, I first investigate ferroelectric polarization in
BaTiO3 and how it can persist despite the presence of free charge
carriers, two principally contraindicated phenomena. Next, I create
a model, based on quantities easily extracted from DFT and DFPT
calculations, to better understand the quantum paraelectric state and
use this model to study the so-called isotope effect in SrTiO3. Finally, I
calculate the electron-phonon coupling strength in KTaO3, motivated
by its highly anisotropic surface superconductivity, to gain insight into
which phonon modes may be relevant for the electron-phonon pairing
mechanism.

From the study of BaTiO3, we learn both that polarity and metallicity
can coexist in an originally ferroelectric material, up to relatively high
doping levels, and how doping ions affect the geometry and polariza-
tion of the resulting structure, ranging from complete suppression to
an unexpected increase of polarization. Next, we show that the sim-
ple model for quantum paraelectricity works well and see that the
actual isotope effect in SrTiO3, namely the substitution of 16O with
its heavier isotope 18O, probably has a smaller effect than expected
and geometry effects may be more important than initially thought.
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The electron-phonon coupling calculations show that while there is no
direct correlation between the orientation dependence of the coupling
strength λ and the experimentally measured superconducting critical
temperatures, confirming that classical BCS theory is not directly appli-
cable to KTaO3, a strong localization of λ around Γ indicates a pairing
mechanism involving the polar soft mode.

Overall, this thesis reveals new insights into the relationship between
chemistry, conductivity, ferroelectricity, quantum paraelectricity and
electron-phonon interactions in this important class of materials.

Zusammenfassung

Quantenparaelektrische Materialien wie SrTiO3 und KTaO3 weisen
viele ungewöhnliche Materialeigenschaften auf, die auf ihre Quantenf-
luktuation zurückzuführen sind, unter anderem eine hohe Dielektrizi-
tätskonstante und unkonventionelle Supraleitung. In Kombination mit
anderen unüblichen Eigenschaften, wie zum Beispiel einer starken Spin-
Bahn-Kopplung und geladenen ionischen Schichten in KTaO3, führt
dies zu sehr interessanten Phänomenen. Das primäre Ziel dieser Arbeit
ist es, diese ferroelektrischen und quantenparaelektrischen Zustände
zu untersuche, mit SrTiO3, KTaO3 und BaTiO3 als Modellsystemen und
computergestützten ab-initio Methoden. Der Schwerpunkt liegt dabei
auf der Entwicklung der Polarisation, der Quantenfluktuationen und
der Elektron-Phonon-Kopplung in Abhängigkeit von der Chemie und
der Dotierung.

Um dieses Ziel zu erreichen, untersuche ich zunächst die ferroelek-
trische Polarisation in BaTiO3 und wie sie trotz der Anwesenheit von
freien Ladungsträgern bestehen bleiben kann – zwei sich grundsätzlich
ausschliessende Phänomene. Als Nächstes erstelle ich ein Modell, das
auf leicht aus DFT- und DFPT-Berechnungen zu extrahierenden Grössen
basiert, um den quantenparaelektrischen Zustand besser zu verstehen,
und verwende dieses Modell, um den sogenannten Isotopeneffekt in
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SrTiO3 zu untersuchen. Motiviert durch die hochgradig anisotrope
Oberflächensupraleitung berechne ich schliesslich die Elektron-Phonon-
Kopplungsstärke in KTaO3, um besser verstehen zu können, welche
Phononmoden für den Mechanismus dieser Kopplung relevant sein
könnten.

Aus der Untersuchung von BaTiO3 lernen wir, dass Polarisation und
metallische Leitungsfähigkeit in einem ursprünglich ferroelektrischen
Material bis zu relativ hohen Dotierungswerten koexistieren können.
Zudem sehen wir, wie sich Dotierungsionen auf die Geometrie und
Polarisation der resultierenden Struktur auswirken, von der vollstän-
digen Unterdrückung bis hin zu einer unerwarteten Erhöhung der
Polarisation. Wir zeigen, dass das Modell für Quantenparaelektrizität
funktioniert und dass der effektive Isotopeneffekt in SrTiO3, nämlich
die Substitution von 16O durch das schwerere Isotop 18O, wahrschein-
lich einen geringeren Effekt hat und dass Geometrieeffekte wichtiger
sein könnten als bisher angenommen. Die Berechnung der Elektron-
Phonon-Kopplungsstärke zeigt, dass es keine direkte Korrelation zwi-
schen der Orientierungsabhängigkeit der Kopplungsstärke λ und den
experimentell gemessenen supraleitenden kritischen Temperaturen gibt,
was bestätigt, dass die klassische BCS-Theorie nicht direkt auf KTaO3

anwendbar ist. Eine starke Lokalisierung von λ um Γ deutet aber darauf
hin, dass die polare Phononmode am Paarungsmechanismus wesentlich
beteiligt ist.

Insgesamt liefert diese Arbeit neue Erkenntnisse über die Beziehungen
zwischen Chemie, Leitfähigkeit, Ferroelektrizität, Quantenparaelek-
trizität und Elektron-Phonon-Wechselwirkungen in dieser wichtigen
Materialklasse.
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1
Introduction

Materials with the perovskite structure are astoundingly versatile, with
applications ranging from capacitors and piezoelectric actuators [1, 2]
to highly efficient electro-chemical water-splitting [3, 4], solar cells [5]
and solid-oxide fuel cells [6]. Their general chemical formula is ABX3,
with A and B being two different cations, and X being the anion, often
O2 – . The high-symmetry reference structure is cubic, with the A and
B ions sitting at the middle and the corners of the cube, respectively,
and the oxygen ions sitting on the edge centers, enclosing the B ion in
a octahedral fashion (see figure 1.1).

Figure 1.1: High-symmetry cubic perovskite crystal structure with chemical
formula ABO3 and Fm3̄m symmetry (spacegroup 225). The A ion sits in the
middle of the cube and eight B ions at each corner, each contributing 1/8 to
the atom count per formula unit. The oxygen ions surround each B ion in a
octahedron, each oxygen sitting at the center of one of the cube’s edges.

An important property for perovskites is the so-called Goldschmidt or
tolerance factor

t =
rA + rO√
2(rB + rO)

, (1.1)

1



2 introduction

with rX being the respective ionic radii. If t ∼ 1, then the perovskite
structure is formed, and if t = 1, the cubic structure without distortions
should be most stable. If t > 1, then the B atom is too small for the
space it is supposed to occupy, and a polar distortion may occur (BTO
is a good example for this). If t < 1, then the A atom is too small and
the oxygen octahedra usually rotate or tilt to lower the overall energy
(STO is a good example).

These frequently observed symmetry-lowering distortions can be sep-
arated into three distinct groups, as categorized by Megaw [7] and
Glazer [8]. The first is the tilting of the anion octahedra, as e.g. observed
in STO in its "soft-mode" phase transition at 105K, where the oxygen
octahedra rotate in alternating directions around the c-axis [9]. The
second group consists of polar displacements of the cations relative to
the anions in either a ferroelectric or antiferroelectric manner. A good
example for a ferroelectric perovskite is BaTiO3, which undergoes three
phase transitions to ferroelectric phases. The third group is distortions
of the octahedra themselves, one example being the breathing mode in
rare earth nickelates [10].

Because the perovskite structure is quite flexible, both in the choice of
ions occupying its A, B and X sites, and in the small structural differ-
ences between phases, the actual chemistry can be tuned to enable the
many interesting phenomena and wide array of applications mentioned
in the beginning.

In the following part, I will first give a description of the phenomena
relevant for this thesis, and then cover the three perovskite materials in
which these phenomena can be observed and which we study here. A
brief overview of the structure of this thesis completes this chapter.

1.1 Phenomena

1.1.1 Ferroelectricity

Ferroelectric materials show a spontaneous electric polarization that
is switchable by an external field, the latter requirement means that
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they are usually insulating. Ferroelectricity is a structural effect, mean-
ing that atoms of different charges need to be off-centered relative to
each other for the polarization to arise, making any ferroelectric a non-
centrosymmetric material lacking an inversion center. Many different
materials show ferroelectricity, from Rochelle salt (the first discovered
ferroelectric) to the prototypical examples BaTiO3 and PbZr1 – xTixO3

(PZT, one of the most technologically important ones). Their applica-
tions range from piezo- or pyroelectric actuators and sensors [11] to
ferroelectric memories [12] and solar cells [13]. Note that not all piezo-
and pyroelectrics are ferroelectric, but all ferroelectrics must be piezo-
and pyroelectric.

order parameter

E

Figure 1.2: Schematic evolution of the Landau free energy, corresponding to
eq. 1.2, going e.g. from a paraelectric phase (dashed line) with one non-polar
energy minimum, to a ferroelectric phase (solid line) with two energy minima
of opposite polarization.

The theoretical description of the ferroelectric phase transition is based
on the Landau theory of second-order phase transitions and can be
described by the softening of a phonon mode, as first described by
Cochran [14]. The energy landscape of the para- and ferroelectric phase
is given by the phenomenological fourth-order Landau free energy

F(T ,η) = F0 + a(T)η2 +
b(T)

2
η4 , (1.2)

with T being the temperature, ν the order parameter and a(T) and
b(T) being parameters. b(T) is usually assumed to be constant close to
the critical temperature, and must be larger than zero (b(T) ∼ b0 > 0).



4 introduction

a(T) changes sign across the phase transition, being positive at higher
temperatures and negative below (a(T) ∼ a0(T − Tc)). The free energies
above and below the phase transition are visualized in fig. 1.2.

Experimentally, one can observe such a phase transition by e.g. mea-
suring the transverse optical (TO) phonon frequency ωTO at Γ , which
softens upon approaching the critical temperature, following ωTO ∝
(T −Tc)

1/2 in both the ferroelectric and paraelectric phase, as visualized
in fig. 1.3.

TTc

Figure 1.3: Development of the soft mode phonon frequency ω with temper-
ature. Upon cooling (coming from the right), the phonon frequency in the
paraelectric phase (dashed line) is lowered (becomes soft) until it reaches zero at
the critical temperature (vertical dotted line). Upon further cooling, the phonon
frequency in the ferroelectric phase rises again, it hardens.

The textbook Physics of ferroelectrics: a modern perspective serves as an
excellent starting point for a more detailed look at the vast topic of
ferroelectrics [15].

In the context of this thesis, ferroelectricity plays a central role. Later
in this chapter, we introduce the ferroelectric material BaTiO3 in more
detail (sec. 1.2.1). Chapter 3 then covers the contraindicated proper-
ties of ferroelectricity and metallicity in BTO. Additionally, chapters 4

and 5 concern the incipient ferroelectric materials SrTiO3 (sec. 1.2.2)
and KTaO3 (sec. 1.2.3). To better understand the peculiar quantum
paraelectric state of these materials, a short overview of quantum phase
transitions follows next.
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1.1.2 Quantum phase transitions

Quantum phase transitions are phase transitions that occur at zero
temperature, so that the order parameter governing the transition is not
temperature, but e.g. pressure or strain. The crossing of the quantum
critical point at zero kelvin is driven by quantum fluctuations, whereas
in a classical phase transition which is thermally driven, the system
freezes in place below the critical temperature and has no thermal
fluctuations anymore at zero kelvin. The quantum critical point itself,
as it only exists at exactly zero kelvin, is more a theoretical topic, but the
quantum effects "reach out" to finite temperatures above the quantum
critical point into a regime called quantum critical (see figure 1.4), where
many unusual phenomena persist.

order parameter

T

> kBT > kBT

kBT

QCP

Figure 1.4: Sketch of a quantum critical phase diagram. The quantum critical
point sits on the horizontal axis at zero temperature, with two different regimes
extending above: In the regimes left and right of the point, and below a certain
temperature, the quantum fluctuations dominate the behavior, as their energy,
∆, is larger than the thermal energy, kBT , and classical equations of motion can
be used to describe the system. The region in the center, indicated by the colored
fan, is called the quantum critical region, where the thermal fluctuations are of
the same order of magnitude as the quantum ones and the classical description
does not work anymore. The dashed lines between these two regions indicate
the crossover from one region to the other. (Adapted from fig. 1.3 in ref. [16].)

These phenomena arise because quantum fluctuations and thermal
effects are of the same order of magnitude and interact, leading to
unexpected effects such as quantum paraelectricity [17, 18], multiferroic
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quantum criticality [19], and non-Fermi liquid behavior which is a
precursor of cuprate superconductivity [20]. The book Quantum Phase
Transitions covers the basics and more, extending far beyond what is
relevant for this work [16].

Experimentally and computationally, this region is challenging to probe
and analyze. Chapter 4 covers our work on trying to make the nature of
the quantum fluctuations more tangible for the quantum paraelectrics
STO and KTO.

1.1.3 Superconductivity

Superconductivity is a property in which an electrical current flows
without resistance, and magnetic fields are expelled from the material,
below a critical temperature Tc and a critical external magnetic field Hc.
Figure 1.5 shows the typical evolution of the electrical resistance with
temperature, with the clear drop to zero resistivity below the critical
temperature.

TTc

Figure 1.5: Sketch of the resistivity ρ versus temperature T of a superconducting
material. Above the critical temperature, indicated by the dashed vertical line,
the resistivity usually shows metallic behavior and rises with temperature.
Below the critical temperature, the resistivity is exactly zero and an electric
current will flow without dissipation in a closed circuit.

First observed in 1911 in mercury [21], a basic understanding of con-
ventional superconductivity took until the 1950s with the phenomeno-
logical Ginzburg-Landau theory [22] and the microscopic Bardeen–
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Cooper–Schrieffer (BCS) theory [23]. The conventional superconducting
transition was shown to be a second-order phase transition, and the
superconducting current to be a superfluid made up of Cooper pairs
which interact mediated by lattice vibrations [24].

The discovery of the isotope effect, in which the BCS superconducting
critical temperature is lowered upon substitution with a heavier isotope,
played a key role in identifying the coupling between electrons [25–28].
The so-called Eliashberg theory, published 3 years later, describes the
role of phonons in providing the interactive attraction, called electron-
phonon coupling (EPC) [29, 30]. Shortly after, the first oxide-based
unconventional superconducting material was discovered in 1964 by
Schooley et al. [31], namely SrTiO3, a material in which both BCS and
Eliashberg theory are not directly applicable anymore, mainly due to
its low carrier density [32].

Despite a lot of experimental and theoretical research going into un-
derstanding unconventional superconductivity, especially after the dis-
covery of high-temperature superconductivity in 1975 [33] and the
discovery of cuprate superconductors in 1986 [34], its origin in STO and
other materials remains largely unexplained until today. An excellent
entry into the topic of superconductivity is the book by Schrieffer [28].

The possible link between superconductivity and quantum paraelec-
tricity, as first suggested for SrTiO3 by Edge et al. in 2015 [35], was
a motivation for this research project, and provides the link between
the three main parts of thesis. While motivated by this initial idea, we
extended into "normal" ferroelectricity in BTO to see if free carriers
and polarization can coexist (see chapter 3), created a method to better
understand quantum paraelectricity in STO and KTO and the isotope
effect in STO (see chapter 4), and calculated electron-phonon coupling
of KTO to find an explanation for the highly anisotropic surface super-
conductivity (see chapter 5). The following sections cover these three
materials and their basic properties in more detail.
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1.2 Materials

1.2.1 Ferroelectric BaTiO3

Barium titanate (BaTiO3, BTO) is one of the most well-known proto-
typical ferroelectric materials. Because of its high dielectric constant
it is used in capacitors [36], and its piezoelectric effect is used e.g. in
microphones and various sensors [37].

It has the ideal cubic perovskite structure above 393K, which is para-
electric, and undergoes three phase transitions from cubic to tetragonal,
orthorhombic and rhombohedral, with the latter three being ferroelec-
tric [38, 39]. In all four cases the unit cell contains only five atoms, as
shown in figure 1.6.

cubic tetragonal orthorhombic rhombohedral

Figure 1.6: Visualization of the four different phases of BaTiO3, going from
cubic (left) to rhombohedral (right). The polarization directions are (001), (110)
and (111), respectively, and indicated by the dark arrows on the titanium ions
inside the oxygen octahedra. The overall changes in polarization between the
three non-cubic ferroelectric phases are relatively small, but increasing from
tetragonal to orthorhombic and rhombohedral [39].

The experimentally measured polarization ranges from 16µC/cm−2 to
23µC/cm−2, depending on the phase and temperature [39]. To calculate
the polarization from first principles, there are essentially two ways:
One is the calculation of the so-called Berry phase (see refs. [40, 41]
for an introduction to the Berry phase within the modern theory of
polarization), and the other is by using the relative displacements of
the ions and their born effective charges (BEC) (see infobox on page 21).
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Computational values of polarization are usually a bit larger than the
experimental ones, ranging from 22µC/cm−2 to 44µC/cm−2 [42, 43].
One reason for this is the fact that DFT calculates properties at zero
kelvin, whereas experiments are at finite temperature, and additionally,
GGA functionals within DFT can "underbind" and hence over-estimate
the lattice constants, leading to larger polarization values.

Ferroelectric materials are usually insulators, as any free charge in the
material would screen the polarization. Additionally, free carriers would
make it impossible to switch the polarization, as they screen the field
used for switching. Nevertheless, such ferroelectric metals were proposed
theoretically as early as 1965 by Anderson and Blount [44], but due
to the seemingly exclusive properties, no such material was found or
synthesized until recently, when Shi et al. observed a phase transition
to a polar phase in metallic LiOsO3 below 140K [45]. This observation
sparked more research in that direction, including studies of doping of
ferroelectric BTO [46–48] and quantum paraelectric STO [49, 50]. A polar
metal phase was stabilized in doped BTO thin films [51], and it was
shown that ferroelectricity persists even in oxygen-vacancy-doped bulk
BTO [52], with both experiments being conducted at room temperature.
For an overview of polar metals research, see ref. [53].

This peculiar coexistence of two seemingly contraindicated phases is
intriguing, and was motivation for us to conduct a first-principles
study to first see if the polarization persists after doping, and if so,
understand how the introduction of free carriers influences the polar
structure of BTO. Additionally, as doping in DFT can be modeled
either by introducing additional carriers compensated by a background
charge, or by the explicit chemical substitution of either the A or B ion
in supercells, we compare the differences between these two methods
and from different doping atoms. The results of this study can be found
in chapter 3.

1.2.2 Quantum paraelectric and superconducting SrTiO3

Strontium titanate (SrTiO3, STO) has many different fascinating material
properties and is well-known for its soft-mode antiferrodistortive (AFD)
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phase transition at 105K [9] and for being the first oxide superconductor
discovered [31].

The well-studied phase transition from cubic to tetragonal at 105K to
110K was first observed in 1962 [9], and later determined to involve anti-
symmetrical octahedral rotations around the [001] axis [54–58]. Just two
years later, in 1964, superconductivity up to 250mK was discovered in
reduced STO, making it the first unconventional superconductor, with
superconductivity being observed at unusually low carrier densities
down to 7× 1017 cm−3 [31]. The first mention of a "superconducting
dome" in STO was made in 1968 [59], and a link to the ferroelectric soft
mode made in the year after [60].

This ferroelectric soft mode is linked to the so-called quantum paraelectric
(QPE) state, which can be characterized experimentally by an upturn
of the dielectric constant, which reaches values of up to 18 000 [61],
even higher than in ferroelectric BTO, upon cooling in the paraelectric
phase. Theories for this intriguingly high dielectric constant at low
temperatures were published in the 1960s [62, 63], in parallel to the
discovery of superconductivity, with long discussions following about
if and when STO becomes ferroelectric [64–66]. In 1979, Müller et
al. explained the measured high dielectric constant with a quantum-
mechanical model and coined the term quantum paraelectric for materials
with a "quantum-mechanical stabilization of the paraelectric phase" [18].

This QPE state is a quantum phase stabilized by quantum fluctua-
tions, which are independent of temperature (see also section 1.1.2 on
quantum phase transitions), and give rise to many of the phenomena
observed in STO. One of them could be superconductivity, which was
proposed in 2015 by Edge et al. [35], linking the quantum paraelec-
tric state to superconductivity and proposing a large isotope effect in
the opposite direction to that of BCS superconductors. Several subse-
quent experiments confirmed the proposed unusual increase of Tc with
heavier-isotope substitution, and led to a surge of research in this area
in recent years.
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Other theories for superconductivity in STO have been proposed re-
cently, many of which also incorporate the soft ferroelectric phonon
mode, and an extensive review can be found in ref. [67].

The main challenge in describing superconductivity in STO is that fact
the Fermi energy ϵF is much lower than the Debye frequency ωD (ϵF <
ωD), which stands in contrast to the Migdal criterion (ϵF > ωD), which
is one of the main assumption of the Migdal-Eliashberg theory [68],
which therefore can not be applied to STO [67]. A second challenge
follows from the low density of states at the Fermi energy because
of the low carrier concentration, which makes the estimated BCS Tc

essentially zero, if BCS theory were applicable at all.

