Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases

Abstract

Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell’s secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.

Key points

  • The endoplasmic reticulum (ER) regulates crucial processes governing cardiovascular function; ER and mitochondria contacts assist in the transport of mitochondrial Ca2+, and abnormalities cause cardiomyocyte mitochondrial dysfunction.

  • ER stress can be beneficial through an adaptive unfolded protein response (UPR) or detrimental through a maladaptive UPR; excessive ER stress perturbs the function of secretory pathways, contributing to cardiovascular pathology.

  • ER stress can be either a cause or a consequence of cardiovascular disease (CVD); disrupted ER homeostasis provokes the onset of CVD, which further exacerbates ER stress, creating a vicious cycle.

  • Canonical and non-canonical ER stress signalling can contribute to either cardiovascular protection or pathology, depending on the cellular environment and disease progression status.

  • Classic ER stress sensors (such as inositol-requiring protein 1α) also have a non-canonical function, such as scaffolding between cellular organelles.

  • Strategies to reduce ER stress (such as small-molecule proteostasis promoters and gene therapy) help to stabilize misfolded proteins and promote correct protein folding, thereby contributing to the prevention and management of CVD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ER contacts with organelles and ER function in protein, lipid and Ca2+ homeostasis.
Fig. 2: ER stress in cardiovascular disease.
Fig. 3: Adaptive and maladaptive unfolded protein response.
Fig. 4: Interplay between cardiovascular disease, ER stress and ER stress response.
Fig. 5: ER stress and Ca2+ homeostasis in cardiovascular disease.

Similar content being viewed by others

References

  1. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    CAS  PubMed  Google Scholar 

  2. Pastor-Cantizano, N., Ko, D. K., Angelos, E., Pu, Y. & Brandizzi, F. Functional diversification of ER stress responses in Arabidopsis. Trends Biochem. Sci. 45, 123–126 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Lebeaupin, C. et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 69, 927–947 (2018).

    CAS  PubMed  Google Scholar 

  4. Chen, Y. J., Quintanilla, C. G. & Liou, J. Recent insights into mammalian ER-PM junctions. Curr. Opin. Cell Biol. 57, 99–105 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hwang, J. & Qi, L. Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways. Trends Biochem. Sci. 43, 593–605 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Loi, M. & Molinari, M. Mechanistic insights in recov-ER-phagy: micro-ER-phagy to recover from stress. Autophagy 16, 385–386 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Zhou, H., Wang, S., Hu, S., Chen, Y. & Ren, J. ER-mitochondria microdomains in cardiac ischemia-reperfusion injury: a fresh perspective. Front. Physiol. 9, 755 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Guido, D., Demaurex, N. & Nunes, P. Junctate boosts phagocytosis by recruiting endoplasmic reticulum Ca2+ stores near phagosomes. J. Cell Sci. 128, 4074–4082 (2015).

    CAS  PubMed  Google Scholar 

  9. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1211–1259 (2017).

    Google Scholar 

  10. Hong, J., Kim, K., Kim, J. H. & Park, Y. The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int. J. Vasc. Med. 2017, 2049217 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Diaz-Bulnes, P., Saiz, M. L., Lopez-Larrea, C. & Rodriguez, R. M. Crosstalk between hypoxia and ER stress response: a key regulator of macrophage polarization. Front. Immunol. 10, 2951 (2019).

    CAS  PubMed  Google Scholar 

  12. Wang, S. et al. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br. J. Pharmacol. 175, 1293–1304 (2018).

    CAS  PubMed  Google Scholar 

  13. Wang, X., Xu, L., Gillette, T. G., Jiang, X. & Wang, Z. V. The unfolded protein response in ischemic heart disease. J. Mol. Cell. Cardiol. 117, 19–25 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Glembotski, C. C. Endoplasmic reticulum stress in the heart. Circ. Res. 101, 975–984 (2007).

    CAS  PubMed  Google Scholar 

  15. Groenendyk, J., Agellon, L. B. & Michalak, M. Coping with endoplasmic reticulum stress in the cardiovascular system. Annu. Rev. Physiol. 75, 49–67 (2013).

    CAS  PubMed  Google Scholar 

  16. Gonzalez-Teuber, V. et al. Small molecules to improve ER proteostasis in disease. Trends Pharmacol. Sci. 40, 684–695 (2019).

    CAS  PubMed  Google Scholar 

  17. Vega, H., Agellon, L. B. & Michalak, M. The rise of proteostasis promoters. IUBMB Life 68, 943–954 (2016).

    CAS  PubMed  Google Scholar 

  18. Valenzuela, V., Jackson, K. L., Sardi, S. P. & Hetz, C. Gene therapy strategies to restore ER proteostasis in disease. Mol. Ther. 26, 1404–1413 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, J. K. et al. ATF6 decreases myocardial ischemia/reperfusion damage and links ER stress and oxidative stress signaling pathways in the heart. Circ. Res. 120, 862–875 (2017).

    CAS  PubMed  Google Scholar 

  20. Chengji, W. & Xianjin, F. Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats. J. Cell. Physiol. 234, 1682–1688 (2019).

    PubMed  Google Scholar 

  21. Wu, N. N. et al. Physical exercise and selective autophagy: benefit and risk on cardiovascular health. Cells 8, 1436 (2019).

    CAS  PubMed Central  Google Scholar 

  22. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    CAS  PubMed  Google Scholar 

  23. Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016).

    CAS  PubMed  Google Scholar 

  24. Jacquemyn, J., Cascalho, A. & Goodchild, R. E. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep. 18, 1905–1921 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishimura, T. & Stefan, C. J. Specialized ER membrane domains for lipid metabolism and transport. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 1865, 158492 (2020).

    CAS  PubMed  Google Scholar 

  26. Di Scala, C. et al. Relevance of CARC and CRAC cholesterol-recognition motifs in the nicotinic acetylcholine receptor and other membrane-bound receptors. Curr. Top. Membr. 80, 3–23 (2017).

    PubMed  Google Scholar 

  27. Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of scap. Annu. Rev. Biochem. 87, 783–807 (2018).

    CAS  PubMed  Google Scholar 

  28. Eid, W. et al. mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc. Natl Acad. Sci. USA 114, 7999–8004 (2017).

    CAS  PubMed  Google Scholar 

  29. Widenmaier, S. B. et al. NRF1 Is an ER membrane sensor that is central to cholesterol homeostasis. Cell 171, 1094–1109 (2017).

    CAS  PubMed  Google Scholar 

  30. Wilhelm, L. P. et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 36, 1412–1433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Goder, V., Alanis-Dominguez, E. & Bustamante-Sequeiros, M. Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158488 (2020).

    CAS  PubMed  Google Scholar 

  32. Zhou, Z. et al. Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science 368, 54–60 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Saheki, Y. & De Camilli, P. Endoplasmic reticulum-plasma membrane contact sites. Annu. Rev. Biochem. 86, 659–684 (2017).

    CAS  PubMed  Google Scholar 

  34. Zhihao, L. et al. SERCA2a: a key protein in the Ca(2+) cycle of the heart failure. Heart Fail. Rev. 25, 523–535 (2019).

    Google Scholar 

  35. Ureshino, R. P. et al. The interplay between Ca(2+) signaling pathways and neurodegeneration. Int. J. Mol. Sci. 20, 6004 (2019).