In the model by Edge et al. from 2015, the ferroelectric soft mode
fluctuations provide the coupling for the superconducting Cooper pairs.
At low doping values, the lower carrier density limits this strength,
leading to an increase of Tc with doping, until above a certain doping
value, the increased distance to the quantum critical point reduces
Tc again, resulting in the typical superconducting dome observed in
STO [35]. The main validation for this model came just one year later,
when the suggested increase of Tc with O18 was measured [69], instead
of the usual decrease of Tc with heavier isotope substitution in BCS
superconductors [27].

Looking into this interplay of phases at low temperatures, we found
no intuitive picture for describing the quantum paraelectric state, and
contradictions in the literature concerning the tunneling nature of
the atoms. We thus developed a computationally affordable method to
model this quantum paraelectric state at zero kelvin, including explicitly
the quantum-mechanical treatment of the ions, which I present in
chapter 4. There, we analyze at the isotope effect and compare its
influence with that of geometric changes of the unit cell, and also
propose a description for the nature of the tunneling ions.
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1.2.3 Quantum paraelectric and superconducting KTaO3

Potassium tantalate (KTaO3, KTO) shares many properties and phe-
nomena with STO, especially the closeness to a ferroelectric phase
transition and, discovered much more recently, superconductivity up to
2K on surfaces and interfaces [70–74]. It has an upturn of the dielectric
constant at low temperatures making it a quantum paraelectric, similar
to STO, but less pronounced in absolute values [75, 76].

Its cubic structure without phase transition throughout the whole tem-
perature range [77] makes KTO an ideal material for a computational
study (see figure 1.1 for the cubic structure). Additionally, its heavy
tantalum ion replacing the titanium of STO and BTO, leads to a large
spin-orbit coupling [78–80] and Rashba effect, both of which are es-
pecially important for spintronic devices [81] and possibly for the
aforementioned interfacial superconductivity. KTO is also used as a
thermoelectric material with relatively high figure of merit ZT [82, 83].

Around ten years ago, the first measurements of superconductivity up
to 50mK on KTO surfaces were made using ionic liquid gating [70, 71].
Very recently, several independent measurements of superconductivity
up to 2K on surfaces and interfaces of KTO [72–74] have sparked
research interest into the possible origin of this highly anisotropic
superconductivity [84, 85]. While most assumptions and theories valid
for STO, as presented e.g. in ref. [67], should also be applicable to KTO,
the two-dimensional geometry changes certain things.

The most successful theory to date describing the anisotropy is based
on local symmetry-breaking on the surface [84]. An out-of-plane polar
displacement of the Ta and O ions allows linear coupling to electrons
within the three tantalum t2g orbitals, which would approach zero
otherwise. Because this polar displacement is highly dependent on the
actual surface orientation, the highest inter-orbital hopping of electrons
is possible on (111)-terminated surfaces, followed by (110)-terminated
ones. In contrast to that, the (001)-terminated surfaces do not allow
hopping due to their symmetry, which is in perfect agreement with
the experimentally measured superconducting critical temperatures in
KTO [72–74].
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A recent theory for STO proposed that, because the superconducting
gap follows the traditional BCS theory [85], BCS theories could still
be relevant for STO and KTO. This, and the fact that electron-phonon
coupling is one of the central elements of the pairing between electrons,
motivated us to calculate the mode-resolved electron-phonon coupling
in KTO. We believe that the insights gained from these results are highly
relevant for the scientific community and present them in chapter 5.

Additionally, there is no simple model for the quantum paraelectric
state in KTO at zero Kelvin, similar to STO, which is why KTO is
another material covered by our publication presented in chapter 4.

1.3 Structure of this thesis

The remainder of this thesis is as follows: In the next chapter, we
describe the computational methods used to study the materials and
phenomena.

Each of the following three chapters contains either a peer-reviewed or
preprint article as main part, enclosed by a more general introduction to
the topic, computational details, additional results and a brief summary
in the context of the whole thesis.

First, in chapter 3, we show that polarization can be preserved even
when insulators are doped and made metallic, using BaTiO3 as model
material, with a focus on the different atomic contributions (published
as J. Mater. Chem. C 9, 8640–8649 (2021) [86]).

Next, in chapter 4, we focus on quantum paraelectricity and present a
simple model including the quantum-mechanical treatment of the ions
to better understand and describe this phase in SrTiO3 and KTaO3 and
the peculiar isotope effects in SrTiO3 (published as Phys. Rev. Research
4, 033020 (2022) [87]).

Then, in chapter 5, we compute the mode-resolved electron-phonon
coupling strength λ in KTaO3 along different reciprocal directions in
search of an explanation for the highly anisotropic superconducting
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critical temperatures in (001)-, (110)- and (111)-terminated surfaces
(preprint available as arXiv 2210.14113 (2022) [88]).

Finally, chapter 6 contains a short summary and gives an outlook on
open questions and potential future research directions.
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Methods

2.1 Density functional theory

All results in this work are computationally obtained properties of
solid-state systems. To calculate the electronic properties of materials,
one has to in principle solve the many-body Schrödinger equation,
which in its most general form is given as

HΨ(R⃗, r⃗) = EΨ(R⃗, r⃗) , (2.1)

with an arbitrary number of nuclei at positions R⃗i and electrons at
positions r⃗i. The Hamiltonian can be split into several contributions
according to

H = Tn + Te +Unn +Une +Uee , (2.2)

with T being the kinetic energy of the nuclei (Tn) and electrons (Te), re-
spectively, and U representing the Coulomb interaction between nuclei
(Unn), electrons (Uee) and nuclei and electrons (Une). Unfortunately,
the solution of this equation for any system, apart from the most sim-
ple ones like a single hydrogen atom, quickly becomes impossible
and simplifications are necessary. In this section, I briefly describe the
main simplifications and approximations needed to be able obtain the
material properties of interest.

Born-Oppenheimer approximation As the timescale of nuclear mo-
tion is much slower than that of electron motion, we can approximate
the nuclei as static, resulting in an external potential Vext including all
contributions from the nuclei, the so-called Born-Oppenheimer approxi-
mation [89]. This simplifies our problem and leaves only the electronic
contributions to the total energy

E = Vext + Te +Uee , (2.3)

15
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with the external potential computed from the position of the fixed nu-
clei and possible external fields, and the kinetic energy of the electrons
being defined as

Te = −
 h2

2

∑
i

∇2
i

mi
. (2.4)

Hohenberg-Kohn theorem

An important discovery was made by Hohenberg and Kohn, when
they found that the ground-state electron density n0(⃗r) is uniquely
defined, that n(⃗r) defines the total energy through a unique func-
tional, and that this total energy is minimized by the ground-state
density (E0 = E[n0]) [90]. Further, one can compute any ground-
state observable from the electron density alone, not only the
ground-state energy. This makes computations much easier, as the
density depends on only three spatial coordinates, in contrast to
the wavefunctions of the whole system.

Kohn-Sham equations To make the calculation of the electron-
electron interaction Uee possible, Kohn and Sham mapped the full
interacting system to a non-interacting system with an effective poten-
tial

Veff = Vext + VH + Vxc , (2.5)

with the same ground-state density n(⃗r) as the original system [91].
The effective potential contains the external potential from the nuclei
and possible external fields, Vext, and the electron-electron interaction
Uee, split into two parts. The first part is the classical Coulomb interac-
tion (Hartree potential, VH), and the second part, called the exchange-
correlation potential Vxc, contains all quantum mechanical many-body
effects going beyond this classical interaction. The Schrödinger equation
with this Kohn-Sham Hamiltonian is then

[Te + Veff]Ψi(⃗r) = EKS,iΨi(⃗r) . (2.6)

Theoretically, one can now start from an initial guess of the electron
density n(0)(⃗r), calculate the effective potential V(0)

eff in eq. 2.5 using this



2.1 density functional theory 17

density, solve the Kohn-Sham equation 2.6 and obtain the wavefunctions
Ψ
(1)
i (⃗r) of the system, which in turn can be used to calculate the density
n(1)(⃗r) again after one iteration. This scheme can be repeated iteratively
in a self-consistent fashion, and terminated if the difference between
new and previous densities is below a certain threshold.

Up to now, no approximations were made, and despite not describing
the exact same system as the original one, minimizing the total energy
of the Kohn-Sham Schrödinger equation will result in exactly the same
electron density n(⃗r) as that of the original system.

The only part missing now is the exchange-correlation potential, for
which no exact description is known. Therefore, approximations for the
exchange-correlation potential are necessary in practice and used in the
form of different functionals. Additionally, a widely-used approximation
in practical DFT are pseudo potentials, which are used to remove
core electrons from the density and treat them as part of the external
potential. This accelerates calculations significantly because there are
fewer electrons and thus degrees of freedom in the system.

Exchange-correlation potentials

The exchange correlation potential Vxc is the main challenge remaining,
and several different approaches have been made to tackle this, resulting
in a variety of functionals to approximate this exchange correlation
potential. In general, Vxc is calculated from the exchange correlation
energy Exc

Vxc[n] =
δExc[n]

δn
. (2.7)

The first and simplest approximation for the exchange correlation en-
ergy Exc assumes that it corresponds to the one of a free electron
gas [92] at any point r⃗. This approximation is called the local density
approximation (LDA) [93] and works surprisingly well, despite its con-
ceptual simplicity. It usually "overbinds" atoms, however, resulting in
e.g. too small lattice constants.
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To counter this issue, one can include the gradient of the exchange
correlation energy Exc, leading to the generalized gradient approximation
(GGA). There exist several methods to include this gradient, and thus
there are many different GGA functionals. One of the most widely used
is the one by Perdew, Burke and Ernzerhof (PBE) [94], which, like most
GGAs, softens the bonds, most of the time too much in the case of
solids. To improve on this "underbinding", a revised parametrization
especially for solids (PBEsol) was introduced in 2008 [95].

Throughout this work, we use a selection of all three functionals, de-
pending on the properties we want to describe, as every functional has
its unique advantages.

Pseudo potentials

A popular approximation, though not necessary for DFT to work, is the
use of pseudo potentials. The idea is that the chemical binding of atoms
is dominated by their valence (outer) electrons, while the core (inner)
electrons remain mostly unchanged. These core electrons can thus
be approximated by merging them with the external potential of the
atoms, which we now call VPP

ext. The Hartree and exchange correlation
terms of the effective potential in eq. 2.5 then have to be evaluated
only for the valence electrons, which lowers the computational cost
significantly. Different methods for constructing such pseudo potentials
are known and available, all with their own advantages and suitability
for certain systems or properties, and also depending on the DFT
software used [96].

We note in each chapter which pseudo potentials we use, most of the
time these are the GBRV ones when using Quantum Espresso, named
after their creators Garrity, Bennett, Rabe and Vanderbilt [97, 98].
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2.2 Density functional perturbation theory

This section closely follows the PhD thesis of Andrea Urru [99] and the
review by Baroni et al. [100], both of which cover this topic in much
more detail.

In DFT, the lattice is assumed to be static, which is the core of the
Born-Oppenheimer approximation. This means that the electrons are
decoupled from the dynamical properties of the nuclei and treated
separately by DFT.

order parameter

E

Figure 2.1: Schematic energy potential within the harmonic approximation, as
used in density functional perturbation theory (DFPT). The dashed line resem-
bles a harmonic potential with real frequency, where any displacement from the
central position results in a restoring force towards the center (e.g. in a paraelec-
tric). The dotted line resembles a harmonic potential with imaginary frequency,
where any displacement from the central position results in a deviating force
away from center (e.g. in a ferroelectric). The solid line resembles a quartic
potential of e.g. a ferroelectric, where both the top of the barrier and the bottom
of each well can be approximated using a harmonic potential individually, but
the overall potential shape goes beyond the harmonic approximation.

One can now model the motion of the nuclei with a harmonic approxi-
mation, using a Taylor expansion around their equilibrium position up
to second order (see figure 2.1 for a visualization in the absence of a
linear field). The equilibrium position is given by the constraint that
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the forces acting on the nuclei are zero. These forces can be derived
directly from the first derivative of the energy according to

FI =
∂E(R⃗)

∂R⃗I
, (2.8)

which is defined by the electron density, as calculated by DFT, and the
electron-nucleus interaction, which depends only on the position of
electrons and nuclei.

The vibrational frequencies (phonon frequencies) ω can be calculated
from the second derivative of the energy according to

det

∣∣∣∣∣ 1√
MIMJ

∂2E(R⃗)

∂R⃗I∂R⃗J
−ω2

∣∣∣∣∣ = 0 . (2.9)

The individual elements
∂2E(R⃗)

∂R⃗I∂R⃗J

are called interatomic force constants.

To obtain a system’s ground-state geometry and phonon frequencies,
one has to calculate both first and second derivatives of the Born-
Oppenheimer energy surface. The Hellmann-Feynman theorem states
that the derivative of the total energy E, defined by a Hamiltonian
H, with respect to a parameter, is given by the expectation value of
the derivative of H with respect to this parameter [101, 102]. Using
this theorem, the calculation of forces depends directly on the electron
density n(⃗r), and the calculation of the interatomic force constants
requires the linear response of the electron density n(⃗r) to a lattice
distortion.

With density functional perturbation theory (DFPT), this linear response
of the electron density can be calculated self-consistently and directly
from a perturbation of the Kohn-Sham orbitals. Computing the re-
sponse to a single perturbation is of similar computational cost as the
computation of the unperturbed ground-state density, and responses to
perturbations are decoupled. This makes it possible to calculate phonon
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frequencies at relatively low cost and at any arbitrary wavevector q⃗
without using supercells of corresponding size.

As we are dealing with (incipient) ferroelectrics, and thus (almost)
polar systems in this thesis, we note that polar insulators need a special
treatment within DFPT. The long-range Coulomb interaction, present
in polar materials, induces an electric field that splits optical modes at Γ
into longitudinal optical (LO) modes, which are parallel to the electric
field, and transverse optical (TO) modes, which are perpendicular.
This splitting is proportional to the Born-effective charges (BEC) of
the ions (see infobox) and inversely proportional to the macroscopic
dielectric constant. The TO modes are equivalent to the normal phonon
modes without this splitting, but the LO modes are shifted to higher
energies. Computationally, the interatomic force constants are split into
an analytical, short-range, part, and a non-analytical, long-range, part,
which are treated differently during the different computational steps.

Born effective charges

Born effective charges (BEC),

Z∗
αβ =

Ω

e

∂Pα

∂uβ
, (2.10)

describe the dimensionless effective charge of an ion by the change
of polarization Pα in cartesian direction α, caused by a displace-
ment uβ in cartesian direction β. Here, e is the electronic charge
and Ω the unit cell volume [15].
They can be the same as the formal charges of the ion (e.g. −2
for a O2 – ), e.g. in non-polar and ionic compounds, but especially
in ferroelectric materials, they are usually much larger than the
formal ion charges. One example is BTO, where the BEC of Ba and
Ti are +2.7, +7.25 and the BEC of O are −5.7 or −2.1, depending on
the orientation of the polarization and displacement, whereas their
corresponding formal charges are just +2, +4 and −2, respectively.
While the BEC matrix is symmetric in cubic systems, it is not in
lower-symmetry structures.
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They can be used to quite accurately calculate the change in "polar-
ization"

δP =
e

Ω

∑
i

Z∗
idi , (2.11)

based just on ionic displacements di, without the need for a full
Berry phase calculation, as we show in chapter 3.

Phonon dispersions are usually quite smooth, making it possible to
efficiently interpolate frequencies on a fine mesh based on direct calcu-
lation at only a few q⃗ points on a uniform grid in the Brillouin zone.
The reciprocal-space interatomic force constants are then transformed
into real-space interatomic force constants, using fast Fourier transfor-
mation (FFT). Based on these real-space interatomic force constants,
phonon frequencies at any arbitrary q-point can be efficiently interpo-
lated. This scheme also works for polar insulators: the non-analytical
part is subtracted before the FFT takes place, leaving the analytical
short-range part, and then restored again when the interpolation back
into k-space is performed [103].

Apart from DFPT, there are other methods to calculate phonon fre-
quencies and dispersions. The most used alternative is probably the
so-called frozen-phonon method, as e.g. implemented in phonopy [104],
which has interfaces with VASP, QE and many other DFT codes. The
frozen-phonon approach works in real space and utilizes small displace-
ments of atoms in supercells to obtain the forces required to calculate
the interatomic force constants.

The main advantage of this method is that there is no special software
required, as it works with bare DFT. Calculating phonons only at Γ
requires only one unit cell and is thus very fast using both frozen
phonons and DFPT.

The biggest disadvantage of the frozen-phonon method is the poor
scaling with the required supercell size as soon as one moves away
from Γ : Calculation of phonons at e.g. the R point ([111]) in a cubic
Brillouin zone requires a 2× 2× 2 supercell with the frozen-phonon
method, corresponding to eight times as many atoms in the system.
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As usual DFT codes scale cubically with the number of particles, this
increases the computational time considerably.

In DFPT, the calculation of phonons at R requires only one computation,
without the use of supercells and independent of the position of the q
point. Calculations for an arbitrary q point, e.g. q = ( 1

10 , 1
10 , 1

10 ) quickly
become impossible with the frozen-phonon approach, while there are
no such computational scaling limitations with DFPT.

Nevertheless, its simple implementation makes this approach appeal-
ing, as well as the fact that it can also be combined with DFPT to
study anharmonic effects going beyond the second-order harmonic
approximation.

2.3 Electron-phonon coupling using Wannier
functions

The following part closely follows the structure and notation of ref. [105],
which is the most recent publication describing general electron-phonon
coupling in the context of the EPW software package. Recent advances
in both computational methods and resources make it now possible to
calculate this coupling with useful accuracy and resolution.

The calculation of electron-phonon coupling needs both electronic
states and phonon eigenvectors on a fine mesh in the first Brillouin
zone. Electronic states can be calculated using DFT (see sec. 2.1), and
phonons can be calculated using DFPT (see sec. 2.2).

If we now take an electronic wavefunction of band m and wavevector
k⃗ and a phonon with wavevector q⃗ and branch ν, we can write the
general electron-phonon matrix element as

gmn,ν(k⃗, q⃗) =
1√
2ωq⃗ν

⟨ψ
mk⃗+q⃗

|∂q⃗νV |ψnk⃗
⟩ . (2.12)

This electron-phonon matrix element quantifies the scattering process
from one Kohn-Sham state (ψ

nk⃗
) to another (ψ

mk⃗+q⃗
), mediated by the

phonon with momentum q⃗ and frequency ωq⃗ν (see figure 2.2).



24 methods

k

E

k     k'
q

Figure 2.2: Visualization of the electron-phonon coupling between electronic
states at k and k′ = k+ q, mediated by a phonon with momentum q, corre-
sponding to an electron-phonon matrix element as given in eq. 2.12.

These electron-phonon matrix elements can be used to calculate several
important quantities.

First are the phonon linewidths Π′′(ωq⃗ν, T), which correspond to the
imaginary part of the phonon self energy

Π′′(ωq⃗ν, T) = 2π
∑
mn

∫
BZ

dk⃗

ΩBZ

∣∣∣gmn,ν(k⃗, q⃗)
∣∣∣2

×
[
f
nk⃗

(T) − f
mk⃗+q⃗

(T)
]
δ(ϵ

mk⃗+q⃗
− ϵ

nk⃗
−ωq⃗ν) ,

(2.13)

where the sum is taken over all electronic states m and n (with energies
ϵ
mk⃗+q⃗

and ϵ
nk⃗

), the integral is taken over the whole Brillouin zone
(BZ) with volumeΩBZ, f

nk⃗
(T) is the electronic occupation at wavevector

k⃗ and band n, and δ is the Dirac delta function.

Second are the mode-resolved electron–phonon coupling strengths,
λq⃗ν, given by

λq⃗ν =
1

N(ϵF)ωq⃗ν

∑
mn

∫
BZ

dk⃗

ΩBZ

×
∣∣∣gmn,ν(k⃗, q⃗)

∣∣∣2 δ(ϵnk⃗
− ϵF)δ(ϵmk⃗+q⃗

− ϵF) ,

(2.14)

where N(ϵF) is the density of states at the Fermi energy ϵF. These are a
key quantity in chapter 5.
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Finally, summing over all phonons results in the total electron–phonon
coupling strength

λ =
∑
q⃗ν

wq⃗νλq⃗ν , (2.15)

where wq⃗ν is the weight of λq⃗ν in the first Brillouin zone.

To obtain an accurate representation of the physics of the system, one
needs a large number of both electronic states and phonons (up to mil-
lions), making it difficult to calculate using traditional DFT and DFPT.
The Electron-Phonon coupling using Wannier functions (EPW) method alle-
viates this problem. EPW uses maximally-localized Wannier functions
(see infobox) to transform the electron part into real space, and uses a
similar approach for the phonon part, to allow for a much denser sam-
pling of the Brillouin zone. It relies on the fact that the electron-phonon
matrix element is highly localized in real space in both electron and
phonon variables, which means that one needs to know fewer elements
in real space to successfully interpolate on a denser mesh in reciprocal
space, similarly to the interpolation scheme in DFPT.