    CAS  PubMed Central  Google Scholar 

  36. Collins, H. E. et al. Novel role of the ER/SR Ca(2+) sensor STIM1 in the regulation of cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 316, H1014–H1026 (2019).

    CAS  PubMed  Google Scholar 

  37. Eden, E. R. The formation and function of ER-endosome membrane contact sites. Biochim. Biophys. Acta 1861, 874–879 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kilpatrick, B. S. et al. An endosomal NAADP-sensitive two-pore Ca(2+) channel regulates ER-endosome membrane contact sites to control growth factor signaling. Cell Rep. 18, 1636–1645 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Henne, W. M. et al. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J. Cell Biol. 210, 541–551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fameli, N., Ogunbayo, O. A., van Breemen, C. & Evans, A. M. Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Research 3, 93 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Ambudkar, I. S., de Souza, L. B. & Ong, H. L. TRPC1, Orai1, and STIM1 in SOCE: friends in tight spaces. Cell Calcium 63, 33–39 (2017).

    CAS  PubMed  Google Scholar 

  42. Stefan, C. J., Manford, A. G. & Emr, S. D. ER-PM connections: sites of information transfer and inter-organelle communication. Curr. Opin. Cell Biol. 25, 434–442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428–432 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Osterrieder, A. et al. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. J. Exp. Bot. 68, 3339–3350 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gillingham, A. K. & Munro, S. Finding the Golgi: golgin coiled-coil proteins show the way. Trends Cell Biol. 26, 399–408 (2016).

    CAS  PubMed  Google Scholar 

  46. Masone, M. C., Morra, V. & Venditti, R. Illuminating the membrane contact sites between the endoplasmic reticulum and the trans-Golgi network. FEBS Lett. 593, 3135–3148 (2019).

    CAS  PubMed  Google Scholar 

  47. Wong, M. & Munro, S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346, 1256898 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Sasi, U. S. S., Ganapathy, S., Palayyan, S. R. & Gopal, R. K. Mitochondria associated membranes (MAMs): emerging drug targets for diabetes. Curr. Med. Chem. 27, 3362–3385 (2020).

    PubMed  Google Scholar 

  49. Wu, S. et al. Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation 139, 1913–1936 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, J. H. et al. Comparative proteomic analysis of the mitochondria-associated ER membrane (MAM) in a long-term type 2 diabetic rodent model. Sci. Rep. 7, 2062 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Malli, R. & Graier, W. F. IRE1α modulates ER and mitochondria crosstalk. Nat. Cell Biol. 21, 667–668 (2019).

    CAS  PubMed  Google Scholar 

  52. Gelmetti, V. et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13, 654–669 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rieusset, J. Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes. Adv. Exp. Med. Biol. 997, 171–186 (2017).

    CAS  PubMed  Google Scholar 

  54. Rieusset, J. et al. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 59, 614–623 (2016).

    CAS  PubMed  Google Scholar 

  55. Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389–393 (2013).

    CAS  PubMed  Google Scholar 

  56. Lee, J. E., Cathey, P. I., Wu, H., Parker, R. & Voeltz, G. K. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles. Science 367, eaay7108 (2020).

    CAS  PubMed  Google Scholar 

  57. Bi, X. et al. Endoplasmic reticulum chaperone GRP78 protects heart from ischemia/reperfusion injury through Akt activation. Circ. Res. 122, 1545–1554 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kopp, M. C., Larburu, N., Durairaj, V., Adams, C. J. & Ali, M. M. U. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat. Struct. Mol. Biol. 26, 1053–1062 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Karagoz, G. E., Acosta-Alvear, D. & Walter, P. The unfolded protein response: detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 11, a033886 (2019).

    CAS  PubMed  Google Scholar 

  60. Hetz, C. & Papa, F. R. The unfolded protein response and cell fate control. Mol. Cell 69, 169–181 (2018).

    CAS  PubMed  Google Scholar 

  61. Grey, M. J. et al. IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress. J. Cell Biol. 219, e201904048 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jurkin, J. et al. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. EMBO J. 33, 2922–2936 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yucel, S. S. et al. The metastable XBP1u transmembrane domain defines determinants for intramembrane proteolysis by signal peptide peptidase. Cell Rep. 26, 3087–3099 (2019).

    PubMed  Google Scholar 

  64. Wang, D. et al. XBP1 activation enhances MANF expression via binding to endoplasmic reticulum stress response elements within MANF promoter region in hepatitis B. Int. J. Biochem. Cell Biol. 99, 140–146 (2018).

    CAS  PubMed  Google Scholar 

  65. Herranen, A. et al. Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis. 11, 1–12 (2020).

    Google Scholar 

  66. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    CAS  PubMed  Google Scholar 

  67. Yu, J. et al. Phosphorylation switches protein disulfide isomerase activity to maintain proteostasis and attenuate ER stress. EMBO J. 39, e103841 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Eletto, D., Eletto, D., Dersh, D., Gidalevitz, T. & Argon, Y. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol. Cell 53, 562–576 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Eletto, D., Eletto, D., Boyle, S. & Argon, Y. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1. FASEB J. 30, 653–665 (2016).

    CAS  PubMed  Google Scholar 

  70. Sepulveda, D. et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α. Mol. Cell 69, 238–252 (2018).

    CAS  PubMed  Google Scholar 

  71. Wang, Q. et al. Two pools of IRE1α in cardiac and skeletal muscle cells. FASEB J. 33, 8892–8904 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Takeda, K. et al. MITOL prevents ER stress-induced apoptosis by IRE1α ubiquitylation at ER-mitochondria contact sites. EMBO J. 38, e100999 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Papaioannou, A. et al. Alterations of EDEM1 functions enhance ATF6 pro-survival signaling. FEBS J. 285, 4146–4164 (2018).

    CAS  PubMed  Google Scholar 

  74. Schröder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    PubMed  Google Scholar 

  75. Tam, A.B. et al. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev. Cell 46, 327–343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zielke, S. et al. ATF4 links ER stress with reticulophagy in glioblastoma cells. Autophagy https://doi.org/10.1080/15548627.2020.1827780 (2020).

    Article  PubMed  Google Scholar 

  77. Fusakio, M. E. et al. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver. Mol. Biol. Cell 27, 1536–1551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Urra, H. et al. IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat. Cell. Biol. 20, 942–953 (2018).

    CAS  PubMed  Google Scholar 

  79. Ji, C. H. et al. The N-degron pathway mediates ER-phagy. Mol. Cell 75, 1058–1072 (2019).

    CAS  PubMed  Google Scholar 

  80. Ji, C. H. et al. Regulation of reticulophagy by the N-degron pathway. Autophagy 16, 373–375 (2020).

    CAS  PubMed  Google Scholar 

  81. Loi, M., Raimondi, A., Morone, D. & Molinari, M. ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress. Nat. Commun. 10, 5058 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Hsieh, C.-L. et al. A novel salicylanilide derivative induces autophagy cell death in castration-resistant prostate cancer via ER stress-activated PERK signaling pathway. Mol. Cancer Therapeutics 19, 101–111 (2020).

    CAS  Google Scholar 

  83. Kouroku, Y. et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230–239 (2007).

    CAS  PubMed  Google Scholar 

  84. Oh, H. J., Lee, S. & Park, P. H. ER stress contributes to autophagy induction by adiponectin in macrophages: implication in cell survival and suppression of inflammatory response. Cytokine 127, 154959 (2020).

    CAS  PubMed  Google Scholar 

  85. Ajoolabady, A. et al. Enzyme-based autophagy in anti-neoplastic management: from molecular mechanisms to clinical therapeutics. Biochim. Biophys. Acta Rev. Cancer 1874, 188366 (2020).

    CAS  PubMed  Google Scholar 

  86. Li, C.-F. et al. Autophagy protects HUVECs against ER stress-mediated apoptosis under simulated microgravity. Apoptosis 24, 812–825 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Y. & Tang, M. PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci. Total. Environ. 710, 136397 (2020).

    CAS  PubMed  Google Scholar 

  88. Rashid, H.-O., Yadav, R. K., Kim, H.-R. & Chae, H.-J. ER stress: autophagy induction, inhibition and selection. Autophagy 11, 1956–1977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ni, L. et al. β-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS ONE 6, e27294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ortega, A. et al. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS ONE 9, e107635 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Duan, Q. et al. MicroRNA regulation of unfolded protein response transcription factor XBP1 in the progression of cardiac hypertrophy and heart failure in vivo. J. Transl. Med. 13, 363 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Ortega, F. B., Lavie, C. J. & Blair, S. N. Obesity and cardiovascular disease. Circ. Res. 118, 1752–1770 (2016).

    CAS  PubMed  Google Scholar 

  93. Dickhout, J. G., Carlisle, R. E. & Austin, R. C. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ. Res. 108, 629–642 (2011).

    CAS  PubMed  Google Scholar 

  94. Wang, J., Hu, X. & Jiang, H. ER stress-induced apoptosis: a novel therapeutic target in heart failure. Int. J. Cardiol. 177, 564–565 (2014).

    PubMed  Google Scholar 

  95. Yao, Y. et al. A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and heart failure. Nat. Commun. 8, 133 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Nie, J. et al. Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na(+) and Ca(2+) handling. J. Cell. Physiol. 234, 11587–11601 (2019).

    CAS  PubMed  Google Scholar 

  97. Gerakis, Y., Quintero, M., Li, H. & Hetz, C. The UFMylation system in proteostasis and beyond. Trends Cell. Biol. 29, 974–986 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Okada, K.-i et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110, 705–712 (2004).

    PubMed  Google Scholar 

  99. Fu, H. Y. et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation 122, 361–369 (2010).

    CAS  PubMed  Google Scholar 

  100. Zhou, X. et al. Huoxue Qianyang decoction ameliorates cardiac remodeling in obese spontaneously hypertensive rats in association with ATF6-CHOP endoplasmic reticulum stress signaling pathway regulation. Biomed. Pharmacother. 121, 109518 (2020).

    CAS  PubMed  Google Scholar 

  101. Prola, A. et al. Endoplasmic reticulum stress induces cardiac dysfunction through architectural modifications and alteration of mitochondrial function in cardiomyocytes. Cardiovasc. Res. 115, 328–342 (2019).

    CAS  PubMed  Google Scholar 

  102. Xu, H. X., Cui, S. M., Zhang, Y. M. & Ren, J. Mitochondrial Ca(2+) regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacol. Sin. 41, 1301–1309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ren, J., Pulakat, L., Whaley-Connell, A. & Sowers, J. R. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. 88, 993–1001 (2010).

    CAS  PubMed  Google Scholar 

  104. Binder, P. et al. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ. Res. 124, 696–711 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bahar, E., Kim, J.-Y. & Yoon, H. Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers 11, 338 (2019).

    CAS  PubMed Central  Google Scholar 

  106. Liu, X. et al. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension 64, 738–744 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lu, P. D. et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23, 169–179 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Steiger, D. et al. The serine/threonine-protein kinase/endoribonuclease IRE1α protects the heart against pressure overload-induced heart failure. J. Biol. Chem. 293, 9652–9661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hou, Y. et al. BDE-209 induces autophagy and apoptosis via IRE1α/Akt/mTOR signaling pathway in human umbilical vein endothelial cells. Environ. Pollut. 253, 429–438 (2019).

    CAS  PubMed  Google Scholar 

  110. Urra, H., Pihan, P. & Hetz, C. The UPRosome – decoding novel biological outputs of IRE1alpha function. J. Cell Sci. 133, jcs218107 (2020).

    CAS  PubMed  Google Scholar 

  111. Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568, 351–356 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, L. et al. Irisin attenuates myocardial ischemia/reperfusion-induced cardiac dysfunction by regulating ER-mitochondria interaction through a mitochondrial ubiquitin ligase-dependent mechanism. Clin. Transl. Med. 10, e166 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. Wang, Z. V. et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156, 1179–1192 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Han, J. & Kaufman, R. J. Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev. 31, 1417–1438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, S., Bian, W., Zhen, J., Zhao, L. & Chen, W. Melatonin-mediated Pak2 activation reduces cardiomyocyte death through suppressing hypoxia reoxygenation injury-induced endoplasmic reticulum stress. J.Cardiovasc. Pharmacol. 74, 20–29 (2019).

    CAS  PubMed  Google Scholar 

  116. Xiao, Y. et al. Hippo pathway deletion in adult resting cardiac fibroblasts initiates a cell state transition with spontaneous and self-sustaining fibrosis. Genes Dev. 33, 1491–1505 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stoner, M. W., McTiernan, C. F., Scott, I. & Manning, J. R. Calreticulin expression in human cardiac myocytes induces ER stress-associated apoptosis. Physiol. Rep. 8, e14400 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gao, J. et al. Protective effect of FBXL10 in myocardial ischemia reperfusion injury via inhibiting endoplasmic reticulum stress. Respir. Med. 161, 105852 (2020).

    PubMed  Google Scholar 

  119. Li, W., Li, W., Leng, Y., Xiong, Y. & Xia, Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 39, 210–225 (2020).

    CAS  PubMed  Google Scholar 

  120. Ren, L., Wang, Q., Chen, Y., Ma, Y. & Wang, D. Involvement of MICRORNA-133a in the protective effect of hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology 103, 1–9 (2019).

    CAS  PubMed  Google Scholar 

  121. Chang, L. et al. ZYZ-803 mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid. Med. Cell. Longev. 2019, 6173685 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Zhu, P. et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16, 157–168 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu, H.-Y., Tomizawa, K. & Matsui, H. Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Medica Okayama 61, 123–137 (2007).

    CAS  PubMed  Google Scholar 

  124. Lu, H. T. et al. CaMKII/calpain interaction mediates ischemia/reperfusion injury in isolated rat hearts. Cell Death Dis. 11, 388 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cao, Y. et al. Activation of γ2-AMPK suppresses ribosome biogenesis and protects against myocardial ischemia/reperfusion injury. Circ. Res. 121, 1182–1191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, L. et al. circDLPAG4/HECTD1 mediates ischaemia/reperfusion injury in endothelial cells via ER stress. RNA Biol. 17, 240–253 (2020).

    CAS  PubMed  Google Scholar 

  127. Yano, T. et al. Does p53 inhibition suppress myocardial ischemia-reperfusion injury? J. Cardiovasc. Pharmacol. Ther. 23, 350–357 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, Q., Thompson, J., Hu, Y., Das, A. & Lesnefsky, E. J. Cardiac specific knockout of p53 decreases ER stress-induced mitochondrial damage. Front. Cardiovasc. Med. 6, 10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shen, D. et al. Sulodexide attenuates endoplasmic reticulum stress induced by myocardial ischaemia/reperfusion by activating the PI3K/Akt pathway. J. Cell Mol. Med. 23, 5063–5075 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, X. et al. Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway. Shock 51, 123–130 (2019).