Wannier functions

Electronic states of solids are usually described in reciprocal space,
or Bloch space. One can transform these Bloch orbitals into real
space representations, called Wannier representations after Gregory
Wannier [106]. Many different ways of performing this transforma-
tion into different real space representations are known, with one
very useful and widely used one called maximally localized Wanner
functions [107], which are the solid-state physics equivalent to chem-
istry’s molecular orbitals. They are constructed by minimizing their
so-called spread in real space, resulting in a complete set of orthog-
onal functions representing the electronic charge distribution, and
are very useful in understanding bonding, defects, polarization,
magnetization and many other properties in solids. The main use
they provide in our case is as an intermediary in the calculation of
electron-phonon matrix elements, as described in section 2.3.
An extensive review of this topic can be found in ref. [108].
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The typical cycle of an EPW calculation starts with the calculation of
both electronic states and phonon frequencies throughout the whole
Brillouin zone on a uniformly spaced coarse mesh including Γ . These
electronic and phonon states are then Fourier transformed from their
Bloch representation into their Wannier representation. The electron-
phonon matrix elements are transformed into real space as well, using
the same transformation matrices. Now a much denser fine mesh can
be used as a target mesh to calculate electronic and phonon states in
reciprocal space, using an inverse Fourier transform based on the real-
space quantities. As the target mesh does not have to be commensurate
or equally spaced, random meshes can be used as well; these have been
shown to converge faster, which means one can use fewer points on the
fine mesh compared to a regular mesh [105].

For the exact mathematical formulation and details on the implementa-
tion of the calculation of electron-phonon coupling in EPW, I refer the
interested reader to refs. [105, 109, 110].

2.4 Software and technical details

The methods mentioned in this chapter are implemented in many
different computer codes. This section serves as a short overview of the
actual programs used in this work.

DFT, as the cornerstone of all other methods, has a plethora of im-
plementations, both in chemistry and physics (a comprehensive and
up-to-date list can be found on Wikipedia [111]). Two of the most-used
software packages in solid-state physics are the Vienna Ab initio Simu-
lation Package (VASP) [112–114] and Quantum ESPRESSO (QE) [115–
117].

VASP is commercial software and a license has to be bought to use it. Its
main advantages are ease-of-use, computational speed, and widespread
use in the solid-state community. Documentation is available in the
form of an online Wiki [118], and despite being commercially licensed,
the source code is available for inspection and compilation. Because
of its widespread use, certain post-processing software packages are
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only interfaced with VASP, e.g. the LOBSTER package [119, 120] to
calculate Crystal orbital Hamilton populations (COHP) [121], which we
use extensively in chapter 3. (As a note, LOBSTER has been extended
recently [120] to support not only VASP, but also QE and ABINIT [122,
123].) Additionally, VASP comes packaged with an extensive library of
highly-optimized pseudo potentials and functionals.

Quantum ESPRESSO is a suite of individual programs that can perform
many different types of calculations related to computational chemistry
and physics. It is open-source software, available free of charge and
development takes place on Gitlab [124]. Documentation has been
improved immensely in the past few years, an overview is on the project
homepage at [125]. Its main advantage, at least for our purposes, is the
implementation of both DFPT and EPW directly within the software
package, on top of the DFT capabilities. In contrast to VASP, QE does
not come with pseudo potentials, making it necessary to either compile
them yourself, or use precompiled ones. Luckily, many variants are
readily available and well-tested, including different functionals, with a
good starting point provided here [126].

Finally, I want to mention the python programming language [127],
which has been an essential part of this work, not only in the pre- and
post-processing of data, but also in the scientific part. The libraries
jupyterlab [128] as the interface to everything else, numpy [129] and
scipy [130] for the mathematical part, and pandas [131, 132] and mat-
plotlib [133] for data management and visualization were an integral
part as well.





3
Coexistence of

polarization and

metallicity in BaTiO3

3.1 Preface

In this chapter, we take a close look at the possible coexistence of
ferroelectricity and metallicity in barium titanate (BTO). Ferroelectricity
involves the polar displacement of the atoms in the crystal, which is
usually screened by the free carriers present in metals, thus these two
properties are contraindicated. Nevertheless, it was shown theoretically
in 1965 [44] that both phenomena can coexist, up to to certain doping
limits. Recently it was also shown experimentally, first in LiOsO3 [45],
then in BTO [47, 48, 52], that "polar metals" do exist.

BaTiO3 is an ideal material to study these two contraindicated proper-
ties as it is a prototypical ferroelectric and there are known substitutions
to make BTO metallic by replacing either the barium or the titanium
ion. A quick note on polarons [134, 135] is appropriate here, as they
have been proposed as the conduction mechanism in La- and Nb-doped
BTO [136–138]. Polarons are quasi particles arising from the interaction
of the lattice with a charge in a dielectric material, creating essentially a
"polar phonon cloud" around the charge, as first described by Landau in
1933 [139], with the term "polaron" coined by Pekar [140–142]. Polarons
are in general important for electron mobility in semiconductors, as they
can strongly modify the effective mass of the electrons [143], a fact that
makes them also important e.g. in the optimization of thermoelectric
materials [144].

29
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Three main points motivated us to study these phenomena in BaTiO3.
The first is the fact that the coexistence of two material properties
that are in principle mutually exclusive is a fascinating thing, since
novel physical phenomena often result from such combinations, such
as the flourishing research field of multiferroics initiated by an article
in 2000 [145]. The second relates to the other topics presented in the
first chapter, namely superconductivity and quantum paraelectricity.
If these two phenomena should be linked, then superconductivity
and polarization fluctuations have to coexist, making it only logical
to first study the "simpler" phenomena of conventional conductivity
and classical ferroelectricity. The third and final reason is more of a
technical nature. Previous DFT studies of polarization in doped BTO
have either used fully-relaxed unit cells with the background-charge
doping method [146], a practice later shown to be ill-defined [147],
or cover only a few of the experimentally feasible dopants [148]. We
therefore want to not only provide methodically correct results for the
background-charge doping, but also to give a full overview of a larger
selection of dopants and compare the results of both methods.

Before presenting our peer-reviewed work and results, another quick
note on the meaning and computation of Crystal Orbital Hamiltonian
Populations (COHP). COHP indicate if a certain part of the DOS is
bonding, anti-bonding or non-bonding, and are obtained as the product
of the electron density matrix with the projected Hamiltonian matrix,
which consists of the elements Hmn = ⟨Φm|ĤPW|Φn⟩, with Φm being
localized orbitals, and ĤPW being the plane-wave Hamiltonian [121,
149, 150]. Integrated COHP values (ICOHP) of the occupied states are
a measure for the strength of a certain bond. COHP and ICOHP are
usually given and plotted as negative values to make them directly
comparable to e.g. DOS or COOP plots, because weighting the DOS
with the Hamiltonian results in energy-saving bonds having negative
values. To calculate both COHP and ICOHP, we use a software called
LOBSTER [119, 120, 150], which efficiently implements these calcula-
tions based on the results of plane-wave DFT calculations. A special way
of projecting the eigenstates onto local orbitals improves the number of
retained electrons during this step significantly compared to the usual
projection implemented in DFT codes [149–152]. This results not only
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in the correct representation of the total and projected DOS, but also in
accurate COHP and ICOHP values based on ab-initio calculations.

Explanatory Remarks

The following section is published as:

Veronica F. Michel, Tobias Esswein and Nicola A. Spaldin. Interplay
between Ferroelectricity and Metallicity in BaTiO3 J. Mater. Chem. C 9,
8640–8649 (2021). DOI: 10.1039/D1TC01868J.
—
Minor changes have been made to formatting of text, tables and figures to adapt to the

layout of this thesis, in compliance with the CC BY 3.0 license of the published work.

3.2 Abstract

We explore the interplay between ferroelectricity and metallicity, which
are generally considered to be contra-indicated properties, in the pro-
totypical ferroelectric barium titanate, BaTiO3. Using first-principles
density functional theory, we calculate the effects of electron and hole
doping, first by introducing a hypothetical background charge, and
second through the introduction of explicit impurities (La, Nb and V for
electron doping, and K, Al and Sc for hole doping). We find that, apart
from a surprising increase in polarization at small hole concentrations,
both charge-carrier types decrease the tendency towards ferroelectricity,
with the strength of the polarization suppression, which is different
for electrons and holes, determined by the detailed structure of the
conduction and valence bands. Doping with impurity atoms increases
the complexity and allows us to identify three factors that influence
the ferroelectricity: structural effects arising largely from the size of the
impurity ion, electronic effects from the introduction of charge carri-
ers, and changes in unit-cell volume and shape. A competing balance
between these contributions can result in an increase or decrease in
ferroelectricity with doping.

http://dx.doi.org/10.1039/D1TC01868J
https://creativecommons.org/licenses/by/3.0/
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3.3 Introduction

Ferroelectricity and metallicity are generally considered to be contra-
indicated properties since the metallic charge carriers screen the long-
range interactions that favor the ferroelectric structural distortion [153].
These two properties can nevertheless be combined in systems where
the interaction between the itinerant electrons and the polar distortion
is weak, as shown theoretically by Anderson and Blount in 1965. Such
materials were called "ferroelectric metals" [44], although the term is
somewhat ambiguous: Ferroelectricity is in fact defined for materials
that show a spontaneous polarization that is switchable by an applied
electric field; in the presence of metallic charge carriers however, the
electric field is screened by the itinerant electrons and induces an
electric current rather than a polarization switch [52, 146], so that a
ferroelectric can formally not be metallic. A more rigorous term is
perhaps polar metal, which is a material, such as LiOsO3 [45], that has
a polar crystal class combined with a non-zero density of states at the
Fermi level [154]. In addition to their fundamental interest, polar metals
are promising for a range of applications. Some of them are reported to
show giant optical responses, and could thus be used in optoelectronic
devices [155]. They are also good candidates for the design of materials
with tunable metal-insulator transitions [156]. Furthermore, they are of
relevance for polar superconductors, which have the potential to show
unconventional superconducting states [157].

Barium titanate (BaTiO3) is the prototypical ferroelectric material. It
has the ideal ABO3 perovskite structure at high temperatures, corre-
sponding to a centrosymmetric cube with formally Ba2+ cations at the
corners, Ti4+ at the center and O2− at the face centers [39]. Upon low-
ering the temperature, three phase transitions occur: At 393 K a phase
transition from a paraelectric cubic to a ferroelectric tetragonal phase
is observed, followed by a transition to a ferroelectric orthorhombic
phase at 278 K and to a ferroelectric rhombohedral phase, with polariza-
tion along a <111> direction, at 183 K [39]. Multiple efforts have been
made to make BaTiO3 metallic. In 2008, an insulator-metal transition
was reported in BaTiO3 doped with oxygen vacancies (BaTiO3−δ) [47],
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which was later shown to retain its ferroelectric structural distortion
up to an electron concentration n ∼ 1.9·10

21 cm−3 [48]. This work was
challenged by Jeong et al., who reported, based on neutron diffraction
studies, that the ferroelectric ordering and the metallic conduction are
not coexisting but rather form two distinct phases in BaTiO3−δ [158].
Recently, Cordero et al. showed through elastic response studies that the
ferroelectric transitions persist in metallic BaTiO3−δ [52], confirming
the observations of Ref. [48]. In addition to the introduction of oxygen
vacancies, doping in BaTiO3 can be achieved through atomic substitu-
tions, the most common being La3+ for Ba2+ and Nb5+ for Ti4+. Both
La- and Nb-doped BaTiO3 show electrical conductivity with a pola-
ronic conduction mechanism [136, 137], with the polaron formation in
Nb-doped BaTiO3 believed to come from incoherent B-site off-centering
resulting from the random Nb substitution [138].

A few computational investigations on doped BaTiO3 have been re-
ported in the last decade. Wang et al. and Iwazaki et al. studied metallic
BaTiO3 with the background-charge method in 2012 and showed that
the ferroelectric displacements are sustained up to 0.11 electrons per
unit cell (0.11 e/u.c.) [146, 148]. A drawback of those works is that the
calculations were performed with fully relaxed lattice constants, that
were shown to be ill-defined with the background-charge method by
Bruneval et al. in 2015 [147]. The specific effects of doping on chemi-
cal bonding and the effect of electron-doping on ferroelectricity and
phonon dynamics of BaTiO3 were discussed by Hickox-Young et al. and
Gu et al., respectively [159, 160].

In 2016, Benedek et al. compared the effect of doping in LiOsO3 and
ATiO3 perovskites (A = Ba, Sr, Ca) [154]. They showed that the ferro-
electricity is suppressed by electron doping in BaTiO3, whereas the
non-centrosymmetricity in metallic LiOsO3 and pseudocubic CaTiO3

(with octahedral rotations not allowed) is robust to addition of charge
carriers because of the local-bonding nature of the mechanism underly-
ing the off-centering of the ions. Recently, a meta-screening effect was
proposed by Zhao et al. as the main factor determining the persistence
of the polar phase in metallic ferroelectrics [161].
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In this work, we explore theoretically the interplay between the contra-
indicated properties of ferroelectricity and metallicity in BaTiO3. Using
first-principles density functional theory, we address the question of
how the ferroelectric B-site off-centering and the likelihood of polariza-
tion switchability are affected by metallic charge carriers in BaTiO3. We
investigate both electron and hole doping in BaTiO3 first through the
background-charge method and subsequently by introducing explicit
dopants (La, Nb, V, K, Al and Sc). The dopants are chosen based on
experimental feasibility and allow us to separate the effects of dopant
size, substitution site as well as second-order Jahn-Teller (SOJT) activity
on the polarization.

3.4 Computational Methods

Our calculations are performed using density functional theory (DFT)
as implemented in the VASP code [162], with recommended projector-
augmented wave potentials and the PBEsol exchange-correlation func-
tional [95]. We include plane waves up to a kinetic energy cutoff of
600 eV. All the used k-point grids are Gamma-centered; details on the
sampling meshes are given below. We converge total free energies to
10

−6 eV and relax atomic positions until all force components converge
below 10

−3 eV/Å.

Crystal structure relaxations are computed for both single unit cells and
supercells of BaTiO3. We consider both tetragonal and cubic BaTiO3

single unit cells, corresponding to the room-temperature and high-
temperature structures, respectively. We compute the tetragonal BaTiO3

single unit cell structural relaxation as follows: We start with the ex-
perimental high-temperature, cubic structure and fully relax its atomic
positions and lattice constants with a 6× 6× 6 k-points grid, while
retaining the cubic symmetry. We subsequently displace the Ti atom by
1% along the c direction and fully relax the atomic positions and the
lattice constants with a 12× 12× 12 k-point grid, while retaining the
tetragonal symmetry. We obtain a = b = 3.967 Å and c = 4.065 Å; these
lattice constants are consistent with experimental literature values for
the room-temperature tetragonal phase [163]. We apply the same proce-
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dure for the cubic BaTiO3 single unit cell but fix the lattice constants
for the second structural relaxation. This keeps the cubic equal lattice
constants while allowing for a lower internal symmetry to permit a
polar distortion; we refer to this unit cell as pseudocubic throughout the
manuscript. We construct the supercells as multiples of the single unit
cell in the a, b and c directions and we investigate 2× 2× 2 supercells
in detail, for which we use a 12× 12× 12 k-point grid.

We compute densities of states for BaTiO3 single unit cells with a
24× 24× 24 k-point grid. Crystal Orbital Hamiltonian Populations are
calculated using the LOBSTER package [119–121, 149, 150, 152]. Our
basis sets for COHP calculations are Ba (5s, 5p, 5d, 6s), Ti (3s, 3p, 3d, 4s)
and O (2s, 2p). A 16× 16× 16 k-point grid is used for these calculations.

We dope the BaTiO3 single unit cells with the background-charge
method, in which the number of electrons in the system is manually
adapted to the desired doping level and a uniform background charge
is added to enforce charge neutrality [118]. Note that the relaxation
of lattice constants is not well-defined when using the background-
charge method [147], so we keep them fixed. We dope supercells by
introducing impurity atoms and allowing for relaxation of the lattice
constants.

The presented "polarization" values are calculated using

δP =
e

Ω

∑
i

Z∗
idi, (3.1)

where e is the electronic charge, Ω the unit cell volume, Z∗
i the Born

effective charge (BEC) of atom i, and di its relative displacement in
the polar direction [41]. The BECs we use are +2.7 for barium, +7.25

for titanium, -5.71 for oxygens that displace parallel to their Ti-O bond
direction and -2.15 for oxygens that displace perpendicular to this
direction [164]. This procedure yields a polarization value of 38 µC/cm2

for undoped BaTiO3, which is close to the value of 34 µC/cm2 that
we compute using the Berry-phase method with a 24× 24× 24 k-point
grid (see Figure 3.8), in agreement with literature values [42, 43]. For
impurity-doped supercells we set the BEC of the impurity to that of the
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atom it substitutes. Note that the polarization of the doped (metallic)
systems is ill-defined as it cannot be switched. This quantity does
not correspond to a true polarization obtained through a Berry-phase
approach [40, 165], is not necessarily switchable and does not require
insulating behavior. Its value reflects, rather, the amount of ferroelectric-
like structural distortion present in the system. Throughout this paper,
we use the term polarization to refer to this effective polarization, and
the term ferroelectricity to refer to the non-centrosymmetric structural
distortion, without implying polarization switchability.

3.5 Results and Discussion

3.5.1 Introduction of Background Charge into a BaTiO3

Unit Cell

In the first part of our study, we investigate the introduction of doping in
BaTiO3 through the background-charge method. This approach allows
us to isolate the effect of the electronic charge from other influences such
as ion size or change in chemistry associated with the introduction of
explicit dopant atoms. Consistent with previous literature results [159],
we find the polarization to be reduced by the introduction of charge
carriers, and to be more sensitive to the introduction of electrons than
holes, due to the different character of the valence and conduction
bands.

3.5.1.1 Electron Doping

The calculated polarization of BaTiO3 as a function of charge-carrier
concentration is shown in the top panel of Figure 3.1, for both electron
and hole doping, and tetragonal and cubic unit cells. We discuss the
electron-doped tetragonal system first. On electron addition, the polar-
ization of tetragonal BaTiO3 decreases until it is completely suppressed
at 0.2 e/u.c.

The decrease in polarization can be understood through simple elec-
tronic structure considerations: In Figure 3.2 we show the calculated
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Figure 3.1: Top: Polarization as a function of the charge-carrier concentration
(electrons on the right, holes on the left) for tetragonal and pseudocubic (abbre-
viated tet and cubic) BaTiO3. The pseudocubic symmetry refers to equal lattice
constants with an allowed lower internal symmetry so that a polar distortion
can occur. We see that the polarization is reduced on electron doping for all
concentrations. The addition of holes first increases the polarization before
reducing it, with a slower polarization suppression than in the electron doping
case. The pseudocubic and tetragonal systems behave in a very similar manner,
although the pseudocubic system has lower polarization values for the same
charge-carrier concentration. Bottom: Integrated Crystal Orbital Hamiltonian
Populations (ICOHPs) for the Ti-O bonds of tetragonal BaTiO3 as a function of
the charge-carrier concentration. Three Ti-O bonds are considered and showed
in the figure: the Ti-O axial top, axial bottom and equatorial. All ICOHPs are
normalized to their value in the centrosymmetric structure. The higher the
ICOHP value, the stronger its corresponding bond.
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density of states in the region of the Fermi energy for tetragonal BaTiO3

doped with 0.5 e/u.c. We see that the valence band has mainly O 2p
character, whereas the conduction band has mainly Ti 3d character
and the barium ions have no significant contribution to the DOS in the
region of the band gap. Compared to pure BaTiO3 (not shown), the
DOS is not strongly affected by the charge carriers, apart from the shift
of the Fermi level into the conduction band.
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Ti 3d

O 2p

Figure 3.2: Density of states for tetragonal BaTiO3 doped with 0.5 e/u.c. The
total DOS is shown in gray and the Ba, Ti 3d and O 2p contributions are
shown in blue, teal and orange, respectively. The valence band has mainly O
2p character, whereas the conduction band has a high Ti 3d contribution. The
Fermi energy, EF, lies close to the bottom of the conduction band due to the
addition of electrons.

The added electrons occupying primarily the Ti 3d energy levels can
also be seen clearly in the charge densities of Figure 3.3, where the gray
surfaces indicate the added electron density. With increasing electron
doping, we see that the charge density on the Ti 3d orbitals progres-
sively increases and as a result the Ti ion deviates further from its
formally d0 electron configuration. Correspondingly, the off-centering
described by the SOJT effect, which is favored for d0 electronic configu-
rations, is reduced [166].
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Figure 3.3: Conduction-band electron charge density (top) and valence-band
hole charge density (bottom) for tetragonal BaTiO3. For electron doping, the
gray surfaces all have the same isosurface level (charge ∼ 7.5 · 10

−4 e) and show
the location of the added electrons. For hole doping, the gray surfaces also
have the same isosurface level, which is one order of magnitude larger than
for electrons (charge ∼ 7.3 · 10

−3 e), and reveal where the electron depletion
occurs.