    CAS  PubMed  Google Scholar 

  131. Vatner, D. E., Oydanich, M., Zhang, J., Babici, D. & Vatner, S. F. Secreted frizzled-related protein 2, a novel mechanism to induce myocardial ischemic protection through angiogenesis. Basic. Res. Cardiol. 115, 48 (2020).

    CAS  PubMed  Google Scholar 

  132. Baird, L. et al. A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteostatic stress response pathways. Mol. Cell. Biol. 37, e00439-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Thuerauf, D. J. et al. Sarco/endoplasmic reticulum calcium ATPase-2 expression is regulated by ATF6 during the endoplasmic reticulum stress response: intracellular signaling of calcium stress in a cardiac myocyte model system. J. Biol. Chem. 276, 48309–48317 (2001).

    CAS  PubMed  Google Scholar 

  134. Martindale, J. J. et al. Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ. Res. 98, 1186–1193 (2006).

    CAS  PubMed  Google Scholar 

  135. Doroudgar, S., Thuerauf, D. J., Marcinko, M. C., Belmont, P. J. & Glembotski, C. C. Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. J. Biol. Chem. 284, 29735–29745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Belmont, P. J. et al. Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene derlin-3 in the ischemic heart. Circ. Res. 106, 307–316 (2010).

    CAS  PubMed  Google Scholar 

  137. Lynch, J. M. et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell 149, 1257–1268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Q. et al. Qishen Granule alleviates endoplasmic reticulum stress-induced myocardial apoptosis through IRE-1-CRYAB pathway in myocardial ischemia. J. Ethnopharmacol. 252, 112573 (2020).

    CAS  PubMed  Google Scholar 

  139. Zhang, Y., Sowers, J. R. & Ren, J. Targeting autophagy in obesity: from pathophysiology to management. Nat. Rev. Endocrinol. 14, 356–376 (2018).

    CAS  PubMed  Google Scholar 

  140. Yang, L., Zhao, D., Ren, J. & Yang, J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim. Biophys. Acta 1852, 209–218 (2015).

    CAS  PubMed  Google Scholar 

  141. Pei, Z. et al. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: role of autophagy and ER stress. Toxicol. Lett. 284, 10–20 (2018).

    CAS  PubMed  Google Scholar 

  142. Xia, Z., Zhang, Y. & Ren, J. Endolasmic reticulum stress and metabolic syndrome: mechanisms and therapeutic potential. Acta Neuropharmacol. 2, 33–44 (2012).

    Google Scholar 

  143. Zhang, Y., Whaley-Connell, A. T., Sowers, J. R. & Ren, J. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol. Ther. 191, 1–22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Radwan, E. et al. Inhibition of endoplasmic reticulum stress ameliorates cardiovascular injury in a rat model of metabolic syndrome. J. Mol. Cell. Cardiol. 143, 15–25 (2020).

    CAS  PubMed  Google Scholar 

  145. Ceylan-Isik, A. F., Sreejayan, N. & Ren, J. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction. J. Mol. Cell Cardiol. 50, 107–116 (2011).

    CAS  PubMed  Google Scholar 

  146. Turdi, S., Hu, N. & Ren, J. Tauroursodeoxycholic acid mitigates high fat diet-induced cardiomyocyte contractile and intracellular Ca2+ anomalies. PLoS ONE 8, e63615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Xiao, T. et al. Mitochondrial stress protein HSP60 regulates ER stress-induced hepatic lipogenesis. J. Mol. Endocrinol. 64, 67–75 (2020).

    CAS  PubMed  Google Scholar 

  148. Hosokawa, K. et al. Ipragliflozin ameliorates endoplasmic reticulum stress and apoptosis through preventing ectopic lipid deposition in renal tubules. Int. J. Mol. Sci. 21, 190 (2019).

    PubMed Central  Google Scholar 

  149. Vega-Martin, E. et al. Impact of caloric restriction on AMPK and endoplasmic reticulum stress in peripheral tissues and circulating peripheral blood mononuclear cells from Zucker rats. J. Nutr. Biochem. 78, 108342 (2020).

    CAS  PubMed  Google Scholar 

  150. Lopez-Domenech, S. et al. Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfunction in human obesity. Mol. Metab. 19, 24–33 (2019).

    CAS  PubMed  Google Scholar 

  151. Cui, Y. L. et al. Cholinergic drugs ameliorate endothelial dysfunction by decreasing O-GlcNAcylation via M3 AChR-AMPK-ER stress signaling. Life Sci. 222, 1–12 (2019).

    CAS  PubMed  Google Scholar 

  152. Wang, Z. H. et al. Silence of TRIB3 suppresses atherosclerosis and stabilizes plaques in diabetic ApoE-/-/LDL receptor-/- mice. Diabetes 61, 463–473 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, W. et al. Skeletal muscle TRIB3 mediates glucose toxicity in diabetes and high-fat diet-induced insulin resistance. Diabetes 65, 2380–2391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu, Z. et al. Circulating interleukin-1β promotes endoplasmic reticulum stress-induced myocytes apoptosis in diabetic cardiomyopathy via interleukin-1 receptor-associated kinase-2. Cardiovas. Diabetol. 14, 125 (2015).

    CAS  Google Scholar 

  155. Nam, D. H. et al. CHOP deficiency prevents methylglyoxal-induced myocyte apoptosis and cardiac dysfunction. J. Mol. Cell. Cardiol. 85, 168–177 (2015).

    CAS  PubMed  Google Scholar 

  156. Zuo, S. et al. CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol. Med. 10, e8237 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Prola, A. et al. SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ. 24, 343–356 (2017).

    CAS  PubMed  Google Scholar 

  158. Yu, H. et al. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. J. Cell. Mol. Med. 20, 623–631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Battson, M. L., Lee, D. M. & Gentile, C. L. Endoplasmic reticulum stress and the development of endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 312, H355–H367 (2017).

    CAS  PubMed  Google Scholar 

  160. Hua, L. et al. Sphingomyelin synthase 2 promotes endothelial dysfunction by inducing endoplasmic reticulum stress. Int. J. Mol. Sci. 20, 2861 (2019).

    CAS  PubMed Central  Google Scholar 

  161. Luchetti, F. et al. Secosterol-B affects endoplasmic reticulum structure in endothelial cells. J. Steroid Biochem. Mol. Biol. 190, 234–241 (2019).

    CAS  PubMed  Google Scholar 

  162. Liu, F. et al. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochem. Pharmacol. 174, 113830 (2020).

    CAS  PubMed  Google Scholar 

  163. Wang, F. Y. et al. Icariin protects vascular endothelial cells from oxidative stress through inhibiting endoplasmic reticulum stress. J. Integr. Med. 17, 205–212 (2019).

    PubMed  Google Scholar 

  164. He, Z. et al. Simvastatin attenuates H2O2-induced endothelial cell dysfunction by reducing endoplasmic reticulum stress. Molecules 24, 1782 (2019).

    CAS  PubMed Central  Google Scholar 

  165. Fu, Z. et al. Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. J. Thorac. Cardiovasc. Surg. 158, 408–417 (2019).