We compute integrated Crystal Orbital Hamiltonian Populations (ICOHP)
to confirm our explanation for the polarization decrease with increasing
electron concentration. The bottom of Figure 3.1 shows the ICOHP as a
function of the charge-carrier concentration for the Ti-O axial top, axial
bottom and equatorial bonds (these are also illustrated in Figure 3.1).
All the values are normalized to their respective value in the centrosym-
metric structure. In the polar structure, the Ti is off-centered along c,
resulting in a strong, short Ti-O axial top bond with a high ICOHP
value and a weak, long bottom bond with a low ICOHP value. Upon
adding electrons, the top bond is weakened and its ICOHP value is
lowered. Conversely, the bottom bond is strengthened and its ICOHP
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value increases. The Ti-O equatorial bonds are not particularly affected
by the structural distortion decrease.

3.5.1.2 Hole Doping

In contrast to electron doping, the introduction of holes in tetragonal
BaTiO3 causes first an increase in polarization (from 0 to 0.2 h/u.c., as
seen in the top of Figure 3.1), followed by a decrease (> 0.2 h/u.c.)
and complete suppression at 1.5 h/u.c. Overall, the amount of charge
carriers needed to suppress the polar distortion is a factor 7.5 larger for
hole doping than for electron doping.

The particular behavior of the hole-doped systems can be understood
by considering their detailed densities of states. Figure 3.4 shows the
oxygen site-resolved DOS for 0.1 and 0.5 h/u.c., with axial and equato-
rial sites shown separately. On removing electrons, the Fermi energy
shifts down into the valence band, corresponding to a charge depletion
of the oxygen atoms. For doping concentrations less than 0.1 h/u.c.,
we see (Figure 3.4, top panel) that electrons are largely only removed
from the equatorial oxygen band, and the axial oxygens are almost
unaffected. We will come back to this point below. For higher charge-
carrier concentrations, depletion from the axial oxygen atoms starts to
take place. We show in Figure 3.4 the case of 0.5 h/u.c. and see that
the Fermi energy lies in both the axial and equatorial bands. Again in-
voking the SOJT effect, in which axial oxygens transfer electrons to the
empty Ti d orbitals and stabilize the off-centering, we see that removing
electrons from the axial oxygens reduces the tendency for the polar
structural distortion to occur. The evolution of the electron depletion
from equatorial to axial oxygens with increasing hole concentration can
also be seen in the charge densities of Figure 3.3.

Next we consider the ICOHP which is plotted as a function of the hole
concentration in Figure 3.1. This allows us to understand the polariza-
tion increase at small hole concentrations, where charge depletion from
the equatorial oxygen is dominant. This electron depletion weakens
the equatorial Ti-O bonds, reduces the tension in the equatorial plane,
and allows the polar displacements along c to increase. (Note that
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the equatorial bond weakening is not resolved in the equatorial Ti-O
ICOHPs because of its small amount). Correspondingly, between 0 and
0.2 h/u.c., the Ti-O axial bottom bond is weakened and the Ti-O axial
top bond is strengthened, as seen in their respective decreasing and
increasing ICOHP values. For 0.3 h/u.c. and larger, a behavior similar
to the electron doping case is observed, consistent with the observed
loss of polarization. The ICOHP values for the Ti-O axial top bond
follow the trend of the polarization values, indicating a direct relation
between changes in polarization and Ti-O bond strength.
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Figure 3.4: Oxygen site-resolved densities of states for tetragonal BaTiO3

doped with 0.1 h/u.c. (top) and 0.5 h/u.c. (bottom). At 0.1 h/u.c., electrons are
primarily removed from the equatorial oxygen atoms. At 0.5 h/u.c., the axial
oxygen atoms are also strongly depleted.

3.5.1.3 Influence of Unit Cell Shape

Next we investigate the influence of the unit cell shape by comparing
the behavior of tetragonal and pseudocubic (abbreviated tet and cubic
in Figure 3.1) BaTiO3. Note that, as mentioned above, the pseudocubic
system has equal lattice parameters and therefore cubic shape, but we
allow for a lower internal symmetry to permit a polar distortion. The
tetragonal and pseudocubic systems follow the same trends, as seen in
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the top of Figure 3.1. Their similarity can be explained by their com-
parable electronic structures (the DOS for the pseudocubic system can
be found in Figures 3.6 and 3.7). The polarization of the pseudocubic
system is, however, smaller than the tetragonal one and its polariza-
tion is suppressed faster. This is related to the absence of coupling to
strain, and correspondingly smaller space in the c direction, resulting
in smaller atomic displacements and thus a smaller polarization. In
the rest of the paper, we present only the results for tetragonal BaTiO3.
Note that we focus on the tetragonal symmetry to provide guidelines
on the behavior of BaTiO3 at room temperature, and that we do not
expect the mechanisms to be particularly different for other symmetries,
for example the rhombohedral that occurs at low temperatures.

3.5.2 Introduction of Impurity Atoms in BaTiO3 Supercells

In the second part of our study, we include explicit impurity atoms
in tetragonal BaTiO3 and investigate their effect on the polarization of
the system. We consider electron and hole doping through A-site as
well as B-site substitution. For electron doping, we introduce La on the
A site and Nb or V on the B site. We explore hole doping through the
introduction of K on the A site and Al or Sc on the B site. All dopants
of interest add or remove one charge carrier per 2× 2× 2 supercell,
resulting in carrier concentrations of 0.125 carriers/u.c. Results for
smaller charge-carrier concentrations can be found in Figure 3.9. Note
that we consider only single substitutional impurities that introduce
either one electron or one hole in their usual formal charge state. We
do not investigate vacancies, the introduction of multiple defects or
impurity-vacancy complexes.

For every X-BaTiO3 system (where X denotes a general dopant), we
perform three different calculations in order to identify and separate
contributions to the polarization change. The first calculation consists
of a structural relaxation of the internal coordinates of X-BaTiO3 con-
taining the impurity atom but not its corresponding charge carriers
and with lattice constants fixed to their undoped values. We achieve
this by compensating the charge carriers added with the dopant by
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background-charge doping (the background charge requires the use of
fixed lattice constants). We refer to this component as the Impurity-atom
contribution. In the second calculation we remove the compensating
background-charge and relax the internal coordinates of X-BaTiO3 with
the impurity atom and its charge carriers, still keeping the lattice con-
stants fixed. We refer to this as the Charge-carrier contribution. In the third
calculation, we make a full structural relaxation of both the internal
coordinates and lattice parameters of X-BaTiO3, containing the impurity
atom with its charge carriers; we call this situation free lattice constants
and we refer to this third component as the Lattice-constant contribution.
This last system corresponds to the most realistic one. These three sce-
narios allow us to separate the contributions to the polarization change
coming from the impurity atom, from the charge carriers and from
changes in lattice constants. In the next sections, we present a detailed
analysis of these contributions for the different impurity-doped BaTiO3

systems. A compact overview of the discussed systems and features
can be found in Table 3.1. The polarization changes arising from the
different contributions are illustrated in Figure 3.5. Background-charge
results are given as a reference in both cases and all given polarization
changes ∆P in % refer to the changes compared to the original BaTiO3

polarization.

Note that all the listed Shannon ionic radii are taken from Refs. [167,
168] and that tolerance factors are calculated with these values, with the
charge of the impurity ion taken as its formal charge when introduced
as a dopant – e.g. 5+ for Nb – with the coordination number appropriate
to the substituted site (12 for the A site and 6 for the B site).

3.5.2.1 Donor Doping

A-Site Dopants We start by considering the La-doped BaTiO3 sys-
tem (Ba1−xLaxTiO3, BLTO). The La substitutes on the A site as formally
trivalent La3+, which has a smaller ionic radius than Ba2+ and, as we
discuss below, influences therefore the structure of the system.
Impurity-atom contribution When a La atom without its respective charge
carriers is added to BaTiO3, we find that the polarization of the system
increases by 8 %, due to a displacement of the small La3+ cation in the c
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direction. Besides directly contributing to the polarization of the system,
the La also has an influence on the Ti sites in two ways: First, the La
is underbound and pulls the Ti atoms immediately above it towards
itself, reducing their off-centering. Second, the La displacement along
c leaves more space for the Ti below it to off-center; this contribution
dominates over the first.
Charge-carrier contribution Upon adding the electrons, the polarization
of the system is reduced by 27 % compared to the original BaTiO3

polarization. This value is close to that found in the background-charge
doped reference (29 %). In fact, the introduction of the La does not
influence the density of states of the system. The La f states lie high
in energy and do not affect the region around the Fermi energy; the
bottom of the conduction band therefore has pure Ti character and the
electrons distribute homogeneously over the B sites of the system.
Lattice-constant contribution Finally we consider the relaxation of the
lattice constants. Here we find that the decreases in both volume and
tetragonality, due to the small La size, reduce the polarization by a
further 81 %.
Summary The introduction of La in BaTiO3 results in a complete polar-
ization suppression with all the atoms adopting their centrosymmetric
positions. The volume and tetragonality decrease caused by the small
La size are the main factors dominating the polarization loss. Exper-
imental reports claim that the conduction mechanism in BLTO is of
polaronic nature [136]. No polaronic localization is seen in the above
presented results. This could be due to an incomplete description of
the charge imbalance compensation mechanisms present in the system.
We consider only an electronic compensation of Ba2+ ⇒ La3+ + e−,
without any further ionic contributions as reported in the literature
(e.g. 4Ba2+ + Ti4+ ⇒ 4La3+ + VTi) [169]. Furthermore, hybrid func-
tionals might be necessary to capture polaronic behavior, as they have
been shown to properly describe polarons coexisting with delocalized
electrons in TiO2 [170].

B-Site Dopants We consider Nb and V as B-site substituting donor
impurities; the respective systems can be written as BaTi1−xNbxO3

(BTNO) and BaTi1−xVxO3 (BTVO). When introduced in BaTiO3, Nb
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and V are present as Nb5+ and V5+, respectively, and have therefore
formally empty d orbitals, making them SOJT active. Nb5+ (0.64 Å)
is larger than Ti4+ (0.61 Å), whereas V5+ (0.54 Å) is smaller. The off-
centering of the two dopants depends on their size and the tolerance
factor of the structure.

We begin with the Nb-doped BaTiO3 system:
Impurity-atom contribution The introduction of the Nb without its charge
carriers decreases the polarization by 6 %, due to the reduced off-
centering of the Nb atom and its axial neighboring Ti along the polar
axis. The reduced structural distortion is due to the Nb size: The toler-
ance factor of BaNbO3 is 1.03, compared to 1.07 for BaTiO3. Although
it has the empty d orbital configuration needed to be SOJT active, it is
too big to actually off-center. The Ti atoms axial to the Nb are directly
affected by the Nb behavior: Since the Nb is less off-centered, they have
less space to displace in the c direction and are more centrosymmetric.
Charge-carrier contribution The addition of the electrons reduces the
polarization by a further 35 %, which is more than expected from the
background-charge reference (29 %). The additional suppression re-
sults from a slight accumulation of the electrons on the Nb atom and
its axial neighboring Ti along the polar axis, which have the largest
contribution to the bottom of the conduction band (Figure 3.10). The
electron accumulation heavily reduces the structural distortion of these
two sites, increasing the polarization loss due to the presence of the
charge carriers.
Lattice-constant contribution When the lattice constants are relaxed, the
polarization is reduced by a further 17 %. This polarization change
can be assigned to the reduced tetragonality since the volume of the
system stays rather constant. Note that this constant volume is not
directly intuitive. In fact, Nb5+ is larger than Ti4+, so that a structural
expansion would be expected. It is nevertheless counterbalanced by the
loss of polarization, resulting in an unchanged volume.
Summary Nb-doped BaTiO3 remains polar, although with an overall po-
larization decrease of 58 %. The charge carriers are the most important
factor contributing to the polarization loss. We find that they tend to
accumulate on the Nb atom and its nearest axial Ti, consistent with the
polaronic conduction mechanism proposed in the literature [137, 138].
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Next we evaluate the polarization change in the V-doped system where
we find that the small size of V leads to markedly different behavior.
Impurity-atom contribution The addition of V without its respective
charge carriers induces a polarization increase of 12 %: The V is smaller
than the Ti and therefore able to off-center more (BaVO3 has a large
tolerance factor of 1.11). The Ti axial to the V are also off-centered more
because the V influences its axial environment and induces a cascade
off-centering – the same effect but in the reverse direction as that seen
for the BTNO system.
Charge-carrier contribution The introduction of electrons decreases the
polarization by 17 % compared to pure BaTiO3, which is less than ex-
pected from the background-charge reference (29 %). The added charge
carriers strongly localize on the V because of its very large contribution
to the bottom of the conduction band (Figure 3.11). We might expect
this localization to increase the polarization suppression, as seen in the
BTNO system. However, in this case the V is so small that it displaces
and contributes to the polarization even if its SOJT hybridization sta-
bilization is quenched by the extra electrons. In addition, the electron
localization on the V reduces their accumulation on the Ti sites, so that
their polar structural distortions are not affected much by the doping.
Lattice-constant contribution The relaxation of the lattice constants results
in a further polarization decrease of 25 %. This is explained by the
reduced volume and tetragonality, due to the small V size.
Summary The introduction of V in BaTiO3 reduces the polarization by
overall 30 %. The addition of electrons reduces the expected polariza-
tion loss compared with the background-charge reference because of
charge-carrier localization on the V site, an effect which has also been
reported in the literature [171]. V doping in BaTiO3 has been observed
experimentally to increase the polarization for low V concentrations (<
0.5 at%), followed by a polarization loss at higher concentrations [172],
consistent with our calculations.

3.5.2.2 Acceptor Doping

A-Site Dopants Now we move to acceptor doping and begin with
the substitution of monovalent K on the Ba A site. In the K-doped
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BaTiO3 system (Ba1−xKxTiO3, BKTO), the K is present as K+, which is
only slightly larger than Ba2+.
Impurity-atom contribution Adding a K atom with no additional charge
carriers causes a polarization gain of 3 %, caused by complex atom
rearrangement, which shows the tendency of the system towards tetrag-
onality, as we will further discuss in the Lattice-constant contribution
section. This results in a displacement of the K+ ion in the c direction,
increased displacements of the Ti on the plane below the K – they have
more space to off-center because of the K displacement – and decreased
off-centering of the Ti above the K.
Charge-carrier contribution Electron depletion increases the polarization
by a further 2 %. This is in agreement with the effect observed in the
background-charge doped BaTiO3 (2 %). In fact, the introduction of the
K atom has no particular influence on the valence band of the system,
which has still O 2p character.
Lattice-constant contribution The lattice constant relaxation induces a fur-
ther polarization increase of 19 %. When adding a K atom, the volume
of the system stays rather constant, as K+ is only slightly bigger than
the Ba2+. More interestingly, the tetragonality of the system is consid-
erably increased, explaining the polarization increase. This indicates
that structural factors affect the polarization of the system primarily
through their influence on the polar c axis: the more space in the c
direction (rather than the overall volume), the higher the potential for a
polar distortion.
Summary The introduction of K in BaTiO3 at a concentration 0.125 h/u.c.
overall increases the polarization of the system by 24 %, mainly because
of the increased tetragonality. We remind the reader that our polariza-
tion values are obtained using the Ba Born effective charge of + 2.7 for
K and that they are therefore likely to be smaller in practice.

B-Site Dopants Finally we move to the B-site hole dopants and
consider two impurities: Al3+ which is quite ionic, and Sc3+ which is
SOJT active.

We begin with the Al-doped BaTiO3 (BaTi1−xAlxO3, BTAO) in which
the trivalent Al3+ is smaller than Ti4+; we expect it therefore to have a
strong structural influence.
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Impurity-atom contribution Introducing an Al atom in BaTiO3 without
its corresponding charge carriers reduces the polarization by 17 %. The
Al atom has in fact a reduced off-centering, since it has no d orbitals
that would favor its hybridization with the axial oxygen atom. It is
nevertheless still slightly displaced compared to its centrosymmetric
position because of its small size. The tolerance factor of pure BaAlO3,
1.11, indicates that the Al is small enough to rattle. The decreased Al
off-centering also reduces the off-centering of the its axial neighboring
Ti along the polar axis.
Charge-carrier contribution Electron depletion increases the polarization
by 2 %, consistent with the background-charge doped reference and
the minimal influence of the Al on the electronic structure in the re-
gion of the Fermi energy. While the electron depletion on the oxygen
atoms around the Al has a small effect, the depleted equatorial oxygens
around the Ti ions cause an increased off-centering of the Ti as in the
background-charge case. The Ti axial to the Al are particularly affected,
because of the high contribution of the oxygen atoms around them to
the top of the valence band, and contribute most to the polarization
gain.
Lattice-constant contribution Upon relaxing the lattice constants, a polar-
ization loss of 21 % occurs. This is due to a decrease of the volume and
tetragonality of the system, reducing the B-site off-centering homoge-
neously.
Summary The introduction of Al into BaTiO3 reduces the polarization,
overall by 36 %. This is mainly due to the non-off-centering of the Al,
which has no d orbitals and is therefore not SOJT active, as well as the
loss of space through volume contraction and tetragonality decrease.

The last system that we analyze is Sc-doped tetragonal BaTiO3 (BTSO,
BaTi1−xScxO3), where Sc is present as Sc3+. Sc3+ is larger than Ti4+

so that we expect it to influence the structure of the system.
Impurity-atom contribution Adding a Sc without its charge carriers re-
duces the polarization by 23 %. The transition metal sites causing the
polarization loss are the Sc site and its axial neighboring Ti along the
polar axis. The origin, as in the BTNO system, is the large Sc3+ size:
The BaScO3 tolerance factor is 0.99, meaning that, even though it is
SOJT active, the Sc is too big to actually displace in the c direction. The
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Ti axial to the Sc also off-center less. This is due to the Sc influencing its
axial environment; as it is almost centrosymmetric, there is less space
for the atoms around it to off-center.
Charge-carrier contribution Electron depletion increases the polarization
by less than 1 %, a smaller amount compared to the background-charge
doped reference (2 %). The oxygen atoms contributing most to the top
of the valence band, and therefore most depleted upon doping, are
the equatorial and axial oxygens around the Sc. However, because of
its large size, the Sc is not affected by this depletion, reducing the net
polarization gain.
Lattice-constant contribution When the lattice constants of the system are
relaxed, the polarization increases by 4 %. This is related to the volume
expansion due to the Sc3+ being bigger than the Ti4+. The tetragonality
of the system stays constant and therefore neither counterbalances the
volume effect nor increases it.
Summary The net polarization loss in BTSO amounts to 19 %. This is
due to the large size of the Sc counteracting the other factors that would
increase the polarization of the system.

3.5.2.3 Overview Impurity Doping

Our results suggest that the factors contributing to the polarization
change can be divided into three effects: i) the chemistry and size of the
impurity atom, ii) the charge carriers and their degree of localization,
and iii) changes in tetragonality and volume.

The influence of the impurity atom depends on its size and SOJT
activity. On the A site, small dopants tend to increase the polarization
by cation displacement (e.g. La). Note that the polarization increase
due to doping with small A-site cations cannot be achieved if all the
A sites are substituted, where cooperative rotations would be preferred
over the polar distortion (as seen in e.g. SrTiO3) [173]. On the B site,
off-centering is controlled by the presence of empty d orbitals (for
the atom to be SOJT active) and the space available for off-centering,
which correlates with the size of the atom. The off-centering of SOJT
active atoms can be suppressed if they are too large (e.g. Nb and Sc)
and does not occur if they lack empty d orbitals in an appropriate
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energy range (e.g. Al). If both SOJT activity and small size are present,
increased off-centering is observed (e.g. V). A theoretically promising
(although experimentally inaccessible) avenue would correspond to
doping BaTiO3 with a SOJT active acceptor atom that is smaller than
Sc. This is however not feasible as Sc3+ is the smallest trivalent SOJT
active ion that exists.

The effect of the charge carriers depends on their type and degree of
localization. Electrons have a stronger influence on the polarization
than holes, as already discussed for the background-charge doped
systems. Overall, electrons reduce the polarization, while charge carrier
localization can increase (e.g. Nb) or decrease (e.g. V) the extent of the
reduction. In contrast, the introduction of holes very slightly increases
the polarization of the system at 0.125 carriers/u.c.

The relaxation of the lattice constants permits changes in the tetrago-
nality and volume of the system depending on the introduced dopant.
Small atoms tend to induce a volume contraction, reducing the polar-
ization; conversely, large atoms expand the volume and increase the
polarization. The determining factor for the polarization change is the
gain or loss of space in the polar direction, which results in a change in
tetragonality through the coupling to strain.

We find that the contributions from the impurity atom, the charge carri-
ers and the free lattice constants are additive. At 0.125 carriers/u.c., the
polarization change ranges from a gain of 25 % to a loss of 100 % (com-
pared to pure BaTiO3), depending on the introduced impurity. Which
of the contributions dominates depends on the dopant. A general trend
can nevertheless be recognized from Figure 3.5. For donor dopants,
the charge carriers are a dominating factor for the polarization loss,
in contrast to acceptor doping, where the chemistry and size of the
impurity atom have a prevailing contribution. In both doping regimes,
the changes in tetragonality and volume have a strong influence on the
system behavior.