    CAS  PubMed  Google Scholar 

  166. Feng, Y. et al. Selective histone deacetylase 6 Inhibitor 23BB alleviated rhabdomyolysis-induced acute kidney injury by regulating endoplasmic reticulum stress and apoptosis. Front. Pharmacol. 9, 274 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. Shi, Y. et al. Fibroblast growth factor 21 attenuates vascular calcification by alleviating endoplasmic reticulum stress mediated apoptosis in rats. Int. J. Biol. Sci. 15, 138–147 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chang, J.-R. et al. Erythropoietin attenuates vascular calcification by inhibiting endoplasmic reticulum stress in rats with chronic kidney disease. Peptides 123, 170181 (2020).

    CAS  PubMed  Google Scholar 

  169. Abe, J.-i. et al. MAGI1 as a link between endothelial activation and ER stress drives atherosclerosis. JCI Insight 4, e125570 (2019).

    PubMed Central  Google Scholar 

  170. Ochoa, C. D., Wu, R. F. & Terada, L. S. ROS signaling and ER stress in cardiovascular disease. Mol. Asp. Med. 63, 18–29 (2018).

    CAS  Google Scholar 

  171. Liu, G. et al. Inactivation of Cys(674) in SERCA2 increases BP by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Br. J. Pharmacol. 177, 1793–1805 (2019).

    Google Scholar 

  172. Carlisle, R. E. et al. Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J. Hypertens. 34, 1556–1569 (2016).

    CAS  PubMed  Google Scholar 

  173. Liu, L. et al. Berberine improves endothelial function by inhibiting endoplasmic reticulum stress in the carotid arteries of spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 458, 796–801 (2015).

    CAS  PubMed  Google Scholar 

  174. Kassan, M. et al. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler. Thromb. Vasc. Biol. 32, 1652–1661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Han, S. et al. Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vascul. Pharmacol. 113, 38–46 (2019).

    CAS  PubMed  Google Scholar 

  176. Chen, C. et al. Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway. Hypertens. Res. 42, 960–969 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Soliman, E., Behairy, S. F., El-Maraghy, N. N. & Elshazly, S. M. PPAR-γ agonist, pioglitazone, reduced oxidative and endoplasmic reticulum stress associated with L-NAME-induced hypertension in rats. Life Sci. 239, 117047 (2019).

    CAS  PubMed  Google Scholar 

  178. Andraweera, P. H. et al. Mechanisms linking exposure to preeclampsia in utero and the risk for cardiovascular disease. J. Dev. Orig. Health Dis. 19, 1–8 (2020).

    Google Scholar 

  179. Yang, Y. et al. Endoplasmic reticulum stress may activate NLRP3. Cell Tissue Res. 379, 589–599 (2020).

    PubMed  Google Scholar 

  180. Yang, M. Y. et al. Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacol. Sin. 39, 48–58 (2018).

    CAS  PubMed  Google Scholar 

  181. Myoishi, M. et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116, 1226–1233 (2007).

    PubMed  Google Scholar 

  182. Liao, X. et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zahid, M. D. K. et al. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol. Cell. Biochem. 463, 211–223 (2020).

    PubMed  Google Scholar 

  184. Liang, C. P., Han, S., Li, G., Tabas, I. & Tall, A. R. Impaired MEK signaling and SERCA expression promote ER stress and apoptosis in insulin-resistant macrophages and are reversed by exenatide treatment. Diabetes 61, 2609–2620 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Trpkovic, A. et al. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci. 52, 70–85 (2015).

    CAS  PubMed  Google Scholar 

  186. Cai, Z. et al. Endoplasmic reticulum stress participates in aortic valve calcification in hypercholesterolemic animals. Arterioscler. Thromb. Vasc. Biol. 33, 2345–2354 (2013).

    CAS  PubMed  Google Scholar 

  187. Zhou, Z., Chen, Y., Ni, W. & Liu, T. Upregulation of nuclear factor IA suppresses oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in human umbilical vein endothelial cells. Med. Sci. Monit. 25, 1009–1016 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Lin, H. et al. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int. J. Cardiol. 269, 242–249 (2018).

    PubMed  Google Scholar 

  189. Thorp, E. et al. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP. Cell Metab. 9, 474–481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Jiang, L. et al. Inhibition of microRNA-103 attenuates inflammation and endoplasmic reticulum stress in atherosclerosis through disrupting the PTEN-mediated MAPK signaling. J. Cell Physiol. 235, 380–393 (2020).

    CAS  PubMed  Google Scholar 

  191. Zhou, H., Wang, J., Zhu, P., Hu, S. & Ren, J. Ripk3 regulates cardiac microvascular reperfusion injury: the role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration. Cell Signal. 45, 12–22 (2018).

    CAS  PubMed  Google Scholar 

  192. Kropski, J. A. & Blackwell, T. S. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J. Clin. Invest. 128, 64–73 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Zhang, W., Zhu, T., Chen, L., Luo, W. & Chao, J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am. J. Physiol. Heart Circ. Physiol. 318, H59–H71 (2020).

    CAS  PubMed  Google Scholar 

  194. Salminen, A., Kaarniranta, K. & Kauppinen, A. ER stress activates immunosuppressive network: implications for aging and Alzheimer’s disease. J. Mol. Med. 98, 633–650 (2020).

    CAS  PubMed  Google Scholar 

  195. Sullivan, G. P. et al. TRAIL receptors serve as stress-associated molecular patterns to promote ER-stress-induced inflammation. Dev. Cell 52, 714–730 (2020).

    CAS  PubMed  Google Scholar 

  196. Nascimento Da Conceicao, V., Sun, Y., Zboril, E. K., De la Chapa, J. J. & Singh, B. B. Loss of Ca(2+) entry via Orai-TRPC1 induces ER stress, initiating immune activation in macrophages. J. Cell Sci. 133, jcs237610 (2019).

    PubMed  Google Scholar 

  197. Pang, J. et al. Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1627–1641 (2019).

    CAS  PubMed  Google Scholar 

  198. Chen, Z. et al. MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway. Immunol. Lett. 222, 40–48 (2020).

    CAS  PubMed  Google Scholar 

  199. Shen, C. H. et al. Exploring the effects of tert-butylhydroperoxide induced liver injury using proteomic approach. Toxicology 316, 61–70 (2014).

    CAS  PubMed  Google Scholar 

  200. Morita, S. et al. Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab. 25, 883–897 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Li, F. et al. Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress. Oncotarget 8, 43799–43809 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Chen, H. et al. The molecular mechanisms of XBP-1 gene silencing on IRE1α-TRAF2-ASK1-JNK pathways in oral squamous cell carcinoma under endoplasmic reticulum stress. Biomed. Pharmacother. 77, 108–113 (2016).

    CAS  PubMed  Google Scholar 

  203. Lam, M., Marsters, S. A., Ashkenazi, A. & Walter, P. Misfolded proteins bind and activate death receptor 5 to trigger apoptosis during unresolved endoplasmic reticulum stress. eLife 9, e52291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Lee, Y. S., Lee, D. H., Choudry, H. A., Bartlett, D. L. & Lee, Y. J. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Mol. Cancer Res. 16, 1073–1076 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Mandl, A., Pham, L. H., Toth, K., Zambetti, G. & Erhardt, P. Puma deletion delays cardiac dysfunction in murine heart failure models through attenuation of apoptosis clinical perspective. Circulation 124, 31–39 (2011).

    CAS  PubMed  Google Scholar 

  206. Wang, J., Yang, X. & Zhang, J. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic beta cells. Cell. Signal. 28, 1099–1104 (2016).

    CAS  PubMed  Google Scholar 

  207. Ren, J. et al. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci. Adv. 6, eabc8561 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Cao, S. S. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21, 396–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Mennerich, D., Kellokumpu, S. & Kietzmann, T. Hypoxia and reactive oxygen species as modulators of endoplasmic reticulum and Golgi homeostasis. Antioxid. Redox Signal. 30, 113–137 (2019).

    CAS  PubMed  Google Scholar 

  210. Lei, Y. et al. Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: role of ER stress and apoptosis. Environ. Toxicol. 32, 656–668 (2017).

    CAS  PubMed  Google Scholar 

  211. Kuroda, J. et al. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl Acad. Sci. USA 107, 15565–15570 (2010).

    CAS  PubMed  Google Scholar 

  212. Ceylan-Isik, A. F. et al. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J. Mol. Cell. Cardiol. 48, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  213. Wang, J. et al. PERK overexpression-mediated Nrf2/HO-1 pathway alleviates hypoxia/reoxygenation-induced injury in neonatal murine cardiomyocytes via improving endoplasmic reticulum stress. Biomed. Res. Int. 2020, 6458060 (2020).

    PubMed  PubMed Central  Google Scholar 

  214. Cominacini, L. et al. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic. Biol. Med. 88, 233–242 (2015).

    CAS  PubMed  Google Scholar 

  215. Ajoolabady, A., Aslkhodapasandhokmabad, H., Aghanejad, A., Zhang, Y. & Ren, J. Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing. Ageing Res. Rev. 62, 101129 (2020).

    CAS  PubMed  Google Scholar 

  216. Bhardwaj, M., Leli, N. M., Koumenis, C. & Amaravadi, R. K. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin. Cancer Biol. 66, 116–128 (2020).

    PubMed  Google Scholar 

  217. Radwan, E. et al. Treg cells depletion is a mechanism that drives microvascular dysfunction in mice with established hypertension. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 403–412 (2019).

    CAS  PubMed  Google Scholar 

  218. Li, Y. H. et al. Halofuginone protects against advanced glycation end products-induced injury of H9C2 cells via alleviating endoplasmic reticulum stress-associated apoptosis and inducing autophagy. Mol. Med. Rep. 20, 3131–3139 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, X. et al. Autophagy portends the level of cardiac hypertrophy in experimental hypertensive Swine model. Am. J. Hypertens. 29, 81–89 (2016).

    PubMed  Google Scholar 

  220. Wiersma, M. et al. Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte remodeling in experimental and human atrial fibrillation. J. Am. Heart Assoc. 6, e006458 (2017).

    PubMed  PubMed Central  Google Scholar 

  221. Wang, S. et al. Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 3060–3074 (2017).

    CAS  PubMed  Google Scholar 

  222. Gozuacik, D. et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 15, 1875–1886 (2008).

    CAS  PubMed  Google Scholar 

  223. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Castillo, K. et al. BAX inhibitor-1 regulates autophagy by controlling the IRE1α branch of the unfolded protein response. EMBO J. 30, 4465–4478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Pires Da Silva, J. et al. SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy. Cells 9, 426 (2020).

    CAS  PubMed Central  Google Scholar 

  226. Blackwood, E. A. et al. ATF6 regulates cardiac hypertrophy by transcriptional induction of the mTORC1 activator, Rheb. Circ. Res. 124, 79–93 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Papp, E. & Csermely, P. Chemical chaperones: mechanisms of action and potential use. Handb. Exp. Pharmacol. 172, 405–416 (2006).

    CAS  Google Scholar 

  228. Cortez, L. & Sim, V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion 8, 197–202 (2014).

    CAS  PubMed Central  Google Scholar 

  229. Engin, F. & Hotamisligil, G. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes. Metab. 12, 108–115 (2010).

    CAS  PubMed  Google Scholar 

  230. Mali, V., Haddox, S., Hornersmith, C., Matrougui, K. & Belmadani, S. Essential role for EGFR tyrosine kinase and ER stress in myocardial infarction in type 2 diabetes. Pflug. Arch. 470, 471–480 (2018).

    CAS  Google Scholar 

  231. Rani, S. et al. Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS ONE 12, e0176071 (2017).

    PubMed  PubMed Central  Google Scholar 

  232. Luo, H. et al. The role of tauroursodeoxycholic acid on dedifferentiation of vascular smooth muscle cells by modulation of endoplasmic reticulum stress and as an oral drug inhibiting in-stent restenosis. Cardiovasc. Drugs Ther. 33, 25–33 (2019).

    CAS  PubMed  Google Scholar 

  233. Groenendyk, J. et al. Inhibition of the unfolded protein response mechanism prevents cardiac fibrosis. PLoS ONE 11, e0159682 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. Bal, N. B. et al. Hypertension-induced cardiac impairment is reversed by the inhibition of endoplasmic reticulum stress. J. Pharm. Pharmacol. 71, 1809–1821 (2019).

    CAS  PubMed  Google Scholar 

  235. Bal, N. B., Han, S., Kiremitci, S., Uludag, M. O. & Demirel-Yilmaz, E. Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress. Mol. Biol. Rep. 47, 2243–2252 (2020).

    CAS  PubMed  Google Scholar 

  236. Qin, Y. et al. Tauroursodeoxycholic acid attenuates angiotensin II induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice by inhibiting endoplasmic reticulum stress. Eur. J. Vasc. Endovasc. Surg. 53, 337–345 (2017).

    CAS  PubMed  Google Scholar 

  237. Spitler, K. M., Matsumoto, T. & Webb, R. C. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 305, H344–H353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Luo, T., Chen, B. & Wang, X. 4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress. Chem. Biol. Interact. 242, 99–106 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Naiel, S., Carlisle, R. E., Lu, C., Tat, V. & Dickhout, J. G. Endoplasmic reticulum stress inhibition blunts the development of essential hypertension in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 316, H1214–H1223 (2019).

    CAS  PubMed  Google Scholar 

  240. Jian, L., Lu, Y., Lu, S. & Lu, C. Chemical chaperone 4-phenylbutyric acid reduces cardiac ischemia/reperfusion injury by alleviating endoplasmic reticulum stress and oxidative stress. Med. Sci. Monit. 22, 5218–5227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Luo, T. et al. Attenuation of ER stress prevents post-infarction-induced cardiac rupture and remodeling by modulating both cardiac apoptosis and fibrosis. Chem. Biol. Interact. 225, 90–98 (2015).

    CAS  PubMed  Google Scholar 

  242. Bozi, L. H. M. et al. Endoplasmic reticulum stress impairs cardiomyocyte contractility through JNK-dependent upregulation of BNIP3. Int. J. Cardiol. 272, 194–201 (2018).

    PubMed  Google Scholar 

  243. Huang, A. et al. 4-phenylbutyrate and valproate treatment attenuates the progression of atherosclerosis and stabilizes existing plaques. Atherosclerosis 266, 103–112 (2017).

    CAS  PubMed  Google Scholar 

  244. Wang, L. et al. A novel agent enhances the chemotherapeutic efficacy of doxorubicin in MCF-7 breast cancer cells. Front. Pharmacol. 7, 249 (2016).