Based on our calculations, we can classify the investigated impurity-
doped systems with 0.125 carriers/u.c. into one of three categories,
based on structural and electronic considerations. In the electron-doped
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systems, BLTO can be considered to be metallic and non-polar. In fact,
it has homogeneously spread out electron charge carriers and a cen-
trosymmetric crystal structure, since the polar distortion is completely
suppressed. BTNO and BTVO can be regarded as being polar-metal-like
with a polaronic conduction mechanism, due to the electron localization
on the impurity atom or its axial neighboring Ti along the polar axis.
They show both a polar structural distortion, have a non-zero density
of states at the Fermi level and the polaronic electron localization could
enable polarization switching. The hole-doped systems can also be
considered as being polar-metal-like, and in the case of K doping their
polarization is even increased over the undoped case.

3.6 Conclusions

In conclusion, we demonstrated computationally that BaTiO3 can sus-
tain the combination of ferroelectric and metallic properties. With the
background-charge method, we found that at low carrier concentrations
(< 0.2 carriers/u.c.), hole doping increases the polarization, whereas
electron doping reduces it. At higher concentrations, both electrons
and holes reduce the polarization of the system by suppressing the
B-site off-centering. The effect of electrons is stronger than that of holes
because of the nature of the conduction and valence bands: The elec-
trons strongly affect the Ti ions, whereas the holes spread out over
both equatorial and axial oxygens. We found that in impurity-doped
systems, multiple structural and electronic factors contribute to the
polarization change. The contributions can be separated into effects
coming from the chemistry and size of the impurity atom, from the
charge carriers and from changes in the shape and volume of the sys-
tem. These contributions are additive and can overall yield a gain (K)
or loss (La, Nb, V, Al, Sc) of polarization, depending on the introduced
dopant. Based on our calculations, we propose a classification of the
investigated materials at low doping concentration as either non-polar
metallic (La) or polar-metal-like (Nb, V, K, Al, Sc).

Based on our findings, we propose following experiments to further
investigate the interplay between ferroelectricity and metallicity in
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BaTiO3. Field effect doping could contribute to understanding the effect
of charge carriers in BaTiO3, as predicted by our calculations with
background charges. Furthermore, doping of BaTiO3 with Nb or V
could be particularly promising for polarization switchability, which
could be allowed by the polaronic localization of the charge carriers in
these systems.
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3.7 Supplementary Information

If not otherwise specified in the caption of the figures, the computa-
tional parameters used correspond to those described in the methods
section of the main text.
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Background-charge Doped Pseudocubic BaTiO3

Additional densities of states for doped cubic BaTiO3.
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Figure 3.6: Density of states for pseudocubic BaTiO3 doped with 0.5 e/u.c.
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Undoped Tetragonal BaTiO3

Results of the Berry-phase calculation for undoped tetragonal BaTiO3.

100 50 0 50 100
% Distortion

300

200

100

0

100

200

300

Po
la

riz
at

io
n 

(µ
C/

cm
2 )

Figure 3.8: Berry-phase calculation for tetragonal BaTiO3. The calculated
spontaneous polarization of the system is 34 µC/cm2.

Impurity-doped BaTiO3 Supercells

Additional calculation results for BaTiO3 supercells: Polarization, vol-
ume and tetragonality; bond ratios; and densities of state.
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Figure 3.10: Bond ratios of the transition metal – oxygen axial top to bottom
bonds for tetragonal BaTiO3. a) Impurity-atom contribution with the impurity
atom, 0 carriers/u.c. and fixed lattice constants (white circles), b) Charge-carrier
contribution with the impurity atom, 0.125 carriers/u.c. and fixed lattice con-
stants (grey circles) and c) Lattice-constant contribution with the impurity atom,
0.125 carriers/u.c. and free lattice constants (black circles). The impurity atom
is indicated on the x-axis. Each system corresponds to a 2× 2× 2 supercell and
therefore has eight bond ratio values (for its eight transition metals), partly
overlapping. Pure BaTiO3 in tetragonal and pseudocubic symmetry (abbrevi-
ated tet and cub) as well as background-charge doped tetragonal systems (holes:
h+, electrons: e−) are given as a reference.
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3.8 Data availability

All input data and selected output data is available here:

Veronica F. Michel, Tobias Esswein and Nicola A. Spaldin. Interplay be-
tween ferroelectricity and metallicity in BaTiO3, Materials Cloud Archive
2021.75 (2021). DOI: 10.24435/materialscloud:f4-94 .

3.9 Summary and Outlook

In this section we have learned several things, some of them unexpected,
which are relevant for the rest of this thesis. The first is that polarization
can exist even if there are free carriers present, which is relevant for
the topic of polar-fluctuation mediated superconductivity. Compared
with the case of electron doping, in the case of hole doping, the polarity
is sustained up to surprisingly higher carrier concentrations, mainly
because the emptying of the valence band changes chemical bonding
differently from the filling of the conduction band. We also saw that
different impurity atoms have strongly varying effects on the geometric
and electronic properties, ranging from complete suppression of polar-
ization in the case of La doping, to the increase of polarization in the
case of K doping. The predicted increase of polarization in the cases
of hole doping and K doping is surprising, and experiments to verify
this prediction would be interesting. Finally, the change of volume
and tetragonality seems to have the largest influence on polarization,
followed by the charge carriers in the electron-doped cases, and the
chemistry of the impurity atom in the hole-doped cases.

A few comments on the computational choices we made for this project:
We used a tetragonal unit cell for several reasons, mainly because it is
the crystal structure that is stable at room temperature, but also because
the actual change of polarization between tetragonal, orthogonal and
rhombohedral is actually quite small [39]. We used 2× 2× 2 supercells,
with one atom replaced, for the main body of the paper, resulting in
a doping of 0.125 e/u.c. – increasing the size of the supercells proved
computationally challenging. Results for larger supercells of sizes 2

√
2×

http://dx.doi.org/10.24435/materialscloud:f4-94
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2
√
2× 2 and 3× 3× 3 are therefore restricted to the geometric analysis

presented in figure 3.9. Generally, the advantage of larger supercells is
threefold: they allow lower doping values (down to 0.0625 and 0.037,
respectively; even lower for larger supercells), one can get closer to true
disorder despite the periodic boundary conditions of plane-wave DFT,
and one can study the formation of impurity-clusters in the crystal.

Future research in this area could be done in several directions. Staying
with BTO, one direction is clearly to use larger supercells to investigate
the effect of more disordered impurities, as mentioned earlier, as well as
the range of lower doping levels. Additionally, increasing the supercell
size would allow the study of oxygen vacancies (with a charge of 2−),
which were used in ref. [52] to introduce free carriers, but are quite
difficult to capture properly in ab-initio calculations, as a recent study
of oxygen vacancies in STO has shown [174]. Finally, one could take
the quantum nature of the ions into consideration. While this has been
shown to have a minimal effect for high-Tc proper ferroelectrics like
BTO [175], it is known to be important for quantum paraelectrics like
STO [175] and KTO [176]. One possible way of doing this is based on
the model we have developed for quantum paraelectricity in STO and
KTO, which is the centerpiece of the next chapter.





4
A s imple model for

quantum paraelectrics

4.1 Preface

Quantum criticality is at the origin of several unusual materials’ phe-
nomena, one of them is high-temperature superconductivity, as e.g. in
the cuprates, in which a quantum critical point sits in the middle of
the superconducting dome (and many other peculiar phases) [177, 178].
In quantum paraelectric materials, quantum fluctuations prevent the
transition to a ferroelectric phase by stabilizing the paraelectric one, as
first observed in SrTiO3 in 1979 [18] (for more details on quantum phase
transitions and quantum paraelectricity in SrTiO3, see sections 1.1.2
and 1.2.2, respectively). In the case of quantum paraelectricity, a paper
by Edge et al. in 2015 [35] proposed a mechanism linking the quantum
fluctuations with superconductivity in STO, based on an observation
reproduced here as figure 4.1.

The superconducting dome is represented by the blue dots, while the
red lines indicate the calculated hardening of the ferroelectric soft
phonon mode, which is imaginary at low doping values, and becomes
real when it crosses the dashed horizontal line, which happens just in
the center of the superconducting dome. This observation motivated
the construction of a model which was not only able to reproduce the
dome shape of the critical temperatures, but also predicted an unusual
superconducting isotope effect in STO: The critical temperature should
increase upon 18O-isotope substitution, in contrast to the usual BCS-
predicted Tc lowering upon isotope substitution with a heavier isotope
[27, 179]. The experimental confirmation of this unusual isotope effect

63
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Figure 4.1: Plot of the superconducting dome in SrTiO3 (blue dots) and the
quantum critical point as defined by the hardening of the soft phonon modes
(red lines) (right). The general idea of a quantum critical point sitting in the
center of the superconducting dome is very similar to the phase diagram of
high-temperature superconductors, e.g. the cuprate ones [177, 178].
—
Figure reproduced and adapted from Figure 1 of “Quantum Critical Origin of the
Superconducting Dome in SrTiO3” by Edge et al. [35], with permission from the authors.
Copyright (2015) by the American Physical Society.

just one year later [69] led to an increase in research efforts trying to
explain the origin of superconductivity in STO [67, 173, 180–182].

The still-unexplained superconductivity and the possible connection
to quantum paraelectricity were a strong incentive for us to investi-
gate in more detail the quantum paraelectric state in both STO and
KTO. However, we quickly realized that the definition of the quan-
tum critical point may not be as straightforward as the previously
assumed crossover of the soft phonon mode from imaginary to real
frequencies. First, the calculation of the phonon frequency is within
the harmonic and the Born Oppenheimer approximations, where the
atoms are assumed to be classical particles and essentially static from
the perspective of the electrons and there is no anharmonicity. This is
incompatible with the picture of a quantum paraelectric state in which
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quantum fluctuations stabilize the paraelectric phase by means of ions
fluctuating or tunneling through energy barriers they should not be
able to cross in a classical model [183]. Additionally, in reviewing the
literature models for tunneling in this quantum paraelectric state, the
preferred view seemed to be that of the titanium ion fluctuating within
its oxygen cage, which already seems unlikely for the titanium ions,
and even less likely for the heavy tantalum ion in KTO.

All of these points led us down a rabbit hole of literature research
and new calculations, including a foray into quantum chemistry, and
resulted in the peer-reviewed work that constitutes the main part of this
chapter. We first present a model for quantum paraelectricity, based on
simple DFT- and DFPT-calculated quantities and including the quantum
nature of the ions. We then use this model, first to check its validity
going from BTO to STO to KTO, and then to investigate the isotope
effect in STO and compare it with a simple geometric distortion of the
unit cell. We find that the model works best for (quantum) paraelectrics
and still reasonably well for ferroelectrics, although it yields an isotope
effect that is smaller than reported. We also summarize the various
possibilities for separating mass and displacement and which one to
choose if necessary.

Explanatory Remarks

The following section is published as:

Tobias Esswein and Nicola A. Spaldin. Ferroelectric, quantum paraelec-
tric or paraelectric? Calculating the evolution from BaTiO3 to SrTiO3

to KTaO3 using a single-particle quantum-mechanical description of
the ions. Phys. Rev. Research 4, 033020 (2022). DOI: 10.1103/PhysRevRe-
search.4.033020.
—
Minor changes have been made to formatting of text, tables and figures to adapt to the

layout of this thesis, in compliance with the CC BY 4.0 license of the published work.

http://dx.doi.org/10.1103/PhysRevResearch.4.033020
http://dx.doi.org/10.1103/PhysRevResearch.4.033020
https://creativecommons.org/licenses/by/4.0/
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4.2 Abstract

We present an inexpensive first-principles approach for describing
quantum paraelectricity that combines density functional theory (DFT)
treatment of the electronic subsystem with quantum-mechanical treat-
ment of the ions through solution of the single-particle Schrödinger
equation with the DFT-calculated potential. Using BaTiO3, SrTiO3 and
KTaO3 as model systems, we show that the approach can straightfor-
wardly distinguish between ferroelectric, paraelectric and quantum
paraelectric materials, based on simple quantities extracted from stan-
dard density functional and density functional perturbation theories.
We calculate the influence of isotope substitution and strain on quan-
tum paraelectric behavior and find that, while complete replacement
of oxygen-16 by oxygen-18 has a surprisingly small effect, experimen-
tally accessible strains can induce large changes. Finally, we collect the
various choices for the phonon mass that have been introduced in the
literature. We identify these that are most physically meaningful by
comparing them with our results that avoid such a choice through the
use of mass-weighted coordinates.

4.3 Introduction

Quantum paraelectric materials, such as strontium titanate, SrTiO3

(STO) and potassium tantalate, KTaO3 (KTO), are incipient ferroelectrics
whose ferroelectric phase transition on cooling is suppressed by quan-
tum fluctuations [18]. They are characterized by a temperature-depen-
dent transverse optical phonon, whose frequency tends to but does
not reach zero at low temperature [184], and a correspondingly high
low-temperature dielectric susceptibility [61] that deviates from clas-
sical Curie behavior with a cross-over to a characteristic T−2 scaling
below a few tens of kelvin [17, 185]. Their proximity to ferroelectricity
means that the ferroelectric state can be reached readily with external
perturbations, including pressure [186, 187], homovalent A-site [188] or
B-site substitution [189, 190], oxygen isotope substitution [191, 192] and
strain [193, 194]. This sensitivity, combined with the low temperatures,
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makes detailed characterization of the structure of the quantum para-
electric state challenging: Neutron and x-ray Rietveld analysis of STO,
for example, indicate a centrosymmetric structure down to 1.5K [195].
In contrast, nuclear magnetic resonance (NMR) shows local dynamic
polar off-centering of the Ti ions [196], consistent with the anomalous
vibrational amplitudes seen in γ-ray Bragg scattering [197], and scan-
ning transmission electron microscopy reveals local polar nanoregions
[198].

From a theoretical perspective, the quantum paraelectric behavior is
broadly understood to result from quantum fluctuations suppressing
the softening of the polar phonon, which would otherwise drive a fer-
roelectric phase transition at low temperature. Indeed, extension of the
classic Slater model of ferroelectricity [199] to treat the soft polar mode
quantum mechanically [76, 200] and with anharmonic coupling to other
phonon modes modes [18, 201], correctly reproduces the T−2 scaling
of the dielectric susceptibility. The importance of a shallow “double
well” potential energy surface with its correspondingly small zero-point
energy (Fig. 4.2) has been emphasized [202], with the isotope effect then
explained by suppression of the zero-point motion by larger atomic
masses [203]. First-principles electronic structure calculations based
on density functional theory (DFT) confirm the shallow double-well
picture [204] and indicate the importance of transition-metal – oxygen
polarizability [205, 206], manifesting in anomalously large Born effective
charges and giant LO-TO splittings [207, 208]. DFT studies have also
explored the relationship between polar distortions and tetragonality,
strain, unit-cell volume and oxygen octahedral rotations [209–211], as
well as the effect of point defects on the structural properties [212].

Particularly important insights are provided by atomistic simulations
using path-integral quantum Monte Carlo methods, in which the ionic
motions are treated quantum mechanically. In such simulations, quan-
tum effects are found to suppress the ferroelectric transition in STO
completely as well as to strongly affect the behavior of the polar mode
up to ∼100K; in KTO, quantum effects cause local correlated polar
nanoregions [176]. In contrast, ionic quantum effects have a less promi-
nent effect in the prototypical ferroelectric barium titanate, BaTiO3
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(BTO), with its high ferroelectric ordering temperature [175], although
they can become important at high pressure [213]. Unfortunately, how-
ever, path-integral quantum Monte Carlo methods are computationally
expensive even at high temperatures, and become unfeasible on ap-
proaching zero kelvin, and so are impractical for routine evaluation of
material properties.

While many features of quantum paraelectricity are now established,
major questions about the detailed nature of the quantum paraelectric
state remain open. First, the existence or not of a zero-kelvin quantum
critical point. While susceptibility measurements have been interpreted
in terms of a quantum critical point that is crossed by either strain or
18O substitution [17, 214, 215], the zero-kelvin limit has not in fact been
reached [190], and instead an up-turn in dielectric susceptibility has
been reported at very low temperatures [17, 216]. The up-turn points to
a discontinuous transition, which is indeed captured by a Hamiltonian
based on a polarizability model [217–219], and has been attributed
to coupling to strain [214, 215]. Second, and related to the previous
point, is the appropriateness of a double-well picture for describing
the crossover from paraelectric through quantum paraelectric to ferro-
electric behavior. Finally, unconventional superconductivity has been
observed in both STO [31] and KTO [70, 72, 73], with ferroelectric quan-
tum fluctuations proposed as the source of the pairing mechanism [35].
While the results of subsequent experiments, particularly the effects of
strain and 18O substitution, have proved consistent with the predictions
of the quantum fluctuations model [67, 69, 173, 180–182], further insight
into the nature of the quantum criticality would be invaluable in better
understanding and optimizing the superconductivity.

In this work we use electronic structure calculations based on stan-
dard density functional theory (DFT), to explore the potential energy
landscapes of a series of quantum paraelectrics and conventional fer-
roelectrics. Since conventional DFT does not treat the ions quantum
mechanically, we then account for the quantum mechanical behavior
of the ions in a second step by solving the Schrödinger equation ex-
plicitly for the ionic subspace using the calculated DFT potential. Our
approach is similar to that used in Ref. [204], with the important differ-
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E

q

PE QPE FE

Figure 4.2: Illustration of two possible mechanisms for the crossover from
the paraelectric (left) to ferroelectric (right) state. In each panel the vertical
axis is internal energy, and the horizontal axis is the polarization (or relative
displacements of the anionic and cationic sublattices), with the curves centered
around zero polarization. The green dashed lines represent the zero-point
energy levels. The lower row shows a behavior analogous to the usual Landau
model of displacive phase transitions as a function of temperature: The internal
energy has a double well potential resulting in a ferroelectric state at low
temperature (right panel) with the barrier height reducing as temperature
increases, so that there is a single minimum corresponding to zero polarization
above the Curie temperature. Such a crossover could also occur at zero kelvin
as a function of an external parameter such as strain or pressure, in which case
the middle panel, in which the potential has a pronounced quartic component
but not yet a barrier, would correspond to the quantum paraelectric state. In
the upper row, the free energy is unchanged as a function of tuning parameter,
but the zero-point energy evolves from high (corresponding to the paraelectric
state) to low (corresponding to the ferroelectric state). In this case, quantum
paraelectric behavior would be expected when the zero-point energy is in the
vicinity of the top of the barrier between the oppositely polarized states. This
behavior could be achieved by changing the masses of the atoms through
isotopic substitution, which changes the mass without changing the form of
the potential energy.
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ence that we work in mass-weighted coordinates and so are not forced
to make arbitrary assumptions about the sizes of the phonon mass and
displacement.

Our primary scientific goal is to answer the question of how a fer-
roelectric emerges from a paraelectric as a function of an external
(non-thermal) tuning parameter. In Fig. 4.2 we sketch two commonly
discussed scenarios for this crossover, each of which might be applicable
in certain regimes. In all cases the vertical axis is internal energy and the
horizontal axis is the soft-mode coordinate q. The lower panel shows
the usual Landau theory picture in which a paraelectric (PE) parabolic
potential evolves into a ferroelectric (FE) double-well potential via a
strongly anharmonic single-well potential, with the zero-point energy
remaining largely constant. In this scenario, which might be achieved
for example by applying pressure or strain, the quantum paraelectric
(QPE) regime corresponds to the intermediate strongly anharmonic, but
still single-well, potential. The upper panel of Fig. 4.2 shows a comple-
mentary limit in which the double-well potential is unchanged across
the transition but the zero-point energy shifts. Such behavior could be
induced by isotope substitution, with the zero-point energy shifting
down as the ionic masses are increased, and QPE would be expected in
the region for which the zero-point energy coincides with the top of
the double well. A second, methodological goal is to explore whether
simple, inexpensive standard DFT-based methods are appropriate for
addressing questions that are explicitly related to quantum tunneling
of ions. Such a finding would, in turn, allow easy determination of
whether new hypothetical materials could exhibit quantum paraelectric
behavior.

4.4 Methods & Theoretical Approach

In this section we describe our methodology for calculating the potential
wells of the type shown in Fig. 4.2, and solving the resulting Schrödinger
equations for these potentials.
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4.4.1 Mass-weighted coordinates and the Schrödinger equa-
tion

In a first step, we map the multi-atom and three-dimensional tun-
neling problem onto a single-particle, one-dimensional one with the
Schrödinger equation(

−
 h2

2m

d2

dξ2
+ V(ξ)

)
ψ(ξ) = Eψ(ξ). (4.1)

(We describe how we extract the one-dimensional potential from the full
three-dimensional system in sub-section B below). Solving this equation
is numerically trivial given the calculated form of the potential, V , as
a function of ionic displacements, ξ, and knowing the masses of the
ions, m, contributing to the phonon eigenvector. In practice, however,
for the lattice vibrations in periodic solids considered here, there is a
conceptual subtlety, in that neither the mass nor the displacement of a
phonon is well-defined. Many plausible choices have been made in the
literature and we return to this point in sections 4.6.1 and 4.6.2, where
we provide a summary of the literature choices and use our results to
determine which are most appropriate. Here, we prefer to combine the
mass and displacement into mass-weighted coordinates, q, defined as
q =

√
mξ, which are rigorously defined and avoid an arbitrary choice

for the phonon mass and displacement. In mass-weighted coordinates,
the 1D Schrödinger equation is reformulated as(

−
 h2

2

d2

dq2
+ V(q)

)
ψ(q) = Eψ(q) , (4.2)

which we then solve to obtain the zero-point and higher energy levels,
using a fourth-order finite-difference approach for the second deriva-
tive [220] combined with the eigenvalue solver for sparse and square
matrices implemented in the python SciPy package [130].
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4.4.2 Construction of the potential V(q)

We write the double-well potential V(q) as a fourth-order polynomial

V(q) = V0(
q4

σ4
− 2

q2

σ2
+ 1) , (4.3)

where V0 is the height of the barrier and σ is the width from the peak
of the barrier to the energy minimum of one well, as shown in Fig. 4.3.
The “+1” sets the zero of energy to the bottom of the well rather than
the top of the barrier. We find that this simple fourth-order polynomial
deviates only slightly from a full calculation of the energy as a function
of polar distortion over the relevant energy range.

 V0

 

V

q

Figure 4.3: Sketch of the double-well construction in mass-weighted coordi-
nates, indicating the parameters V0 and σ. The height of the double well barrier,
V0, is calculated from the energy difference between the polar and non-polar
structures. The half-width of the double well, σ, (defined here as the distance
between the barrier top and the bottom on one side) is calculated from the
imaginary phonon frequency of the non-polar structure at the Γ -point, ω, and
the energy difference V0 as described in the text.

The height of the barrier, V0, is extracted straightforwardly from the
energy difference per formula unit between the non-polar reference
structure and the lower-energy polar structure. The half-width of the
barrier, σ, is obtained from the frequency, ω of the imaginary phonon
at the Γ point as follows: By definition, for a harmonic potential ω2 is
related to the curvature by

ω2 =
d2V(q)

dq2

∣∣∣∣
q=0

. (4.4)
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(Note that in this case ω2 is negative). Taking the second derivative of
Eqn. 4.3 and setting q = 0 yields

d2V(q)

dq2

∣∣∣∣
q=0

= −
4V0
σ2

, (4.5)

and equating Eqns. 4.4 and 4.5 we obtain

σ2 = −
4V0
ω2

. (4.6)

We mention that this one-dimensional model corresponds physically to
the case where the system inverts its polarization via the high-symmetry
zero-polarization reference structure, rather than for example rotating
the polarization into another orientation. As such, it provides an upper
bound on the barrier height between the oppositely polarized states.

4.4.3 Computational details

To calculate the forces and total energies needed to construct our poten-
tials, we use density functional theory within the generalized gradient
approximation (GGA) as implemented in the Quantum Espresso 6.4.1
code [115, 116]. We describe the exchange-correlation functional us-
ing the PBE functional [94], which, as already reported for STO [204],
gives shallow double wells for both STO and KTO, and perform the
core-valence separation with the GBRV pseudopotentials [97, 98]. We
use a kinetic energy cutoff of 60Ry (816 eV) for the wavefunctions,
and a Γ -centered 16×16×16 k-point mesh for all unit cells. Total ener-
gies are converged to 1µeV (7.35× 10−8 Ry) and forces to 0.1meV/Å
(3.89× 10−6 Ry/Bohr). For comparison, we provide the main results
obtained using LDA and PBEsol functionals in Tab. 4.4 of the Appendix.

In a first step, we calculate the lattice constants and internal coordinates
of a non-polar reference structure for each material as follows: For BTO
we fully relax the atomic positions and lattice parameters to obtain
the known experimental low-temperature rhombohedral phase with
polarization along the pseudocubic [111] direction; we then remove the
polar distortion by hand while keeping the lattice parameters fixed.
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For STO, we construct a non-polar tetragonal unit cell containing the
experimentally observed rotations of the oxygen octahedra around the
[001] direction, then relax the atomic positions and cell parameters
while constraining the symmetry to maintain the inversion center. For
KTO we relax the lattice constants for the primitive cubic unit cell with
the symmetry constraint that the atoms remain at their high-symmetry
cubic perovskite positions and the unit cell remains cubic. We then
calculate the ferroelectric soft-mode phonon frequencies at Γ for these
non-polar reference structures using density functional perturbation
theory (DFPT), as implemented in Quantum Espresso 6.4.1. In all cases
these frequencies are imaginary (that is ω2 is negative), indicating a
double-well potential.

In a second step, we calculate the polar structures by manually adding a
polarization to each material following the eigenvector of the imaginary
phonon mode, then relaxing the internal coordinates, while keeping
the shape and volume of the unit cells fixed. For BTO, the resulting
structure is the original polar structure of the first step. The energy
difference between each polar and corresponding non-polar structure
gives us directly the V0 parameter in each case. This is then combined
with the calculated ω2 value to obtain the barrier half-width, σ.

4.5 Evolution from ferroelectric to quantum para-
electric to paraelectric

Next, we present and analyze our calculated potential energy double
wells, as well as the zero-point and higher energies obtained from
solving the respective Schrödinger equations, for our example materials
BTO, STO, and KTO, as well as for experimentally plausible generalized
double wells.
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4.5.1 Potential and energy trends across the BaTiO3, SrTiO3,
KTaO3 series

In Fig. 4.4 we show our calculated potential energies (black solid lines),
as well as the two lowest-energy eigenvalues (blue and green dashed
lines) for BTO, STO, and KTO. The energy scale is the same for all
materials, and each horizontal axis is in mass-weighted coordinates.
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Figure 4.4: Ferroelectric double-well potentials of BTO, STO and KTO cal-
culated in this work using density functional theory (solid black lines), and
their respective zero-point (dashed blue) and first excited state (dashed green)
energies and eigenfunctions (solid blue/green) obtained by subsequent solu-
tion of the Schrödinger equation. We note that the trend follows that of the
lower panel of Fig. 4.2. In ferroelectric BTO (left), the zero-point energy and
first excited state are deep below the barrier of the double-well and almost
degenerate (the wavefunction of the first excited state is partially covered by
that of the ground state). In quantum paraelectric STO (middle), the zero-point
energy is around the same height as the double-well barrier. In KTO (right),
the zero-point energy is higher than the double-well barrier, indicating that
KTO, while still having quantum paraelectric features, is closer to conventional
paraelectric behavior than STO. Corresponding numerical data are given in
Tab. 4.1.

We note first that all materials have a double-well potential, with both
the height and width of the barrier decreasing from ferroelectric BTO to
paraelectric KTO. The barrier height of BTO is ∼105meV, which is high
compared to kBT at room temperature, consistent with its ferroelectric
ground state; likewise the lowest energy eigenvalue (dashed blue line)
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lies far below the top of the barrier, and its eigenfunction (solid blue
line) is largely localized in one or other of the oppositely polarized
wells. The energy of the first excited state (dashed green line) is indis-
tinguishable from the zero-point energy at this scale, but they are not
degenerate. This small energy splitting means that both states have
almost equal probability of being occupied even at low temperature.
The resulting linear superposition of the ground and first excited state
will be localized in one well or the other with a low tunneling frequency
between the wells, consistent with the known ferroelectric ground state
of BTO.

The barrier height of STO is more than one order of magnitude smaller
than that of BTO, and its width in mass-weighted coordinates is ap-
proximately half. The zero-point energy lies just 1.12meV above the
top of the barrier, and the ground-state eigenfunction has its maxi-
mum at q = 0; this corresponds to the “extreme quantum” regime of
Ref. [202]. The splitting between the ground and first excited states
is 10.02meV, much larger than that of BTO, and so at low tempera-
tures most of the system will occupy the lowest state and will be in
a centrosymmetric configuration. For the small fraction that forms a
linear combination of the lowest and first excited states, and thus has
its probability maximum probability at non-zero q, we can extract a
“tunneling” or oscillation frequency f from the usual formula for a
two-state system [183], f = E1−E0

h . For STO, this frequency is 2.42THz,
intriguingly close to the measured 5K soft-mode phonon frequency of
0.5THz [63, 221, 222].

While KTO still has a double-well potential for our choice of computa-
tional parameters, the barrier is small, and barely visible on the energy
scale of Fig. 4.4. The zero-point energy is clearly above the barrier, indi-
cating that KTO should behave more like a conventional paraelectric
than STO. The splitting between the ground and first excited states is
12.71meV, even larger than in STO, and therefore the occupancy of the
first-excited state will be even smaller. Most of the system will be in the
ground state with its probability maximum corresponding to the cen-
trosymmetric structure, and the tiny fraction that is in a superposition
of the ground and first-excited state will evolve with the very high fre-
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quency of f = 3.07 THz. In this case, it is more appropriate to describe
this value as an oscillation rather than a tunneling frequency, since
the relevant energy levels are above the barrier. We will discuss these
tunneling frequencies in more detail, both for our example materials
and more generally, in section 4.5.4.

Table 4.1: Calculated double-well half-widths, σ, and barriers, V0, and resulting
energy splittings, E1 − E0, and energy differences E0 − V0, of BTO, STO and
KTO, corresponding to the double wells shown in Figs. 4.4 (upper three rows
of the table) and 4.5 (lower four rows of the table).

double well energies [meV]

σ [Å
√

u] V0 [meV] E1 −E0 E0 −V0

BaTiO3 1.149 104.8 0.008 −79.94

SrTiO3 0.571 5.74 10.02 1.12

KTaO3 0.215 0.056 12.71 4.75

SrTi18O3 0.591 5.74 9.38 0.91

KTa18O3 0.223 0.056 12.09 4.52

SrTiO3 V.+1% 0.646 9.52 7.95 −1.10

KTaO3 V.+1% 0.471 1.35 10.60 3.14

4.5.2 Isotope effect

Our calculated double wells and low-energy eigenvalues and wave-
functions in 18O-substituted STO (top row) and KTO (bottom row) are
shown in the left column of Fig. 4.5; the reference data from Fig. 4.4
are shown in the central column. For both STO and KTO we see in the
mass-weighted coordinates used here that the heavy-oxygen double
well is slightly wider than the reference one, since the heavier oxygen
ions result in a lower phonon frequency, ω, for the same forces. This
in turn causes lower zero-point energy levels and smaller energy dif-
ferences between the lowest energy levels. The resulting “oscillation
frequencies” (2.27THz for STO and 2.92THz for KTO) are ∼ 5% smaller
than those of the reference cases (2.42THz and 3.07THz, respectively).



78 a simple model for quantum paraelectrics

0

20

40
E 

[m
eV

]

E0

E1

isotope effect

E0

E1

reference

E0

E1 SrTiO3

volume effect

2 0 2
0

20

40

E 
[m

eV
]

E0

E1

2 0 2
q [Å u]

E0

E1

2 0 2

E0

E1 KTaO3

Figure 4.5: Double wells and lowest-energy eigenvalues and wavefunctions for
18O-substituted (left column) and 1%-volume-expanded STO (top) and KTO
(bottom). The middle column shows the reference calculations from Fig. 4.4 for
comparison. Numerical data are given in Tab. 4.1. We see that heavy-isotope
substitution widens the wells, while keeping the barrier heights constant,
resulting in a lowering of the zero-point energies and energy differences. The
1% increase in volume increases the well widths by a slightly larger amount
than the 18O substitution and also increases the barrier heights.

These small changes are surprising, in particular for STO, for which
strong changes in ferroelectric and superconducting properties have
been reported on 18O-substitution [67, 69, 173, 180–182].

4.5.3 Effect of strain

Changes in lattice constant, introduced by applying uniaxial stress,
or through biaxial coherent heteroepitaxy, have also been shown to
have a substantial effect on both ferroelectric and superconducting
behaviors of SrTiO3 [193, 223]. We investigate the effect of strain on
the double-well profiles and properties next. In the right column of
Fig. 4.5 we show our calculated double wells and energy eigenvalues
and eigenfunctions for STO (top) and KTO (bottom) when the volume
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of the unit cell is increased by 1% (without isotope substitution). This
corresponds to pseudocubic lattice constants of a = b = 3.9422Å and
c = 3.9613Å for STO and a = b = c = 4.0268Å for KTO, which
is an increase of slightly more than 0.013Å for each direction. Note
that volume changes of this order have been reported in transition-
metal oxides on changing the point defect chemistry by annealing
in reducing or oxidizing atmospheres [224]. We find that a volume
increase causes changes in the same direction as an increase in isotopic
mass, with a 1% volume increase having a markedly stronger effect
than complete 16O → 18O substitution. Compared to the reference
structure, the barrier height in STO is almost doubled, and the lowest
energy eigenvalue lies just below the barrier (by −1.10meV), indicating
that STO moves into the ferroelectric regime under strain. In KTO, the
barrier height increases by a factor of 24, and both energy eigenvalues
move lower and closer together.

An increase in lattice constant (rather than volume) of 1%, which is ac-
cessible in biaxially strained coherent thin-film heterostructures, causes
even larger changes (not shown in Figs. 4.5 and 4.6): In STO, the lowest
two energy eigenvalues lie below the energy barrier (20.54meV) and,
combined with the σ of 0.765Å

√
u, the tunneling frequency is low-

ered to 1.01THz, less than half of the reference frequency. In KTO, the
changes are even more significant, with a crossover from the oscillating
to the tunneling regime occurring. The double well width and height
are 0.757Å

√
u and 10.07meV, giving a tunneling frequency of 1.34THz,

reduced from the reference 3.07THz.

Since the lattice constants of complex oxides are strongly sensitive
to oxygen stoichiometry [224], it is clear that care must be taken in
comparing the quantum paraelectric behavior of different STO and KTO
samples. In particular, while we note that the only known measurement
for STO after isotope substitution does not show any significant change
of lattice parameters [191], if the process of isotopic substitution also
changes the oxygen vacancy concentration, it might be difficult to
disentangle intrinsic isotope effects from changes in behavior resulting
from changes in the lattice constant.
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4.5.4 Discussion

In Fig. 4.6 we present a map of the “fluctuation frequencies”, f = E1−E0
h ,

calculated using our approach for a physically relevant range of barrier
heights, V0, between 0.01 and 1000meV, and barrier half-widths, σ,
between 0.01 and 2.5Å

√
u. Our motivation is to provide a convenient

chart for looking up the tunneling or oscillation frequency, and hence
the proximity to quantum paraelectric behavior, for any material, given
the double-well height and width. Frequencies, ranging from high-THz
(white) on the left, to low-Hz (black) on the top right, are color-coded
from white to black, and the crossover from “tunneling” (zero-point
energy < double-well barrier) to “oscillating” (zero-point energy >
double-well barrier) is shown by the dashed black line (top left to
center right).

Before analyzing our example materials, and discussing the relevance
of this quantity for bulk, periodic solids, we first point out some general
trends. A narrow free energy barrier (left border) generally results in
high oscillation frequencies, and the narrower the well, the higher the
barrier required to reach the tunneling regime. Widening the barrier
(by increasing σ) lowers the frequency, which can be reduced to the
high-GHz range, even for the smallest barrier heights, V0, shown. At
any given barrier half-width σ, increasing the barrier height from close-
to-zero first increases the frequency, until the barrier height reaches the
zero-point energy; for larger barrier heights the frequency decreases
with increasing barrier height. The point where the zero-point energy
crosses the double-well barrier, indicated by the dashed line in the
plot, therefore corresponds to the frequency maximum and marks the
crossover between the oscillating and tunneling regimes. We propose
that this crossover provides the best measure of the quantum critical
point within the density functional theory formalism.

The solid black symbols show the results of our calculations for BTO,
STO, and KTO presented earlier, as well as for an isolated molecule
of ammonia, NH3, the canonical example of molecular quantum tun-
neling [225, 226], for which we use V0 and σ values from refs. [227,
228]. The white outlined circle, diamond and square show the results
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Figure 4.6: 2D map of our calculated oscillation/tunneling frequencies (color
bar) for quartic double-well potentials with barrier height V0 ranging from 0.01

to 1000 meV (note the log scale) and barrier half-width, σ less than 2.5 Å
√
u.

The black dashed line separates the “oscillating” region (lower left), in which
the zero-point energy is above the double-well barrier, from the “tunneling”
region (upper right), in which the zero-point energy is below the double-well
barrier. Frequencies are color-coded on a logarithmic scale, ranging from white
on the left (corresponding to frequencies >100THz), through orange (THz and
GHz) and red (MHz and kHz) to black (<10Hz). Solid black symbols show the
frequency for each material calculated in this work. White open symbols show
the frequencies for the corresponding isotope-substituted materials; black open
symbols, the frequencies at 1% increased volumes.

of our calculations for isotope-substituted NH3, STO, and KTO, in
which D is substituted for H in the NH3 case, and 18O is substituted
for 16O in STO and KTO. In the case of the ammonia molecule, the
isotope substitution of deuterium for hydrogen moves the zero-point
energy substantially lower in the double well, and lowers the tunneling
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frequency correspondingly, consistent with experimental observations.
In contrast, the small calculated effect of 100% oxygen isotope substitu-
tion that we pointed out earlier is strikingly clear in this visualization.
The small oxygen isotope effect is consistent with the small percentage
change in mass (only 2% (3%) of the mass per formula unit for KTO
(STO) or equivalently 12.5% of the oxygen mass) within the simple
model considered here, although it is in striking contrast to the ex-
perimental observation of 18O-induced ferroelectricity in STO [191,
192].

Our calculated results for STO and KTO with 1% volume increase are
shown with the black outlined diamond and square, connected to the
reference values by black arrows. In both cases the substantial effect
mentioned above is clearly visible: For STO, the volume effect leads to
a crossover from the oscillating to the tunneling regime; for KTO, there
is a strong shift towards tunneling behavior. We emphasize again that
even a small volume change during the isotope substitution process
will likely overshadow any direct isotope effect, and one has to take
special care to exclude this factor when attributing changes in behavior
to changes in the masses of the atoms.

We see from Fig. 4.6 that the simple model analyzed here gives a
quantitatively correct result for the isolated ammonia molecule. In
addition, it appropriately captures the evolution from ferroelectric
through quantum paraelectric to paraelectric across bulk, periodic BTO,
STO and KTO. It is clear, however, that the low-GHz value of tunneling
frequency obtained for BTO does not reflect the rate of spontaneous
ferroelectric switching in physical BTO samples, which are stable on
time-scales of months or years. Part of this limitation is numerical: A
tunneling time of 180 days for BTO, for example, would result from
an energy splitting of less than 10× 10−22 eV. This is smaller than we
can resolve with our eigenvalue solver, which is limited to frequencies
above around 1Hz. The limitation is also physical, and reflects the
fact that both the

√
m in our mass-weighted q coordinate as well as

the corresponding energy are both the values per formula unit. In a
macroscopic sample with cooperative behavior between the unit cells
like ferroelectric BTO, these values should be scaled by Avogadro’s



4.6 choices of phonon effective mass and displacement 83

number, and the resulting value of tunneling frequency, f, is then
effectively zero. In practice, reversal of the ferroelectric polarization in
BTO takes place via domain wall motion which is not included in our
simple model.

Conversely, by scaling the energy barrier and effective particle mass in
our model calculations until our calculated tunneling frequencies match
experimental optical mode frequencies, we can estimate a length-scale
for inter-unit-cell correlations. In the case of STO, the experimental
low temperature frequency of ∼ 0.5THz [63, 221] is reached from our
reference value of 2.27THz by multiplying V0 by ∼ 2 and σ by ∼

√
2,

hinting towards small local polar nano-domains of a couple of unit
cells, consistent with recent observations in doped STO thin films [198].
Applying the same procedure to KTO, in which the measured low
temperature optical mode frequency is ∼ 0.6THz [55, 221], yields a
slightly larger four-to-five unit cell estimate.

4.6 Appropriate choices of phonon effective mass
and displacement

In this final section, we collect the many definitions that have been used
in the literature for the mass of the phonon. We compare the predictions
of the various choices with the results that we obtained above using
mass-weighted coordinates, for which no arbitrary choice has to be
made. Our main finding is that one has to take care when separating
mass and displacement in order to obtain physically sensible results. In
particular, the popular choice of the B-site ion off-centering as a measure
of the polar displacement, while giving accidentally reasonable values
for the titanates, is not generally appropriate. For the perovskite oxides,
if the full phonon eigenvector is not available, the combination of the
mass of the oxygen ions in the unit cell for the effective mass, combined
with the average displacement of an oxygen ion between para- and
ferroelectric structures as the effective displacement is the most self-
consistent choice.
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4.6.1 Phonon effective mass

In Table 4.2 we collect the mass values for BTO, STO and KTO for the
various definitions that have been used in the literature. All numbers
are in units of atomic mass, u.

4.6.1.1 Based only on masses

The definitions in the first six columns in Table 4.2 use only the masses
of the constituent atoms.

Column 1 shows the ABO3 atomic mass, which is just the sum of the
individual atoms in one formula unit. STO is the lightest at 183.5u,
followed by BTO and KTO with 233.2u and 268.0u, respectively. A
problem with this definition is that the effective mass is the same for
each phonon mode; this is clearly unphysical since different phonons
correspond to different patterns of atomic displacements. For example,
the heavy barium atom in BTO and tantalum atom in KTO contribute
strongly to their respective atomic masses, but do not displace much in
the soft mode, which is dominated by motion of the lighter atoms.

A popular choice in the ferroelectrics community is the mass of the
B-site atom (column 2), that is titanium (47.9u) for BTO, and STO [76],
and tantalum (180.9u) for KTO. This choice is motivated by the fact
that ferroelectric polarization results in large part from the relative
displacement of the B-site cation and its oxygen coordination octahe-
dron. We note, however, that the A-site cation is also displaced from its
high-symmetry position in the ferroelectric ground state, and that the
cations contribute less to the dynamical displacements in the soft mode
than the oxygen anions due to their large mass.

With this in mind, the masses of the lighter oxygens (column 3) probably
provide a better definition for the mass of the soft mode in perovskite
oxides, since they have the largest displacements in the polar phonons.
Their combined mass is coincidentally equal to that of titanium, as
already observed by Nakamura et al. [229], possibly explaining why
the choice of the Ti mass yields sensible results in perovskite-oxide
ferroelectric titanates.
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The generalized, mode-independent reduced masses [230], defined
as µ = (

∑
i

1
mi

)−1 (column 4) are 4.6u for all three materials. Since
the reduced mass is dominated by the lightest atom, the value will
be similar for all perovskite oxides. A recently proposed modified
reduced mass [231], meff = ( 1

mA+mB
+ 1

mO3
)−1, (column 5) is also

dominated by the oxygen ions and gives almost the same value for all
three materials considered.

Recently, use of a “Wentzcovich-type” mass, defined as 3∗Mtot

4π2 and
first introduced in the context of molecular-dynamics simulations with
variable cell shape [232] was proposed in the ferroelectrics context [204].
Our values using this formula are shown in column 6 and obviously
are smaller than the ABO3 masses but with the same relative values.

4.6.1.2 Incorporating information about the eigenvectors

The definitions shown in columns 7 and 8 incorporate information
about the phonon eigenvector as well as the masses of the atoms.

In the PI-QMC simulations of refs. [175, 208], the pseudoparticle mass
was calculated as the sum of each atomic mass times its displacement
in the normalized phonon mode eigenvector squared. Interestingly,
this eigenvector mass, listed in column 7 for the softest phonon mode
in each case, has almost the same value in all three materials, and is
almost independent (varying by < 5%) of the particular low-energy
polar phonon mode at Γ chosen for the calculation.

Finally, a phonon effective mass can be defined by analogy to the elec-
tronic effective mass, from the quadratic part of the phonon dispersion
around the Γ point, using m∗ =

 h2

∂2E/∂k2 . (Note that this can not be
used for the acoustic modes, which are linear at Γ ). We list our calcu-
lated values in the final column, noting that they are much smaller
than those obtained from all other methods, and also that the precise
values are strongly sensitive to the detailed numerics of the phonon
calculation.
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4.6.1.3 From experiment

Finally, we mention that an effective mass was extracted from experi-
mental measurements of the domain-wall motion near the ferroelectric
quantum critical point in TTF-QBr2I2, using a simple Wentzel-Kramers-
Brillouin approximation [233]. The value extracted in this way is roughly
half the proton mass, which is three orders of magnitude smaller than
the mass of the TTF-QBr2I2 molecule.

4.6.1.4 Summary of phonon effective mass definitions

The preceding discussion clearly illustrates the difficulty with assigning
a mass to a phonon, with the physically justifiable values given in
Table 4.2 spanning a range of several orders of magnitudes, from less
than 1u to 268u for the materials considered here. In addition, most
of the approaches reviewed assign a mass per formula unit or unit
cell, without considering interactions or coupling between unit cells.
Since polar nanometer-sized domains have recently been observed in
strained STO thin films close to the quantum critical point [198, 234],
an appropriate correction could be to multiply any chosen effective
mass meff by a factor corresponding to the number of correlated unit
cells [235]. Such an argument was used in ref. [175] to justify a large
effective mass, and correspondingly minimal quantum effects, for the
antiferrodistortive rotational mode of STO.

4.6.2 Effective displacements

The same argument that precludes an unambiguous definition of
phonon mass also results in the phonon displacement not being unam-
biguously defined. Our results obtained with mass-weighted coordi-
nates, however, allow us to extract the appropriate displacement within
the double-well potential model corresponding to a particular choice
of the mass. As reported in Table 4.1, our calculated values of σ are
1.15Å

√
u, 0.57Å

√
u and 0.22Å

√
u for BTO, STO and KTO respectively.

In the lower rows of Table 4.2 we list the calculated displacements,
δ = σ/

√
m∗, resulting from these σ values for each choice of mass.



88 a simple model for quantum paraelectrics

For comparison, in Table 4.3 we list (in Å) the calculated displacement
of each individual atom between the high-symmetry centrosymmetric
and low-symmetry polar phases, corrected for any shift in the center
of mass. For the O3 and ABO3 columns, the reported numbers are
the average absolute displacement of all ions, with the direction of
displacements of the oxygens in ABO3 being opposite to that of the
cations. As expected, the displacement of the lightest oxygen ions is
largest in all three materials, although the displacements of the Ti ions
in BTO and STO are also substantial, consistent with the usual Slater
model of the ferroelectric soft mode. Also as expected, the average
displacements are largest for BTO, with its deeper well and largest σ
and progressively smaller for STO and KTO. Both the O3 and ABO3

values have approximately the same BTO : STO : KTO displacement
ratios of ∼5.5 : ∼3 : 1.

Table 4.3: Various definitions of displacement and corresponding values (in Å)
for the materials BTO, STO and KTO (all numbers normalized to one formula
unit and the center-of-mass motion).

A B O3 ABO3

BaTiO3 0.007 0.114 0.139 0.107

SrTiO3 0.016 0.044 0.073 0.056

KTaO3 0.006 0.008 0.026 0.019

Six of the mass choices in Table 4.2 – the O3, ABO3, reduced, AB/O3.
Wentzcovich and eigenvector masses – give BTO : STO : KTO displace-
ment ratios close to the ∼5.5 : ∼3 : 1 pattern identified for the O3 and
ABO3 displacements of Table 4.3. Of these, the O3 values give the most
consistent match between the two definitions, with the displacements
extracted from the ABO3 mass choice underestimating the ABO3 dis-
placements in the double well, and all other mass choices providing
values that are larger than any of the double-well displacement options.
In particular, the tiny effective mass calculated from the phonon disper-
sion curvature, yields displacements comparable to the size of one unit
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cell which are likely unphysically large, even in the strongly fluctuating
quantum regime.

To summarize this section, if one is working with a model for polar
quantum fluctuations that requires a separation into mass and displace-
ment, then the best choice for the mass is the eigenvector-weighted one,
as it provides the closest match with the calculations in mass-weighted
coordinates that make no arbitrary mass choice. If the phonon eigen-
vectors are not available, then the mass of the lightest atoms provides
a good approximation, since it correctly captures the dominance of
the lightest atoms in the displacements of the soft polar mode. For
perovskite titanates, the displacement of the B atom accidentally gives
good results, since the mass of the titanium ion is equal to that of the
three oxygens. It is not a good choice, however, for general non-titanate
perovskites. This finding that the mass of the tunneling entity is best
described by the oxygen mass implies that the effective mass shift on
16O → 18O substitution should be as large as the change in mass of the
oxygens (12.5%). Note, however, that this is still considerably smaller
than the 100% change on deuteration of ammonia.

4.7 Conclusion

In summary, we find that a simple one-dimensional quantum model,
incorporating only two parameters – the energy difference between
polar and non-polar structures and the frequency of the soft polar mode
in the non-polar structure – can straightforwardly distinguish between
ferroelectric, quantum-paraelectric and paraelectric materials. We illus-
trate the model using conventional DFT and DFPT calculations for the
cases of ferroelectric BaTiO3, strongly quantum paraelectric SrTiO3 and
weakly quantum paraelectric KTaO3. In addition, we provide a chart
that indicates the behavior of any material given the values of these
two parameters.

Within our model, we find that experimentally accessible changes in
lattice parameter have a strong effect on the shape of the double-well
potential and hence the zero-point and low-lying energy levels, and
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readily transform STO and KTO from quantum paraelectric to ferro-
electric behavior, consistent with experimental observations [66, 187,
193, 236, 237]. Complete isotopic substitution of 18O for 16O, on the
other hand, has a minimal effect, in contrast to the reported behavior in
SrTiO3 [17, 69, 191, 192]. This could of course be a result of our model’s
simple description of the quantum mechanical behavior of the ions,
although we note that the model accurately captures the change in
tunneling frequency on deuteration of ammonia. Therefore, we suggest
that care should be taken on interpreting changes in behavior after iso-
topic substitution in STO and KTO, and in particular that any possible
changes in lattice parameters during the oxygen exchange process are
accounted for. Here, path-integral quantum Monte Carlo simulations,
similar to those of refs. [175, 176, 238], for 18O-substituted STO and
KTO, would be invaluable in determining the detailed influence of the
oxygen mass increase on the quantum paraelectric behavior. Finally,
we summarize the various choices that have been made in the liter-
ature for phonon mass and use the results from our calculations in
mass-weighted coordinates to determine the corresponding phonon
displacement in each case. While we prefer the use of mass-weighted
coordinates to avoid such an arbitrary and unphysical separation, we
identify some choices which lead to reasonably sensible combinations
of mass and displacement, particularly for BTO and STO.
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4.8 Appendix

Here we provide double well properties obtained using LDA and
PBEsol functionals for comparison to the ones shown in Table 4.1,
which were obtained using the PBE functional.

Table 4.4: Calculated double-well barrier half-widths, σ, and barrier heights,
V0, and resulting energy splittings, E1 − E0, and energy difference E0 − V0, of
BTO, STO and KTO, using LDA and PBEsol functionals. Entries with V0 = 0.00
and no entry for σ have single-well potentials rather than double wells. The
main differences from the PBE values of the main text result from slightly
smaller lattice parameters which in turn favor the paraelectric states.

double well energies [meV]

σ [Å
√

u] V0 [meV] E1 − E0 E0 − V0

LD
A

BaTiO3 0.647 11.82 7.77 −2.11

SrTiO3 0.00 9.26 4.63

KTaO3 0.00 14.60 7.30

PB
Es

ol BaTiO3 0.856 34.63 1.67 −17.36

SrTiO3 0.214 0.172 18.18 6.68

KTaO3 0.00 11.14 5.57

4.9 Data availability

All input data and the core double well program is available here:

Tobias Esswein and Nicola A. Spaldin. Ferroelectric, quantum paraelec-
tric or paraelectric? Calculating the evolution from BaTiO3 to SrTiO3 to
KTaO3 using a single-particle quantum mechanical description of the
ions. Materials Cloud Archive 2022.105 (2022).
DOI: 10.24435/materialscloud:r3-df .

http://dx.doi.org/10.24435/materialscloud:r3-df
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4.10 Additional results: Virtual crystal approxi-
mation

Using the same method as presented before, we now look at the phase
transition from quantum paraelectric KTaO3 (KTO) to ferroelectric
KNbO3 (KNO) using the so-called virtual crystal approximation (VCA).
This transition has been well-studied since the 1980s as a prime example
of a paraelectric to ferroelectric phase transition [239–241]. Tantalum
and niobium are of roughly the same size and have the same valence
charge, nevertheless their respective potassium perovskite-structure
oxides differ vastly in their polar properties: As we already know, KTO
stays cubic and (quantum) paraelectric down to zero kelvin, whereas
KNO undergoes three phase transitions to ferroelectric states, similarly
to BTO [241]. This behavior has been attributed to a large difference in
the way that the O-2p orbitals hybridize with the Ta/Nb-d orbitals [241–
243]. We chose this system because crystals can be grown experimentally
over the whole composition range [241], providing data to compare
against, and because Ta and Nb are chemically similar, allowing us to
test the suitability of the virtual crystal approximation for our model.

The virtual crystal approximation, first described in 1931 [244], is a
method in which a real atom is replaced by a virtual atom, which is
constructed in the context of DFT by a linear combination of the pseudo
potentials of two or more individual atoms. It is a widely used method
in DFT calculations [245–247], and has been shown to successfully
describe dielectric and piezoelectric properties of perovskite alloys
[248–250].

Here, we calculate the lattice properties and double well characteristics
of the phase space between pure KTO and pure KNO in steps using the
VCA, and compare it to two calculations of comparable alloy values
within 2× 2× 2 supercells. To simplify the comparison, we calculate all
properties in the rhombohedral structure, which is the experimental
lowest-energy structure for KNO. Using the relaxed lattice constants
calculated with the PBE functional, the lowest-energy structure of
KTO is rhombohedral as well, as indicated by the imaginary phonon
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frequency at Γ of cubic KTO in the published work above. The main
results of these calculations are summarized in figure 4.7, which has
the same layout and color scale as figure 4.6.
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Figure 4.7: 2D map of our calculated oscillation/tunneling frequencies (color
bar), the same as in figure 4.6. Solid black circles show the evolution from pure
KTaO3 to pure KNbO3 using the virtual crystal approximation (VCA). Solid
white circles show the results of the corresponding supercell calculations with
12.5% and 50% niobium content, respectively. The black open symbols serve
as reference points for comparison with figure 4.6.

Black open symbols show the original results for KTO, STO and BTO
from figure 4.6 and serve as reference for comparison. The solid black
circles show the new results, namely the double well characteristics
of the phase space from KTO to KNO in four steps. The solid white
circles show the results of the two 2× 2× 2 supercell calculations we
made, one at 12.5% Nb with one niobium in the supercell, and one
at 50% Nb with tantalum and niobium ions arranged regularly in a
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three-dimensional checkerboard pattern within the supercell. The white
dots are very close to their VCA counterparts with the same alloy
level, suggesting that the VCA is a reasonable way to approximate this
system. We also find that various geometric properties (not shown here)
are quite similar between VCA and supercell structures.

One can clearly see that a crossover from the (quantum) paraelectric
oscillating to the more ferroelectric tunneling regime occurs as the per-
centage of niobium is increased, with pure KNO lying very close to
BTO. The crossover takes place just above 12.5% Nb, which is a higher
value than that of the experimentally observed transition at around
1% [241]. There is no simple explanation for this shift, but the easi-
est way to tune the calculation results towards the experimental ones
would be the application of small negative hydrostatic pressure, which
slightly enlarges the unit cells. Additionally, the pure KTO value shown
here sits much closer to the transition line compared to the KTO of
figure 4.6, because here we allowed KTO to relax into its lower-energy
rhombohedral structure, increasing both the barrier height V0 and the
double well width σ. This large shift in properties, caused by only a
small change in lattice geometry (from KTO to KNO, the rhombohedral
angle shrinks from 89.97◦ to 89.80◦, while the lattice constant grows
from 4.02Å to 4.06Å), emphasizes again how sensitive the quantum
paraelectric properties are to small differences in the lattice parameters.

The KTO–KNO system could be a very interesting one to also test su-
perconductivity on surfaces, as the materials are perfectly mixable, and
a small addition of niobium tunes KTO towards the quantum critical
point, potentially enhancing the superconducting Tc. To get a better idea
of the potential properties of this system at very low doping, one could
build on the results presented here, by first testing the VCA against
larger and differently ordered supercells, and then by calculating the
properties at very low doping values around the experimental transi-
tion concentration of ∼ 1 at.-% Nb, a regime conventional supercells
can not easily reach.



4.11 summary and outlook 95

4.11 Summary and Outlook

From this chapter, we have learned several things. The first and probably
most important one is that defining the quantum critical point in a
quantum paraelectric is more difficult than initially expected. The exact
definition is not clear, and different models to describe the quantum
fluctuations have been used in the past, some of which only accidentally
worked reasonably well for titanates. Within our model, probably the
best definition of the quantum critical point is the point at which the
zero-point energy (ZPE) crosses the double-well barrier. If the ZPE lies
above the double-well barrier, the maximum of the quantum-mechanical
observation probability is centered and a non-polar structure results. If
the ZPE lies below the double-well barrier, the observation probability
has two non-centered maxima, indicating the crossover to a preferably
polar structure.

There are several possible ways of extending this model to capture more
of the properties of the real system. One idea is to extend the model to
two dimensions, allowing the ions to tunnel not only through the barrier,
but also around it, similar to the Mexican-hat like potential observed
e.g. in hexagonal manganites [251, 252]. Nudged-elastic band (NEB)
calculations [253] could be very useful for that, as they are effective
in calculating the lowest-energy path and saddle points between two
energy minima. Another idea could be to study systems with imaginary
phonon modes that do not sit at Γ , allowing one to capture e.g. the
alternating antiferroelectric ordering that corresponds to using a zone-
boundary phonon [254]. Finally, as already mentioned in the main text,
path-integral quantum Monte-Carlo simulations of the isotope effect
in STO would be important to check if the predictions of our model,
namely that the isotope effect is much smaller than expected, can be
reproduced or not.
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A note on linear and angular frequencies

Experimental phonon frequencies are usually given as linear fre-
quencies ν with units THz, or 1/s. The phonon frequencies in the
output of Quantum Espresso (from dynmat.x or matdyn.x) are
given with units THz and cm−1, and called ω, which is usually an
angular frequency with the unit 2ı/s. This would lead to the naive
conclusion that one can use the calculated frequencies directly in a
Schrödinger equation, which requires angular frequencies, and one
has to multiply experimental frequencies with 2π to match with the
calculated frequencies. Unfortunately, the quantity called ω in the
output of QE is actually the linear frequency νwith the unit 1/s and
not the angular frequency ω with the unit 2ı/s – something which
had already been noticed in 2012 [255], but, at the time of writing,
has not been corrected in the output. Therefore, when working
with phonon frequencies and Schrödinger equations, one should
always keep this difference in mind and pay special attention to
dimensionless factors of 2π.
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5.1 Preface

Research on superconductivity in KTaO3 has seen a surge in the past
two years, as there have been several experimental reports of super-
conducting critical temperatures reaching up to 2K since 2021 [72–74],
clearly surpassing the previous number of 0.05K in KTO [70], and even
the 0.6K observed in more quantum paraelectric STO [31, 256].

The coupling between electrons and phonons plays a key role in all
established theories of superconductivity, from early BCS theory [23] to
the more recent Eliashberg theory [29, 30]. The issue with KTO and also
STO is that these theories are not directly applicable, mainly because
one main assumption in these systems is not valid: the so-called Migdal
criterion [68, 257] is not fulfilled. This criterion states that the factor
ωD/ϵF must be small, which is the case for most superconductors,
but not for quantum paraelectric STO and KTO. Quantum fluctua-
tions push the ferroelectric soft phonon mode up in frequency, and
superconductivity can be observed at very low doping, so that ωD/ϵF
can become rather large [67]. This poses a particular problem for STO,
where superconductivity has been observed at doping levels down to
5× 1017 e/cm−3.

The detailed electron-phonon coupling spectrum of STO was calculated
in 2018 [258]. The work focused on transport properties and showed
that the unusual electron mobility in STO can be attributed to the
higher-energy LO modes and the ferroelectric soft mode, both of which
are discussed as being relevant for superconductivity [67, 182, 259, 260].

97
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Such calculations were previously lacking for KTO, so motivated by
the recent measurements of surface and interface superconductivity in
KTO [72–74], we present in this chapter the calculated electron-phonon
coupling strength in KTO.

Before presenting our results, I address the question of why we perform
our calculations for bulk KTO, rather than for KTO slabs with surfaces,
which would resemble the experimental systems more closely. The
main reason for this is computational cost: the calculation of electron-
phonon coupling properties is quite expensive. To give an example, one
complete EPW calculation of a five-atom KTO unit cell with a coarse
k mesh of 24× 24× 24 and a coarse q mesh of 4× 4× 4 (the standard
meshes we use in the paper, resulting in one panel of figure 5.2) needs
∼ 25 ′000 core hours, which corresponds to more than two days on four
nodes on Euler, the high-performance computing cluster of ETH Zurich.
While this may seem like a reasonable amount of time, increasing the
phonon mesh to just 8× 8× 8 roughly doubles the required resources,
mainly because the phonon calculation now needs ∼ 26 ′000 core hours
instead of just ∼ 1 ′300, resulting in almost 5 days total computation
time. Using parallelization and more than four nodes (with 128 cores
each) may seem like a quick fix for this problem, but unfortunately
EPW does not scale well beyond ∼ 600 cores, so four to five nodes is
the maximum above which no reasonable gain is achieved, at least with
our current software setup.

From this it can be seen that the calculation of slabs with several unit
cells of KTO and lower symmetry of the overall system due to the
surface would quickly take months and more, optimistically assuming
that no additional issues arise due to the larger system. This leaves us
for now with the computational results for bulk KTO as presented in
this chapter, which provides insight into possibly coupling mechanisms,
in spite of not addressing directly the anisotropic surface superconduc-
tivity.
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Explanatory Remarks

The following section is available as preprint:

Tobias Esswein and Nicola A. Spaldin. First-principles calculation of
electron-phonon coupling in doped KTaO3. arXiv 2210.14113 (2022).
DOI: 10.48550/arXiv.2210.14113.
—
Minor changes have been made to formatting of text and figures to adapt to the layout of

this thesis, in compliance with the CC BY SA 4.0 license of the preprint.

5.2 Abstract

Motivated by the recent experimental discovery of strongly surface-
plane-dependent superconductivity at surfaces of KTaO3 single crys-
tals, we calculate the electron-phonon coupling strength, λ, of doped
KTaO3 along the reciprocal-space high-symmetry directions. Using the
Wannier-function approach implemented in the EPW package, we calcu-
late λ across the experimentally covered doping range and compare its
mode-resolved distribution along the [001], [110] and [111] directions.
We find that the electron-phonon coupling is strongest in the optical
modes around the Γ point, with some distribution to higher k values in
the [001] direction. The electron-phonon coupling strength as a function
of doping has a dome-like shape in all three directions, and is largest in
the [001] direction and weakest in the [111] direction. This is in contrast
to the experimentally measured critical temperatures, which are highest
for the (111) plane, pointing to a non-BCS character of the supercon-
ductivity. The strong localization of λ in the soft optical modes around
Γ suggests an importance of ferroelectric soft-mode fluctuations.

5.3 Introduction

Perovskite-structure potassium tantalate (KTaO3, KTO) exhibits many
interesting phenomena, resulting from its high dielectric constant [76],
strong spin orbit coupling [261] and charged ionic layers [262]. The

http://dx.doi.org/10.48550/arXiv.2210.14113
https://creativecommons.org/licenses/by-sa/4.0/
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strong spin-orbit coupling (SOC), caused mainly by the heavy tantalum
ion, leads to a band splitting of up to 400meV [261, 263] and possible
applications in spintronic devices [78, 81]. The high dielectric constant,
associated with a quantum paraelectric state [17] similar to that of
SrTiO3 (STO) [18], indicates proximity to ferroelectricity, and is pre-
dicted to yield a large strain-dependent Rashba spin splitting [79]. The
need to compensate the alternating charged ionic layers at the surfaces
is predicted to induce lattice polarization in thin films [264], and leads to
the accumulation of compensating charges at the surfaces of bulk sam-
ples [262]. The origin and nature of the compensating charge are still
open questions, with reports of conducting two-dimensional electron
gases (2DEGs) [80, 265], charge-density waves and strongly-localized
electron polarons [266], and terrace-like structures of alternating termi-
nation [267], depending on the annealing atmosphere and temperature.

Perhaps the most intriguing behavior of KTO, is its recently discovered
low-temperature superconductivity on electron doping [70]. Super-
conductivity was first achieved using ionic liquid gating on the (001)
surfaces of KTO single crystals, for which critical temperatures of up to
50mK were found at 2D doping concentrations of between 2× 1014 and
4× 1014 cm−2 [70, 71]. Note that these values correspond to 3D doping
concentrations of approximately 4.1× 1020 cm−3 to 1.2× 1021 cm−3,
considerably higher than the ∼1.4× 1020 cm−3 possible using chemical
doping with barium in bulk KTO [82]. (For the conversion between
2D and 3D carrier concentrations see Ref. [70] and the Appendix). A
subsequent study of LaAlO3-capped KTO (110) surfaces, with 2D dop-
ing concentrations of 7× 1013 cm−2, reached markedly higher critical
temperatures up to 0.9K [72]; (111)-oriented KTO interfaces with either
EuO or LaAlO3 showed even higher Tcs of up to 2.2K at similar carrier
concentrations [73]. Note that no superconductivity was found down to
25mK at (001)-oriented KTO interfaces at these lower carrier concentra-
tions [73]. More recently, in an ionic liquid gating setup similar to that
of Ref. [70], but at lower 2D doping densities of around 5× 1013 cm−2,
superconductivity was found at the (110) and (111) surfaces with Tc

of around 1K and 2K respectively, and not at the (001) surface down
to 0.4K [74]. The reported critical temperatures from the literature are
collected as a function of carrier concentration in figure 5.1.



5.3 introduction 101

The mechanism underlying the superconductivity, as well as its strong
and unusual dependence on the orientation of the surface or interfacial
plane, are not yet established. Indeed, even in the related quantum
paraelectric STO, in which superconductivity was found more than
half a century ago [31, 268], the pairing mechanism remains a subject
of heated debate (for a recent review see Ref. [67]). While the persis-
tence to low carrier concentrations [268] and the anomalous isotope
effect [69] challenge conventional BCS theories [23, 179], it is likely
that electron-phonon coupling in some form, as well as proximity to
ferroelectricity [35, 180–182, 269, 270] play a role. Spin-orbit coupling
has also been implicated [271–274], and would be consistent with the
observed higher critical temperatures in KTO, with its heavy tantalum
ion, compared to STO [85, 269, 270]. The surface-plane dependence in
KTO is captured by a model in which out-of-plane polar displacements
of the Ta and O ions allow a linear coupling of the transverse optical
(TO) phonon to the electrons in the t2g orbitals (dxy, dyx and dzx); this
coupling would otherwise go to zero as q approaches Γ [84]. The strong
dependence of the superconducting Tc on surface orientation is then
explained by different inter-orbital hopping of electrons between adja-
cent tantalum sites via the oxygen orbitals, with the highest hopping at
(111) surfaces, followed by (110) surfaces, and no hopping allowed by
symmetry at (001) surfaces.

It is clear that a thorough picture of the electron-phonon coupling (as a
function of electron doping and throughout the Brillouin Zone) in KTO
is an essential step towards developing a complete theory of its super-
conductivity. While the electron-phonon coupling has been calculated
from first-principles for STO [258], to our knowledge it is lacking for
KTO, and the goal of this work is to remedy this gap. Here we report
the mode-resolved electron-phonon coupling strengths, λ, obtained
using first-principles calculations based on density functional theory,
for cubic KTaO3 across the range of experimentally accessible electron
doping values. We extract the mode-resolved total λ as a function of
carrier density, and focus in particular on differences between the [001],
[110] and [111] high-symmetry directions, which are reciprocal to the
experimentally measured surface and interfacial planes. Our main find-
ings are that the calculated total electron-phonon coupling strengths
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Figure 5.1: Superconducting critical temperatures, extracted from references
by Ueno et al. [70], Chen et al. [72], Liu et al. [73], and Ren et al. [74]. One
can see that the (111) surface/interface reaches the highest Tc of up to 2K,
followed by the (110) surface/interface reaching almost 1K. While the original
paper by Ueno et al. [70] reported Tc up to 0.05K at high doping, more
recent publications were not able to reproduce this at lower doping, down to
0.025K [73] and 0.4K [74].

do not follow the measured trends in superconducting Tc, and that a
concentration of λ around Γ suggests a mechanism involving the polar
soft mode.

5.4 Methods

To calculate the forces and total energies we use density functional
theory within the generalized gradient approximation (GGA) as imple-
mented in the Quantum ESPRESSO 7.0 code [115–117]. We describe
the exchange-correlation functional using the PBEsol functional [95],
and perform the core-valence separation with the ultrasoft GBRV pseu-
dopotentials [97, 98]. We use a kinetic energy cutoff of 60Ry (816 eV)
for the wavefunctions and a 24× 24× 24 k-point mesh including Γ for
all unit cells. Doping is achieved in the range from 0.0001 to 0.1 elec-
trons/formula unit (e/fu) using the background-charge method with
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Gaussian smearing of 1meV width. Total energies are converged to
1µeV (7.35× 10−8 Ry) and forces to 0.1meV/Å (3.89× 10−6 Ry/Bohr).

Both unit cell size and shape, as well as internal coordinates, are fully
relaxed, resulting in a non-polar cubic perovskite structure with a lat-
tice constant of 3.988Å, which is very close to the experimental one
of 3.989Å [275]. Phonons are calculated on a 4× 4× 4 q-point mesh,
with convergence tests on 6× 6× 6 and 8× 8× 8 q-point meshes show-
ing only minor differences (see appendix on page 109). The resulting
phonon dispersion for very low doping, using the PBEsol-relaxed unit
cell, corresponds well with the room-temperature phonon dispersion
calculated recently using Quantum Self-Consistent Ab Initio Lattice
Dynamics (QSCAILD), which is based on DFT and a self-consistent sam-
pling method to capture both thermal and quantum fluctuations [276].

The electron-phonon coupling properties are calculated using the EPW
5.4.1 code [105, 109], which is included in the Quantum ESPRESSO
package. The relevant electronic bands in KTaO3 are the three Ta-5d
t2g bands, which are reproduced using maximally localized Wannier
functions as implemented in the Wannier90 code [277], used internally
by EPW. The electron-phonon matrix elements are first calculated on
coarse 24× 24× 24 k-point and 4× 4× 4 q-point meshes and then in-
terpolated onto fine grids using maximally localized Wannier functions.
We use a random fine mesh with 1

′
000

′
000 k points to calculate the

mode-resolved electron-phonon coupling strengths, λqν, along a path
between cubic high-symmetry points with 200 q points between each
point. Convergence test results can be found in the appendix on page
109.

5.5 Results and Discussion

Our calculated mode-resolved electron-phonon coupling strengths λ at
seven different doping levels are shown in figure 5.2, with λ integrated
over each q point shown in the top part of each subplot, and λ integrated
over frequency (decomposed into 100 frequency bins) shown on the
right of each subplot. The doping range spans from 0.0001 e/fu to
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0.1 e/fu, corresponding to 1.6× 1018 e/cm3 to 1.6× 1021 e/cm3 (3D) or
roughly 6.2× 1012 e/cm2 to 4.7× 1014 e/cm2 (2D), which covers the
whole experimental doping range.

There are several points to note. First, there are no imaginary frequen-
cies, as the structural relaxation of KTO using the PBEsol functional
results in a cubic unit cell with no structural instabilities. The frequency
of the polar soft mode at Γ , which can be imaginary using the PBE
functional, is 2.7THz for the lowest doping value of 0.0001 e/fu, and
hardens to 5.0THz at the highest doping value of 0.1 e/fu. It has the
strongest electron-phonon coupling strength λ throughout the whole
doping range. Additionally, contributions to λ can be seen in the higher-
energy optical modes around Γ . The strong coupling of the electrons
to the polar modes at the Γ point suggests that the ferroelectric fluctu-
ations associated with quantum paraelectricity could play a key role
in the superconductivity in KTO, as already suggested for quantum
paraelectric STO [35, 67, 182].

In the [110] (Γ to M) and [111] (Γ to R) directions, the electron-phonon
coupling occurs only close to the Γ point; here the optical phonons
correspond to long-wavelength ferroelectric displacements. In the [001]
Γ -X direction, in contrast, the coupling, while strongest close to Γ ,
remains present along the entire high-symmetry line, also at higher
doping. This results also in a larger total contribution along the [001]
direction than along [110] and [111]. We note that the form of λ in
reciprocal space closely follows that of the Fermi surface, which at
these doping levels is close to spherical except for elongations along the
cartesian reciprocal axes reflecting the flat electronic bands along Γ to X
(see e.g. fig 3.3 of Ref. [278]). As expected, at low doping, the electron-
phonon coupling is limited largely to the lowest phonon frequencies,
then extends to higher frequencies as the doping is increased and higher
energy electronic bands are populated.

The calculated integrated λ values along the three high-symmetry direc-
tions, which we use as proxies for the total electron-phonon coupling
strength in each reciprocal direction, are shown as a function of doping
concentration in figure 5.3.
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Figure 5.3: Total electron-phonon coupling strength λ integrated along each
high-symmetry direction at different doping values, covering a range from
low concentration to the maximum achieved by ionic liquid gating [70]. The
numbers on the left axis correspond to the mean lambda value of each point
along each high-symmetry direction. The 2D doping values on top are estimated
from the 3D values on the bottom axis using the a conversion method described
in the appendix (see fig. 5.4). The strongest electron-phonon coupling is along
the [001] direction, while the [110] and [111] directions have almost the same
magnitude and evolution with doping.

In all directions in reciprocal space there is a dome-like structure in the
calculated λ, with a smooth maximum between 1× 1019 e/cm−3 to 1×
1020 e/cm−3 (2.0× 1013 e/cm−2 to 8.3× 1013 e/cm−2) for the [110] and
[111] directions. The more pronounced peak around 1× 1020 e/cm−3

in the [001] direction coincides with the electron doping reaching the X
point of the phonon band structure, as can also be seen in figure 5.2.
The experimental data do not show such a dome-like trend, with the
(111) surfaces/interfaces in particular showing a linear increase of Tc

with increasing doping.

If KTO were a classical BCS theory superconductor, we would expect
the critical temperatures of figure 5.1 to follow roughly the electron-
phonon coupling strength of figure 5.3. Comparing these two figures, it
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is obvious that there is no observable correlation. While experimentally
the highest Tc is observed for the (111) surfaces/interfaces, and the
Tc for the (001) surfaces/interfaces is very low, the electron-phonon
coupling is strongest for the [001] direction, and weakest for the [111]
direction.

Summary

In summary, we have presented the calculated electron-phonon cou-
pling in KTaO3 as a function of electron doping between 1.6×1018 e/cm3

and 1.6× 1021 e/cm3 and analyzed the results in light of the recently
reported superconductivity and its surface dependence. Our calcula-
tions indicate that the measured trends in superconducting Tc are not
reflected in the calculated electron-phonon coupling strengths λ, con-
firming earlier suggestions that the superconductivity is not BCS-like in
nature [17, 71, 73, 279]. The concentration of λ in the lowest frequency
optical modes close to Γ hints towards a mechanism in which the polar
soft mode plays a role.
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5.7 Appendix

This chapter contains data and information on the charge carrier con-
version and numerical convergence of the calculations presented in the
main text.

Conversion between 2D and 3D carrier densities

The interpolation used for conversion between n2D and n3D carrier
densities is shown in figure 5.4. It is based on data from figure S6 of
the supplementary information of Ref. [70].

The corresponding interpolation formula is

n3D = 6.1078 ∗ 10−3 ∗n1.5960
2D .

According to this conversion, a 3D carrier concentration of 1.4×1020 cm−3

corresponds to 1.0× 1014 cm−2, and 2× 1021 cm−3 to 5.4× 1014 cm−2.
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Figure 5.4: Interpolation used for conversion between n2D and n3D carrier
densities (solid line), based on data for KTO from figure S6 of the supplementary
information of Ref. [70] (dotted line). The corresponding interpolation formula
is n3D = 6.1078 ∗ 10−3 ∗n1.5960

2D .
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Decay properties in real space

The spatial decay of the electron-phonon matrix elements in real space
for different q-meshes is shown in figure 5.5 (see Refs. [109] and [110] for
more details). We observe a decay of the phonon perturbation of almost
three orders of magnitude using the q4 mesh, and a flattening after,
without a lowering in absolute numbers, using the q6 and q8 meshes,
indicating that the q4 mesh is enough for the qualitative comparison we
make. The decay of the electronic Wannier functions is well-converged
using the 24× 24× 24 coarse k-point mesh, as can be seen from the
bottom right panel of figure 5.5.

Figure 5.5: Decay of the electronic Wannier functions and phonon perturbation
part of the electron-phonon matrix elements in real space for 4× 4× 4 (q4),
6× 6× 6 (q6) and 8× 8× 8 (q8) q meshes (top left, top right and bottom left).
The electronic part (bottom right) is the same in all cases and well converged
using a 24× 24× 24 k-mesh.
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Convergence with coarse q mesh

To test the convergence of our results, we calculate the phonons and the
electron-phonon coupling strength λ along the same high-symmetry
path based on different q-meshes, with results shown in figure 5.6.
The phonon frequencies themselves at the high-symmetry points are
well converged, there are only minor variations in between due to the
interpolation method used. The colorscale in each plot is adjusted to
each respective maximum λ value and not directly comparable with
the one of fig. 5.2, to highlight the relative similarity of the λ values.
The actual λ values increase by roughly a factor of two in the q6 and q8

cases, as visible from the integrated values in the top and side panels
of each plot.

5.8 Summary and Outlook

We can draw two conclusions from this chapter: On the one hand, there
is no correlation between the electron-phonon coupling strength λ and
the surface dependence of the experimentally observed superconduct-
ing Tc, at least when using the reciprocal directions of bulk KTO as
proxies for surface orientation. This indicates that the BCS theory is
not sufficient to describe superconductivity in KTO. On the other hand,
the strong localization of λ around Γ at the polar soft mode points to
ferroelectric fluctuations as possible facilitators of superconductivity.

Computationally, a few things could be done to improve the quanti-
tativeness of our reported results, and to gain more insight into the
surface-termination dependence of KTO superconductivity.

One obvious next step would be the inclusion of spin-orbit coupling
(SOC) into the EPW calculations, increasing in computational cost by a
factor of five to eight. Spin-orbit coupling and Rashba coupling have
been suggested as relevant for enabling the coupling of the ferroelectric
soft mode to the electrons in incipient ferroelectrics [270]. The main
effect of SOC on the electronic bands is an electronic band splitting at
the bottom of the conduction band of around 400meV. This affects the
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Figure 5.6: Phonon dispersion and mode-resolved electron-phonon coupling
strength λ at a doping level of 0.01 e/fu for q4, q6 and q8 meshes (top to
bottom).
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density of states at low doping values, but has an almost negligible
influence on the phonon frequencies, as we see in preliminary calcula-
tions. How this splitting affects the electron-phonon coupling strength
is difficult to predict, but it could lead to a change of λ.

Next, an increase of the coarse phonon mesh from 4× 4× 4 to higher
values is needed for quantitative convergence of the results, with tests
with denser meshes up to 16× 16× 16 or more required to see to what
values λ converges numerically. This would not necessarily improve the
qualitative understanding of the problem as discussed in the main body
of the text, but accurate numbers for mode-resolved and total λ could
benefit research in all areas connected to electron-phonon interactions.

Finally, the computation of already mentioned KTO slabs with relaxed
surfaces would result in new insights into surface effects. Relaxing
the slabs while screening for imaginary modes indicating structural
instabilities could already be very helpful in understanding if and
how polar fluctuations manifest at the different surfaces. Calculation
of electron-phonon coupling properties using these slabs, however, is
currently unfeasible.





6
Summary and Outlook

Throughout the previous chapters, I have presented my work on fer-
roelectric and quantum paraelectric materials, their properties, and
how they change with doping, using first-principle calculations on the
perovskite materials BaTiO3, SrTiO3 and KTaO3.

In chapter 3, we showed that polarization and metallicity can coexist
in BaTiO3. We discovered that different dopants have different effects
on the polarization, ranging from an unexpected increase to complete
suppression. We found that the main contribution to the polarization
change comes from geometry changes, followed by the charge carriers
(electron-doping) and the impurity atom itself (hole-doping).

In chapter 4, we focused on the quantum paraelectric state. We de-
veloped a model that explicitly treats the quantum nature of the ions
and is based on quantities that can be extracted from simple DFT and
DFPT calculations. We showed that substitution of 18O in SrTiO3 may
have a smaller effect on the quantum paraelectric properties than previ-
ously expected. We also collected and summarized different ways of
describing this quantum paraelectric state in the literature and showed
that the quantum tunneling is best described by the eigenvector of the
ferroelectric soft phonon mode and its imaginary phonon frequency.

Finally, in chapter 5, we calculated the mode-resolved and total electron-
phonon coupling strength λ in the context of the highly surface-termina-
tion dependent superconductivity in KTaO3. We showed that there is
no direct correlation between the total λ along different reciprocal
directions and the experimentally measured Tc of different surfaces,
indicating that the superconductivity is not of the simple BCS-type.
Instead, the strong localization of λ at the ferroelectric soft mode at low
energies hints towards a coupling mechanism involving this phonon
mode.
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Looking ahead, several interesting topics and directions are worth
pursuing, both computationally and experimentally.

On the topic of ferroelectricity in metals, our calculations predicted an
increase in polarization with potassium doping, which should be tested
experimentally. For the model for quantum paraelectricity, a computa-
tional test of our isotope effect predictions using more sophisticated
path-integral quantum Monte-Carlo simulations would be valuable in
confirming the validity of our model. Furthermore, an extension to two
dimensions would be worthwhile, in improving the model by capturing
more of the underlying energy surface.

The topic of superconductivity in KTaO3 is probably the most intriguing
at the moment, and the absence of correlation between electron-phonon
coupling strength λ and superconducting critical temperatures Tc in
our bulk calculations points to two extensions. Including spin-orbit
coupling in the calculations would be the natural next step to determine
how the electronic band splitting caused by the spin-orbit coupling
influences the λ values. Using actual surface slabs to calculate λ would
bring us much closer to the experimental geometry and would require
either greater computer resources or a methodological extension, due
to the much larger number of atoms and lower symmetry.

Finally – while I have to admit that we will most probably not see room-
temperature superconductivity in any of the three studied materials –
a better understanding of the ferroelectric and quantum paraelectric
phases and their behavior upon doping, to which I have contributed
with this thesis, will hopefully lead to a better understanding of the
origin of superconductivity in exotic superconductors and, ultimately,
to room-temperature superconductivity in related systems, where su-
perconductivity and quantum effects are intimately linked.
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