    PubMed  PubMed Central  Google Scholar 

  245. Wang, J. J. et al. Evaluation and treatment of endoplasmic reticulum (ER) stress in right ventricular dysfunction during monocrotaline-induced rat pulmonary arterial hypertension. Cardiovasc. Drugs Ther. 30, 587–598 (2016).

    CAS  PubMed  Google Scholar 

  246. Mollazadeh, H. et al. The effect of statin therapy on endoplasmic reticulum stress. Pharmacol. Res. 137, 150–158 (2018).

    CAS  PubMed  Google Scholar 

  247. Ferretti, G., Bacchetti, T. & Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res. 60, 50–73 (2015).

    CAS  PubMed  Google Scholar 

  248. Bahrami, A., Parsamanesh, N., Atkin, S. L., Banach, M. & Sahebkar, A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol. Res. 135, 230–238 (2018).

    CAS  PubMed  Google Scholar 

  249. Sahebkar, A. et al. Effects of statin therapy on augmentation index as a measure of arterial stiffness: a systematic review and meta-analysis. Int. J. Cardiol. 212, 160–168 (2016).

    PubMed  Google Scholar 

  250. Song, X. J. et al. Atorvastatin inhibits myocardial cell apoptosis in a rat model with post-myocardial infarction heart failure by downregulating ER stress response. Int. J. Med. Sci. 8, 564–572 (2011).

    PubMed  PubMed Central  Google Scholar 

  251. Wu, H. et al. Atorvastatin ameliorates myocardial ischemia/reperfusion injury through attenuation of endoplasmic reticulum stress-induced apoptosis. Int. J. Clin. Exp. Med. 7, 4915–4923 (2014).

    PubMed  PubMed Central  Google Scholar 

  252. Li, Y. et al. Inhibition of endoplasmic reticulum stress signaling pathway: a new mechanism of statins to suppress the development of abdominal aortic aneurysm. PLoS ONE 12, e0174821 (2017).

    PubMed  PubMed Central  Google Scholar 

  253. Hetz, C., Axten, J. M. & Patterson, J. B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol. 15, 764–775 (2019).

    CAS  PubMed  Google Scholar 

  254. Paxman, R. et al. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 7, e37168 (2018).

    PubMed  PubMed Central  Google Scholar 

  255. Grandjean, J. M. D. et al. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat. Chem. Biol. 16, 1052–1061 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Choy, K. W., Murugan, D. & Mustafa, M. R. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases. Pharmacol. Res. 132, 119–129 (2018).

    CAS  PubMed  Google Scholar 

  257. Ceylan-Isik, A. F., Fliethman, R. M., Wold, L. E. & Ren, J. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr. Diabetes Rev. 4, 320–328 (2008).

    CAS  PubMed  Google Scholar 

  258. Wang, Z. G. & Ren, J. Current status and future direction of Chinese herbal medicine. Trends Pharmacol. Sci. 23, 347–348 (2002).

    CAS  PubMed  Google Scholar 

  259. Bertolotti, A. The split protein phosphatase system. Biochem. J. 475, 3707–3723 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  261. Liu, C. L. et al. Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2α signaling pathway. J. Geriatr. Cardiol. 9, 258–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  262. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    CAS  PubMed  Google Scholar 

  263. Liu, Y. et al. Reduced endoplasmic reticulum stress might alter the course of heart failure via caspase-12 and JNK pathways. Can. J. Cardiol. 30, 368–375 (2014).

    PubMed  Google Scholar 

  264. Li, W. et al. Blocking PERK resuces vascular smooth muscle cells from homocysteine-induced ER stress and apoptosis. Front. Biosci. 25, 536–548 (2020).

    CAS  Google Scholar 

  265. Rani, S., Sreenivasaiah, P. K., Cho, C. & Kim, D. H. Salubrinal alleviates pressure overload-induced cardiac hypertrophy by inhibiting endoplasmic reticulum stress pathway. Mol. Cell 40, 66–72 (2017).

    CAS  Google Scholar 

  266. Obafemi, T. O. et al. Metformin/donepezil combination modulates brain antioxidant status and hippocampal endoplasmic reticulum stress in type 2 diabetic rats. J. Diabetes Metab. Disord. 19, 499–510 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Liu, B., Huang, B., Liu, J. & Shi, J. S. Dendrobium nobile Lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress. Brain Res. 1741, 146871 (2020).

    CAS  PubMed  Google Scholar 

  268. Zeng, Z. et al. CTCF inhibits endoplasmic reticulum stress and apoptosis in cardiomyocytes by upregulating RYR2 via inhibiting S100A1. Life Sci. 242, 117158 (2020).

    CAS  PubMed  Google Scholar 

  269. Liang, X., He, Q. & Zhao, Q. Effect of stains on LDL reduction and liver safety: a systematic review and meta-analysis. Biomed. Res. Int. 2018, 7092414 (2018).

    PubMed  PubMed Central  Google Scholar 

  270. Valdes, P. et al. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc. Natl Acad. Sci. USA 111, 6804–6809 (2014).

    CAS  PubMed  Google Scholar 

  271. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    CAS  PubMed  Google Scholar 

  272. Chen, M. et al. Downregulation of the miR-30 family microRNAs contributes to endoplasmic reticulum stress in cardiac muscle and vascular smooth muscle cells. Int. J. Cardiol. 173, 65–73 (2014).

    PubMed  Google Scholar 

  273. Bao, Q. et al. Role of microRNA-124 in cardiomyocyte hypertrophy induced by angiotensin II. Cell. Mol. Biol. 63, 23–27 (2017).

    CAS  PubMed  Google Scholar 

  274. He, L. et al. miRNA-1283 regulates the PERK/ATF4 pathway in vascular injury by targeting ATF4. PLoS ONE 11, e0159171 (2016).

    PubMed  PubMed Central  Google Scholar 

  275. Shimizu, T. et al. PERK-mediated suppression of microRNAs by sildenafil improves mitochondrial dysfunction in heart failure. iScience 23, 101410 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Bozi, L. H. et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats. J. Cell Mol. Med. 20, 2208–2212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Chang, P. et al. Swimming exercise inhibits myocardial ER stress in the hearts of aged mice by enhancing cGMPPKG signaling. Mol. Med. Rep. 21, 549–556 (2020).

    PubMed  Google Scholar 

  278. Hart, C. R. et al. Attenuated activation of the unfolded protein response following exercise in skeletal muscle of older adults. Aging 11, 7587–7604 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Bourdier, G. et al. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size. Am. J. Physiol. Heart Circ. Physiol. 310, H279–H289 (2016).

    PubMed  Google Scholar 

  280. Hong, J. et al. Exercise ameliorates endoplasmic reticulum stress-mediated vascular dysfunction in mesenteric arteries in atherosclerosis. Sci. Rep. 8, 7938 (2018).

    PubMed  PubMed Central  Google Scholar 

  281. de Vicente, L. G. et al. Tlr4 participates in the responses of markers of apoptosis, inflammation, and ER stress to different acute exercise intensities in mice hearts. Life Sci. 240, 117107 (2020).

    PubMed  Google Scholar 

  282. Cho, J. A. et al. Exercise and curcumin in combination improves cognitive function and attenuates ER stress in diabetic rats. Nutrients 12, 1309 (2020).

    CAS  PubMed Central  Google Scholar 

  283. Zhu, W. et al. Endoplasmic reticulum stress may be involved in insulin resistance and lipid metabolism disorders of the white adipose tissues induced by high-fat diet containing industrial trans-fatty acids. Diabetes Metab. Syndr. Obes. 12, 1625–1638 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Blackwood, E. A. et al. Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat. Commun. 10, 187 (2019).

    PubMed  PubMed Central  Google Scholar 

  285. Noh, M. R., Kim, J. I., Han, S. J., Lee, T. J. & Park, K. M. C/EBP homologous protein (CHOP) gene deficiency attenuates renal ischemia/reperfusion injury in mice. Biochim. Biophys. Acta 1852, 1895–1901 (2015).

    CAS  PubMed  Google Scholar 

  286. Mao, C. et al. Targeted mutation of the mouse Grp94 gene disrupts development and perturbs endoplasmic reticulum stress signaling. PLoS ONE 5, e10852 (2010).

    PubMed  PubMed Central  Google Scholar 

  287. Lam, C. K. et al. Novel role of HAX-1 in ischemic injury protection involvement of heat shock protein 90. Circ. Res. 112, 79–89 (2013).

    CAS  PubMed  Google Scholar 

  288. Doroudgar, S. et al. Hrd1 and ER-associated protein degradation, ERAD, are critical elements of the adaptive ER stress response in cardiac myocytes. Circ. Res. 117, 536–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Zhong, J. et al. Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy: a novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function. Redox Biol. 26, 101287 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Shih, Y. C. et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ. Res. 122, 1052–1068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Li, J. et al. Ufm1-specific ligase Ufl1 regulates endoplasmic reticulum homeostasis and protects against heart failure. Circ. Heart Fail. 11, e004917 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Yao, B. J., He, X. Q., Lin, Y. H. & Dai, W. J. Cardioprotective effects of anisodamine against myocardial ischemia/reperfusion injury through the inhibition of oxidative stress, inflammation and apoptosis. Mol. Med. Rep. 17, 1253–1260 (2018).

    CAS  PubMed  Google Scholar 

  293. Xing, K. et al. Cardioprotective effect of anisodamine against myocardial ischemia injury and its influence on cardiomyocytes apoptosis. Cell Biochem. Biophys. 73, 707–716 (2015).

    CAS  PubMed  Google Scholar 

  294. Shen, M. et al. Baicalin protects the cardiomyocytes from ER stress-induced apoptosis: inhibition of CHOP through induction of endothelial nitric oxide synthase. PLoS ONE 9, e88389 (2014).

    PubMed  PubMed Central  Google Scholar 

  295. Zhao, G. L. et al. Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol. Sin. 37, 354–367 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Shu, Z. et al. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct. 10, 203–215 (2019).

    CAS  PubMed  Google Scholar 

  297. Wang, M. et al. Elatoside C protects the heart from ischaemia/reperfusion injury through the modulation of oxidative stress and intracellular Ca2+ homeostasis. Int. J. Cardiol. 185, 167–176 (2015).

    PubMed  Google Scholar 

  298. Guo, C. et al. Ginkgolide B ameliorates myocardial ischemia reperfusion injury in rats via inhibiting endoplasmic reticulum stress. Drug Des. Devel. Ther. 13, 767–774 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Liu, X. et al. Ginkgolide B inhibits platelet release by blocking Syk and p38 MAPK phosphorylation in thrombin-stimulated platelets. Thromb. Res. 134, 1066–1073 (2014).

    CAS  PubMed  Google Scholar 

  300. Wang, S. et al. Ginkgolide K protects the heart against endoplasmic reticulum stress injury by activating the inositol-requiring enzyme 1α/X box-binding protein-1 pathway. Br. J. Pharmacol. 173, 2402–2418 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Wu, Y. et al. Icariside II prevents hypertensive heart disease by alleviating endoplasmic reticulum stress via the PERK/ATF-4/CHOP signalling pathway in spontaneously hypertensive rats. J. Pharm. Pharmacol. 71, 400–407 (2019).

    CAS  PubMed  Google Scholar 

  302. Xia, Q. et al. Preparation of icariside II from icariin by enzymatic hydrolysis method. Fitoterapia 81, 437–442 (2010).

    CAS  PubMed  Google Scholar 

  303. Suganya, N., Bhakkiyalakshmi, E., Suriyanarayanan, S., Paulmurugan, R. & Ramkumar, K. M. Quercetin ameliorates tunicamycin-induced endoplasmic reticulum stress in endothelial cells. Cell Prolif. 47, 231–240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Lin, Y. et al. Inhibition of cardiomyocytes hypertrophy by resveratrol is associated with amelioration of endoplasmic reticulum stress. Cell. Physiol. Biochem. 39, 780–789 (2016).

    CAS  PubMed  Google Scholar 

  305. He, Y. et al. Zn(2+) and mPTP mediate resveratrol-induced myocardial protection from endoplasmic reticulum stress. Metallomics 12, 290–300 (2020).

    CAS  PubMed  Google Scholar 

  306. Lou, Y. et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int. J. Mol. Med. 36, 873–880 (2015).

    CAS  PubMed  Google Scholar 

  307. Guo, R. et al. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: an insight into endoplasmic reticulum stress response mechanism. Int. J. Cardiol. 191, 36–45 (2015).

    PubMed  Google Scholar 

  308. Shindo, S., Hosokawa, Y., Hosokawa, I., Ozaki, K. & Matsuo, T. Shikonin inhibits inflammatory cytokine production in human periodontal ligament cells. Inflammation 39, 1124–1129 (2016).

    CAS  PubMed  Google Scholar 

  309. Yang, J., Wang, Z. & Chen, D. L. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress. Biomed. Pharmacother. 93, 1343–1357 (2017).

    CAS  PubMed  Google Scholar 

  310. Li, Y. P. et al. Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol. Sin. 37, 344–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Yu, Y. et al. Tournefolic acid B, derived from Clinopodium chinense (Benth.) Kuntze, protects against myocardial ischemia/reperfusion injury by inhibiting endoplasmic reticulum stress-regulated apoptosis via PI3K/AKT pathways. Phytomedicine 52, 178–186 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere apology to those authors whose important work could not be included due to space limitations. We greatly appreciate the graphic design assistance of A. Ajoolabady (Tabriz University of Medical Sciences, Iran) and N.N. Wu (Zhongshan Hospital, Fudan University, China) for preparing the figures for initial submission. The authors’ research work was supported by the National Key R&D Program of China (2017YFA0506000), University of Wyoming Faculty Grant-in-Aid, FONDECYT 11180186, FONDAP program ANID/FONDAP/15150012, Millennium Institute P09-015-F, European Commission R&D MSCA-RISE 734749, Natural Science Foundation of China (91749128, 81770261, 81521001), Science and Technology Innovation Project of the Chinese Academy of Medical Sciences (Health and Longevity Pilot Special Project 2019-RC-HL-021) and the Training Program of Excellent Academic Leaders of Shanghai Health Mission (2018BR25).

Author information

Authors and Affiliations

Authors

Contributions

J.R. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the article before submission. Y.B., J.R.S, C.H. and Y.Z. contributed to discussion of the content and wrote the manuscript.

Corresponding authors

Correspondence to Jun Ren or Yingmei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Bi, Y., Sowers, J.R. et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18, 499–521 (2021). https://doi.org/10.1038/s41569-021-00511-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00511-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing