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Abstract

In this paper, we consider a committee of experts that decides whether to approve

or reject a proposed innovation on behalf of society. In addition to a payoff linked to

the correctness of the committee’s decision, each expert receives disesteem payoffs if

either he/she votes in favor of an ill-fated innovation (a type I error) or votes against an

innovation that proves to be beneficial (a type II error). We find that the predictions

of the model are sensitive to the assumed signal technology. The standard Condorcet

framework assumes that experts’ signals are i.i.d. conditional on the state of the world,

implying that the state of the world is approximated with arbitrary precision by a suf-

ficiently large number of signals. Surprisingly, with this assumption, any combination

of disesteem payoffs leads to large committees accepting the innovation with too high

a probability. However, if this assumption is relaxed, then depending on the relative

size of the disesteem payoffs the committee may accept or reject the innovation with

too high a probability.
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1 Introduction

The rationale for delegating a decision to a group of experts rather than an individual is

clear: committees aggregate multiple sources of information and expertise, and therefore

allow for more informed decisions. However, by participating in a committee, experts may

face idiosyncratic payoffs tied to the correctness of their personal vote. An example is FDA

committees, where committee members may be exposed to a negative payoff if they vote to

approve a drug that proves to be fatal for some users, or vote against a drug that successfully

treats a previously incurable illness. For instance, when Posicor, a drug to treat high blood

pressure, resulted in the death of over 140 people, numerous newspaper articles (including

an article that received the prestigious Pulitzer Prize) singled out individual committee

members based on their vote – while the committee as a whole made the wrong decision,

only committee members who personally voted for the drug were scrutinized.

In this paper we analyze committee behavior when, in addition to caring that the committee

makes the right decision, each committee member faces a negative disesteem payoff if his/her

individual vote is shown to differ from the appropriate choice.1 As in the FDA example, we

consider a committee that decides whether or not to adopt an innovation, in an environment

where the quality of the innovation becomes evident only if it is adopted. Because of this

one-sided revelation of quality, committee members are only exposed to disesteem payoffs

when the innovation is accepted.

In this environment, we find that disesteem payoffs generically distort the decision away

from perfect information aggregation in large committees. When the disesteem payoff for

voting to reject a good innovation (type II error) is large relative to the payoff for voting to

accept a bad innovation (type I error), then the predictions of the model are intuitive and

the committee will vote to accept the innovation with too high a probability.

However, when the disesteem payoff for a personal type I error is large relative to the

payoff for a personal type II error, the predictions of the model depend on the technology

that generates the private information of the committee members. In our model, each

committee member receives a private signal that indicates that the innovation is either good

or bad. The Condorcet framework, which is the standard model used to analyze information

aggregation in committees, assumes that each signal is i.i.d. conditional on the true state of

the world. This implies that the aggregation of information held by a sufficiently large group

of individuals reveals the state of the world with arbitrary precision. In contrast, we consider

a model that includes the Condorcet framework as a special case, but that also allows for

1This payoff can be purely intrinsic (self-esteem), or as in Brennan and Pettit (2004) and Ellingsen and

Johannesson (2008), esteem payoffs can reflect an agent’s payoff from their general regard by other members

of society (also see the discussion of the relevant psychological and classical literature in Brennan and Pettit).
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an alternative signal technology. Specifically, our model also considers the case where each

expert’s signal is i.i.d. conditional on a state of the art, a random variable that equals the

state of the world with high probability, but which may also be incorrect. This implies that

the aggregation of information held by a large group of individuals conveys the false state of

the world with a probability that is bounded away from zero.

We show that under the standard Condorcet signal technology (state of the world), a large

committee of experts will always act rashly, accepting the innovation with too high a proba-

bility. That is, no matter how large the disesteem payoff for voting to accept a bad innovation,

there is no over-caution in large committees of experts. This finding, while interesting in and

of itself, is not robust: under the alternative state-of-the-art signal technology, where the

collective knowledge contained in even a very large number of signals has some probability

of being wrong, when the disesteem payoff for personal type I error is relatively large, a large

enough committee will always reject the innovation regardless of the information held by its

members.

To see the intuition behind this difference in the state of the world and state of the art

models, consider the case of a large committee where the disesteem payoff for voting to

accept a bad innovation is relatively large. One might expect this to give rise to over-caution

under the state of the world model: if the committee accepts the innovation then personal

errors are harshly punished only for those who vote to accept. However, if the committee is

over-cautious, then the (large) committee practically never approves a bad innovation, which

eliminates the impact of the payoff for a type I error. In contrast, this intuition fails in the

state of the art model since there is always a positive probability that the state of the art is

wrong, which implies that over-caution can be the unique equilibrium given a large relative

payoff for a type I error.

The paper is organized as follows. Following a review of the literature, section 2 introduces

the payoff structure and the process that generates each expert’s opinion (signal). Section

3 characterizes the limit results of the general state-of-the-art model, and compares the

state of the world and state of the art models. All proofs are relegated to the appendix.

In a supplementary Appendix, available online, we present suggestive evidence that larger

committees reject innovations more frequently using data on the voting patterns of FDA

committees, and include an analysis of information aggregation under the state of the art

view of expertise without disesteem payoffs, which is a special case of our model.2

2All the results in the absence of disesteem payoffs are analogous to those of the literature on the Condorcet

jury theorem with strategic voters (see Austen-Smith and Banks (1996)), McLennan (1998) and Feddersen

and Pesendorfer (1998)). For a general version of the Condorcet jury theorem, see Peleg and Zamir (2012).
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Literature Review

This paper contributes to the game theoretic literature on information aggregation in com-

mittees (see Austen-Smith and Banks (1996) for an early reference and recent surveys by

Gerling et al. (2005) and Li and Suen (2009)). Our paper is closely related to a subset of

the committee literature that considers information aggregation when voters have a common

interest in making the right decision and additional “idiosyncratic” payoffs that condition

on the individuals’ votes.3

In Visser and Swank (2007), committee members deliberate on whether to accept a project

prior to voting. The members are concerned about the value of the project and their reputa-

tion for being well informed. The market, whose judgement the experts care about, does not

observe the value of the project, only the decision taken by the committee. One difference

with respect to our model is that in Visser and Swank the additional reputation (idiosyn-

cratic) payoffs do not directly depend on the state (the true value of the project is never

revealed). Callander (2008) analyzes idiosyncratic payoffs in elections when voters wish for

the better candidate to be elected, but also to personally vote for the winner. The payoff

for voting for the winner (independently of the winning candidate’s quality) creates multiple

symmetric equilibria, some of which have unusual properties. Huck and Konrad (2005) show

that delegating a decision to a large committee whose members face a small moral cost when

voting in a particular direction can function as a commitment device, since a large committee

will always vote in the direction of the “moral” option. Morgan and Várdy (2012) study a

model in which voters are driven by both instrumental and purely expressive idiosyncratic

payoffs. That is, a voter receives some consumption utility if he/she votes in a pre-defined

way (e.g. in accordance with one’s norms) that is irrespective of the correct outcome and

the implemented decision.

While Callander (2008) and Morgan and Várdy (2012) both demonstrate that idiosyncratic

payoffs can lead to a failure of information aggregation in large committees, the mechanism

we present here is quite different. In both of the above papers, idiosyncratic payoffs give

agents a direct incentive to vote for, say, candidate A regardless of the state of the world; that

is, information aggregation fails when idiosyncratic payoffs run counter to the common value

payoff of electing the better candidate. In our analysis, however, information aggregation

fails despite idiosyncratic payoffs that reinforce common value payoffs: disesteem payoffs

realize only for experts who vote to approve a bad drug, or vote against approving a good

drug.

3In another branch of the literature the committee members have no concern for the aggregate decision

and care only about voting (or giving recommendations) to maximize the belief that the “market” holds

about their level of competence – i.e. the precision of their private signals. See e.g. Ottaviani and Sorensen

(2001) and Levy (2007).
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Lastly, Li (2001) shows that committees might have an incentive to adopt a more conservative

decision rule, in the sense of requiring a higher information threshold, to induce members to

individually invest more in information gathering. Our results give a complementary expla-

nation for why, even in situations where the committee decision rule is based on votes rather

than quantifiable evidence, committee members have an incentive to vote conservatively.

2 The Model

An innovation is submitted for approval by a committee of n experts that operates according

to a q-rule: If strictly more than a fraction q of the committee members i ∈ {1, 2, ..., n} vote

in favor of approval then the innovation is approved, and otherwise it is rejected. We denote

the vote of committee member i by v ∈ {a, r} and the decision of the committee (outcome)

by o ∈ {a, r}, where a indicates accept and r indicates reject.4 The payoff to each expert i

depends on the decision of the committee, an underlying state of the world ω ∈ {A,R}, and

the expert’s vote v:

U(v, o, ω) =



0 if o = r

w if o = a, ω = A, v = a

w − k2 if o = a, ω = A, v = r

−c if o = a, ω = R, v = r

−c− k1 if o = a, ω = R, v = a

where w, c, k1, k2 ≥ 0.

One interpretation of the structure of the payoffs is as follows: if the innovation is rejected,

then payoffs to all agents in the committee are zero, since the status quo is preserved and

no further information about the innovation’s quality is generated. If the innovation is ap-

proved, then the quality of the innovation is revealed and the committee members receive

a common payoff and, depending on the state of the world and their vote, an individual

disesteem payoff. The common payoff is w or −c depending on whether the committee has

made the right decision with respect to the state of the world. The individual disesteem

payoff depends on whether the individual has made a type I or a type II error in his ex-

pressed judgment. Specifically, if the committee has wrongly accepted the innovation and

the committee member has voted to accept (which we will refer to as a type I error) the

disesteem payoff amounts to k1. It amounts to k2 if the committee has correctly accepted

4We consider any q-rule with a fixed q, such as the majority rule used in FDA committees. This excludes

decision rules such as the unanimity rule, where q = (n− 1)/n; for an analysis of the case of unanimity and

communication, see a working version of the paper, Midjord et al. (2014).
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the innovation, yet the committee member has voted to reject (which we will refer to as a

type II error).5

We denote by pA ≡ Pr[ω = A] the experts’ common prior belief on the state of the world. In

addition to the state of the world, we introduce the concept of the state of the art, denoted

by τ ∈ {a, r}. The state of the art is generated by the underlying state of the world, with

some probability of error. Let e1 denote the probability that the state of the art is wrong

when it indicates that the innovation should be rejected (e1 = Pr[ω = A|τ = r], 0 ≤ e1 <
1
2
),

and let e2 denote the probability that the state of the art is wrong when it indicates that

the innovation should be accepted (e2 = Pr[ω = R|τ = a], 0 ≤ e2 <
1
2
).

Neither the state of the world, nor the state of the art is directly observable to the experts.

Instead, each expert receives a private signal, s ∈ {a, r}, that is generated by the state of

the art; that is, the experts’ signals are i.i.d. conditional on the state of the art. With

probability 1− ε the signal of expert i coincides with the state of the art (Pr[s = τ ] = 1− ε,
ε < 1

2
), and with probability ε it differs with respect to the state of the art (Pr[s 6= τ ] = ε).

We introduce the state of the art to reflect the possibility that even an infinite number of

expert signals may not reveal the true state of the world – i.e. even the ideal analysis of

all available data may not reveal the true quality of a proposed innovation. The standard

Condorcet framework, where signals are generated directly by the state of the world, corre-

sponds to the case of e1 = e2 = 0. For expositional clarity, we refer to the standard model

(e1 = e2 = 0) as the SoW model, and the state of the art model (e1, e2 > 0) as the SoA

model.

In what follows we will use σ = (σa, σr), to denote the possibly-mixed strategy according to

which member i sets v = a with probability 0 ≤ σa ≤ 1 after receiving signal s = a, and sets

v = a with probability 0 ≤ σr ≤ 1 after receiving signal s = r.

Fixing the strategy of all members other than i we denote i’s expected payoff from using

strategy σ by:

E[U(σ, o, ω)|s] = σs
∑

o∈{a,r}

∑
ω∈{A,R}

Pr[o, ω|v = a, s]U(v = a, o, ω)

+ (1− σs)
∑

o∈{a,r}

∑
ω∈{A,R}

Pr[o, ω|v = r, s]U(v = r, o, ω),

Throughout the analysis we rely on the concept of symmetric Bayesian Nash equilibrium.6

5In our use of the expressions “type I” and “type II” we follow what seems to be an emerging convention in

the interdisciplinary literature that studies the FDA, rather than the standard definition used in hypothesis

testing.
6Focusing on strategies that depend only on the players’ types (in this case their signals) is a standard
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3 Analysis

Fixing disesteem payoffs k = (k1, k2) and decision rule q, we denote by Gn the game with n

players. The following expression represents an agent’s relative expected payoff from voting

to accept when all other agents play strategy σ:

E[U(v = a, o, ω)|s]− E[U(v = r, o, ω)|s]

=
∑

o∈{a,r}

∑
ω∈{A,R}

Pr[o, ω|v = a, s]U(a, o, ω)

−
∑

o∈{a,r}

∑
ω∈{A,R}

Pr[o, ω|v = r, s]U(r, o, ω)

An agent’s vote only affects the committee outcome in the event that they are pivotal.

Denoting this event by “Piv,” the relative utility of voting a simplifies to:

wPr[Piv, ω = A|s]− cPr[Piv, ω = R|s]
− k1Pr[o = a, ω = R|s] + k2Pr[o = a, ω = A|s] (1)

Expression 1 illustrates the difference between the standard model of information aggregation

and the model with disesteem payoffs. In the standard model, agents’ votes are only payoff

relevant when they are pivotal, represented by the first two terms of expression 1. In the

model with disesteem payoffs, however, agents must also consider the probability of making

personal type I and type II errors, represented by the second two terms of expression 1.

We first specify the general existence of a “babbling equilibrium,” in which all agents vote to

reject. Such equilibria generally exist in models of common-values voting (see Austen-Smith

and Banks (1996)), since no single agent can affect the committee outcome if all other agents

vote for the same option. Note, however, that a babbling equilibrium in which all agents

vote to accept does not generally exist in our model, since agents are exposed to disesteem

payoffs if the committee votes to accept.

Proposition 1 (Babbling Equilibrium)

For any q and k, there exists N such that for n > N , σ = (0, 0) is an equilibrium in game

Gn.7

practice in Bayesian games. The justification in our case is that our players are ex-ante identical in every

aspect but their labels and it is unappealing to let behavioral differences depend purely on payoff irrelevant

characteristics (such as the labels). Restricting attention to symmetric strategies is also common in the

voting literature when voting is simultaneous; see for example Palfrey and Rosenthal (1985) and Feddersen

and Pesendorfer (1997).
7A sufficient condition is that bNqc ≥ 1 so that no agent can alter the commitee’s decision by unilaterally

changing his vote.
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For the remainder of the analysis we restrict our attention to the existence and characteri-

zation of non-babbling equilibria.8

Next, we characterize large committee outcomes for k = (0, 0).

Proposition 2 (No disesteem payoffs)

When k = (0, 0) the decision of the committee converges almost surely to the state of the

art for all q ∈ (0, 1) as n approaches infinity.

Proposition 2 states the analogous result to Feddersen and Pessendorfer’s (1998) Proposition

3 for the SoA model (proved in the Supplementary Appendix as Corollary 2): in the absence

of disesteem payoffs, regardless of q, decisions by large committees almost surely converge

to the state of the art.

We now characterize the limit non-babbling equilibrium in the case in which committee

members receive idiosyncratic payoffs for personal errors of type I and type II (k1 > 0,

k2 > 0). The limit behavior of the committee as n → ∞ can be generically characterized

using the ratio of k2/k1.
9 That is, the absolute magnitude of the disesteem payoffs are

irrelevant: no matter how small, the limit results of the model are determined by the relative

magnitude of k1 and k2. Also, as shown by the following proposition, perfect information

aggregation can only occur when k2/k1 = e2/(1 − e2); for any value of k2/k1 other than

this point, the committee decision, in the limit, is always biased towards either rejecting or

accepting.

For notational ease, we let πn
1 (σ) = Pr[o = a|τ = a] and πn

2 (σ) = Pr[o = a|τ = r] – we

explicitly denote the dependence of the probabilities on σ and n as we frequently need to

appeal to them in our arguments. The following expressions are helpful in characterizing the

limit equilibria:

λ =
(1− e1)Pr[τ = r|s = r] + e2Pr[τ = a|s = r]

(1− e2)Pr[τ = a|s = r] + e1Pr[τ = r|s = r]

π2 =

(
k2(1− e2)− k1e2
k1(1− e1)− k2e1

)
p(τ = a|s = r)

p(τ = r|s = r)

In what follows, for each n, we denote an equilibrium strategy of Gn as σn, and for any

sequence {σn} we denote the limit of {(πn
1 (σn), πn

2 (σn))} as n → ∞, when it exist, as

(π1, π2).

8That is, statements such as “all equilibria of Gn...”, should be read as “all equilibria of Gn, other than

the babbling equilibrium,...”.
9Besides the case in which k2/k1 = e2/(1− e2) where the asymptotic committee’s behavior does depend

on the actual magnitudes of k1 and k2, not just on the value of the ratio.
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Proposition 3

Assume q ∈ (ε, 1 − ε).10 For any sequence of non-babbling equilibria, the corresponding

sequence {(πn
1 (σn), πn

2 (σn))} converges to:

(π1, π2) =


(0, 0) if k2/k1 < e2/(1− e2) (i)

(1, π2) if k2/k1 ∈ (e2/(1− e2), λ] (ii)

(1, 1) if k2/k1 > λ (iii)

Moreover, there always exists a sequence of equilibria such that the corresponding sequence

{(πn
1 (σn), πn

2 (σn))} converges to the specified values.11

Proposition 3 is the main result of our analysis and establishes the uniqueness, and for

(ii) and (iii) the existence, of the non-babbling limit equilibrium (the formal proof of the

proposition is given in the appendix). First, (i) demonstrates that the committee will always

vote to reject the innovation as long as k1 is large relative to k2. An intuitive direct argument

for this result stems from examining the right-hand side (RHS) and left-hand-side (LHS) of

the following rearrangement of expert i’s willingness to vote to accept the innovation upon

receiving signal s, when all other members play according to σ,

wPr[Piv, ω = A|s]− cPr[Piv, ω = R|s] + k2Pr[o = a, ω = A|s]
≥ k1Pr[o = a, ω = R|s] (1”)

First, under any q-rule, the LHS converges to k2Pr[o = a, ω = A|s] as n approaches infinity,

since the probability of influencing the committee decision approaches zero. Due to the state

of the art layer, the RHS, while decreasing under some {σa, σr}, is always strictly bounded

away from zero. Thus, for k2/k1 sufficiently small and n sufficiently large, experts will want

to vote to reject the innovation independent of their signal.

Again, it is only the relative size of the disesteem payoffs that matters: it may be the case

that rejecting all innovations with arbitrarily high probability (as the size of the committee

increases) is the only equilibrium even for very small values of k1. To be more precise,

how small k2/k1 needs to be depends on the accuracy of the state of the art conditional

on recommending approval; given both k1 and k2 strictly positive, the range over which

rejecting the innovation is the unique limit outcome increases as the state of the art becomes

less accurate.
10The results for q /∈ (ε, 1− ε) are largely analogous and are detailed in the supplementary appendix.
11The interval in (ii) is nonempty as long as at least one of e1 and e2 is strictly smaller than 1/2, which

by assumption is always the case throughout. Note that k2/k1 = e2/(1− e2) is not explicitly covered by this

proposition; however, this case turns out to be formally analogous to the game addressed in appendix 5.1

which implies that for certain parameter ranges, there exists an equilibrium sequence of {(πn1 (σn), πn2 (σn))}
that converges to (1, 0) (see Lemma 6 in section 5.1).
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Similarly, (iii) demonstrates that if k1 is small enough relative to k2, a large committee

essentially always accepts the innovation (outside of the babbling equilibrium). The intuition

for this result is quite similar to (i): for k2 large relative to k1, as long as there is a positive

probability of the committee passing the proposal, agents strictly prefer to vote for a to

avoid k2.

Case (ii) is less straightforward than the other two. For values of k2/k1 > e2/(1 − e2),

conditional on the committee decision matching the state of the art, voting to reject is not

a best response for an agent with a signal of r. Therefore, perfect information aggregation

cannot be supported as an equilibrium in the limit; instead, agents with a signal of r mix

between voting to accept and reject at a ratio such that πn
1 (σn) equals 1 and πn

2 (σn) is greater

than zero, and their exposure to k1 and k2 is precisely balanced. The value of πn
2 (σn) that

makes agents with a signal of r indifferent between voting to reject and accept, π̄2, increases

continuously from 0 to 1 as k2/k1 increases from e2/(1− e2) to λ.

Note that there is no region of k2/k1 where π1 ∈ (0, 1) and π2 = 0. In fact, Proposition 3

implies a discontinuity between cases (i) and (ii) in the limit value of πn
1 (σn), as π1 = 0 for

all k2/k1 < e2/(1− e2) and π1 = 1 for all k2/k1 > e2/(1− e2). To see why there is no range

of k2/k1 with π1 ∈ (0, 1) and π2 = 0, note that this would require agents with s = a to mix

between voting to reject and voting to accept. However, when π2 = 0, an agent with s = a

can only be indifferent between v = a and v = r at the point (k2/k1) = e2/(1 − e2). That

is, regardless of the value of π1, when k2/k1 < e2/(1 − e2), it is strictly optimal to vote to

reject for all agents, and when k2/k1 > e2/(1− e2), it is strictly optimal for all agents with

s = a to vote to accept. This rules out an equilibrium of the form π1 ∈ (0, 1) and π2 = 0

(for (k2/k1) 6= e2/(1− e2)).

Increasing precision of the signals

0.25 0.5 0.75 1. 1.25 1.5 1.75 2.

k2/k1

0.5

1.0

1.5

2.0

π1 + π2

Increasing precision of the state of the art

0.25 0.5 0.75 1. 1.25 1.5 1.75 2.

k2/k1

0.5

1.0

1.5

2.0

π1 + π2

Figure 1: The left-hand graph shows π1 +π2 as a function of k2/k1 (π1 +π2 = 1 implies perfect information

aggregation) for e2 = 0.15 and ε = 0.4 (small dashing), ε = 0.3 (large dashing), and ε = 0.2 (solid line).

The right-hand graph shows π1 + π2 for ε = 0.4 and e2 = 0.3 (small dashing), e2 = 0.15 (large dashing) and

e2 = 0 (solid line).
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Next, Figure 1 provides some examples to illustrate the difference between changing the

precision of the signal and changing the precision of the state of the art. The graphs show

π1 + π2 as a function of k2/k1, where π1 + π2 < 1 corresponds to over-rejection, π1 +

π2 = 1 corresponds to perfect information aggregation, and π1 + π2 > 1 corresponds to

over-acceptance. The left-hand graph illustrates the effect of increasing ε while keeping e2

constant.12 Past the discontinuity, increasing ε decreases the probability that the committee

incorrectly approves the innovation. The right-hand graph illustrates the effect of decreasing

e2 while keeping ε constant. Decreasing e2 has a non-monotonic affect on the probability

that the committee incorrectly approves the innovation – decreasing the probability of a type

II error for small values of k2/k1, but increasing it for larger values.

Comparing the SoW and SoA models

Note that Proposition 3 implies a very significant difference between the SoW and the SoA

models, which we emphasize in the following Corollary:

Corollary 1

Under the SoW model, if disesteem payoffs are strictly positive, large committees always

accept the innovation with too high a probability; i.e. π1 = 1, π2 > 0 for any k1, k2 > 0.

Under the SoA model, depending on the ratio of disesteem payoffs, large committees may

accept innovations too often, or reject them too often; i.e. π1 = 1, π2 > 0 for k2/k1 sufficiently

large and π1 = 0, π2 = 0 for k2/k1 sufficiently small.

Corollary 1, which follows as a direct application of Proposition 3 and is illustrated in Figure

2, shows that for all k1, k2 > 0, the SoW model predicts that a large committee of experts

will always act rashly, accepting the innovation with too high a probability. It is only under

the SoA model, for low k2/k1, that idiosyncratic payoffs lead to the over-caution of large

committees of experts.

The difference between the two models is particularly stark when k1 > 0, k2 = 0.13 In

this case, under the SoW model, information aggregation can be sustained with disesteem

payoffs since both the probability of being pivotal and the probability that the committee

wrongly accepts the innovation approach zero for some σ. However, under the SoA model

the probability that the committee wrongly accepts the innovation is bounded away from

zero whenever Pr[o = A] is bounded away from zero. Therefore, the mechanism that sustains

12These examples, as well as the examples in Figure 2, set e1 = e2 and a 50-50 prior.
13Note that Proposition 3 does not cover the cases k1 > 0, k2 = 0, and k1 = 0, k2 > 0. For the SoA model

(e1, e2 > 0), the proof of Proposition 3 extends to these corner cases. Under to SoW model, however, the

case of k1 > 0, k2 = 0 requires a different approach, which we cover in the Appendix (see Proposition 4 in

section 5.1).
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information aggregation in the SoW model is absent in the SoA model. This difference holds

in the limit as the SoA model approaches the SoW model (e1 and e2 approach zero), exposing

a discontinuity in the standard model, where only a marginal deviation away from the SoW

assumption changes equilibrium behavior from perfectly informative to babbling.

This discontinuity does not, however, exist when k1 = 0, k2 > 0, where both the SoA and

SoW models predict that the committee will always vote to accept. This difference is due

to an important, but subtle difference between disesteem payoffs for type I and type II

errors. In particular, the possibility of facing k1 depends on the event that the committee

incorrectly accepts the innovation. In the SoW model, this event occurs with a vanishingly

small probability as n grows, given that the votes by others are sufficiently informative.

In contrast, the possibility of facing k2 depends on the event that the committee correctly

accepts the innovation. In this case, assuming that the votes by others are sufficiently

informative, this event happens with high probability in both the SoA and SoW models.

Therefore, the incentives associated with k2 matter for all n under both the SoA and SoW

models. This implies that information aggregation will not be an equilibrium for k1 = 0, k2 >

0 for large n in either model, since Pr[o = a, ω = A|s] remains strictly positive, which gives

all agents a strict incentive to vote to accept.

Increasing precision of the state of the art, constant Pr[ω = s|s]

0.25 0.5 0.75 1. 1.25 1.5 1.75 2.

k2/k1

0.5

1.0

1.5

2.0

π1 + π2

Figure 2: This graph shows π1 +π2 as a function of k2/k1 for e2 = 0 (solid line), e2 = 0.15 (large dashing),

and e2 = 0.3 (small dashing), adjusting ε so that Pr[ω = s|s] stays constant at 0.6.

Lastly, Figure 2 gives a set of examples that illustrate the general difference between the

SoW and SoA models. The graph shows π1 + π2 as a function of k2/k1 for (ε, e2) =

(0.6, 0), (0.63, 0.15), (0.75, 0.3). To provide a fair comparison of the SoW model (e2 = 0)
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and the SoA model (e2 > 0), the values of ε are chosen such that Pr[ω = s|s] is stays con-

stant at 0.6. Figure 2 illustrates the stark discontinuity between the SoW and SoA models

that occurs at k2/k1 = 0, with the SoW model predicting perfect information aggregation

and the SoA model predicting that the committee will always reject. Moreover, relative to

the SoW model, the SoA model predicts a lower probability of acceptance, with the differ-

ence between the two models increasing as more uncertainty is shifted from the signal to the

state of the art.

4 Conclusion

In this paper, we detail the effect of disesteem payoffs on information aggregation in com-

mittees. We show that under the “state of the art” model of expertise, disesteem payoffs

for personal type I errors can lead large committees to be over-cautious and reject new in-

novations as individual committee members seek to save face and avoid being blamed for a

bad decision, while disesteem payoffs for personal type II errors can lead to large committees

acting rashly as all committee members seek credit for approving good innovations.

Our paper also shows that the predictions of models of information aggregation can be

sensitive to the standard assumption that experts’ signals are independently distributed

conditional on the state of the world: the standard model predicts that disesteem payoffs only

cause rashness and never over-caution. The distinction between the two models is empirically

relevant, since it is unlikely that the decision that aggregates all current knowledge perfectly

identifies the true state of the world; that is, due to imperfect evidence, even the “best”

decision might be wrong ex post. Additionally, the state of the art model in this paper implies

a particular correlation structure between experts’ signals, and the general implications of

such correlation warrant further study.

Lastly, our paper shows that idiosyncratic payoffs can affect information aggregation even

when they reinforce common payoffs. Specifically, idiosyncratic payoffs can distort decisions

when they introduce asymmetry in payoffs. This asymmetry need not be large; we show here

that even a marginal deviation from common payoffs can distort outcomes in large commit-

tees. Asymmetry can occur either due to informational asymmetry, e.g. when information

regarding the adequacy of a drug is only revealed when the drug is passed, or if the saliency

of individual votes vary with the committee outcome. One particularly relevant environment

is a political setting, where idiosyncratic payoffs can be interpreted as changes in reelection

probabilities due to the personal voting record of the politician. Voting records of politicians

are heavily scrutinized in US legislatures, and the saliency of a particular representative’s

vote might condition on the legislative outcome. Therefore, an interesting area for future

study is the effect of idiosyncratic payoffs on information aggregation in legislatures.
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5 Appendix: Proofs

Proof of Proposition 1: Suppose every agent uses the strategy σ = (0, 0). Choose any

N such that bNqc ≥ 1. By this, none of the agents can unilaterally change the committee

outcome and since the innovation is always rejected the disesteem payoffs are never realized.

Hence, the agents are indifferent and we have an equilibrium. (Proposition 1)

Proof of Proposition 2: Please see the supplementary appendix as it is the same argument

as the one used in the analogous result to Feddersen and Pessendorfer’s (1998) Proposition 3.

Proof of Proposition 3:

The proof is divided into three parts. The first part of the proof establishes some useful

preliminary lemmas. We begin with the statement, in Lemma 1, of a standard result on the

uniform convergence of points of mass in binomial distributions which underlies our main

arguments. Lemma 2 shows that for large enough n the function describing agent i’s will-

ingness to reject the innovation conditional on his signal, in game Gn, can be approximated

by a function that does not include any terms involving the probability of the event that

i is pivotal. Importantly, this approximation has a lower bound that is independent of the

strategies of the other agents. Lemma 3 and Lemma 4 show that for large enough n, equilib-

ria of the games Gn must have a very specific shape. These restrictions make it considerably

easier to characterize equilibria.

In the second part of the proof we establish the existence of sequences of equilibria with

conditional acceptance probabilities that converge to the values specified in the statement of

the proposition. The method involves relying on the much simpler approximate expressions

for the willingness to reject provided by Lemma 2. The main argument in this section is

embodied in Lemma 5. Finally, note that k2/k1 = e2/(1 − e2) is not explicitly covered by

proposition 3 since a different method of analysis is required for this case. However, we do

address this case in Lemma 6 in section 5.1, and show that for certain parameter ranges

there exists an equilibrium sequence that converges to perfect information aggregation.

The third part of the proof shows that the sequences constructed in the first part are essen-

tially unique in the sense that any sequence of non-babbling equilibria must yield the same

limiting conditional acceptance probabilities.

Part 1 (Preliminary Lemmas)

As seen throughout the paper, the rate at which the probability of being pivotal converges

to 0 as the size of committees grows plays a crucial role in the analysis behind many of

our results. From the perspective of any agent, the probability of the event that he is

13



pivotal corresponds to there being a precise number of other agents, bnqc, (conditional on

the state of the art) voting to accept. From his perspective, conditional on the state of

the art, this number is binomially distributed, and the success probability governing such a

distribution is given by the probability that a randomly chosen agent in the committee votes

to accept. Since this is an equilibrium object the following Lemma, which shows that for

any given q, the probability of being pivotal converges uniformly to 0 as n→∞ (uniformly

in the probability of voting to accept) is particularly useful. This is a standard property

of sequences of binomial pmfs, but since it plays such an important role in our analysis we

state it below.

Lemma 1 (Convergence of binomial points of mass)

The set {
(
n−1
bnqc

)
pbnqc(1 − p)n−1−bnqc : 0 ≤ p ≤ 1} is bounded above by a function f(n) such

that lim
n→∞

f(n)→ 0.

Proof of Lemma 1:

It follows by applying Stirling’s formula to establish an upper bound for the set {
(
n−1
bnqc

)
pbnqc(1−

p)n−1−bnqc : 0 < p < 1} and showing that this upper bound converges to 0. (Lemma 1)

The proof of our main result, Proposition 3, relies on some properties of the willingness to

vote to reject as n → ∞ that we establish in the following lemmas. For the following, this

function of π = (π1, π2) will be useful:

Rs(π) =π1
(
k1Pr[ω = R|τ = a]− k2Pr[ω = A|τ = a]

)
Pr[τ = a|s]+

π2
(
k1Pr[ω = R|τ = r]− k2Pr[ω = A|τ = r]

)
Pr[τ = r|s],

since, as the first Lemma in the series shows, the willingness to vote to reject when observing

signal s gets arbitrarily close to Rs(π) for large n.

Lemma 2

For any h > 0, there exists N such that for all n > N , the willingness to vote to reject

Rs(n, σ) is within h of Rs(π
n
1 (σ), πn

2 (σ)), where πn
1 (σ) = Pr[o = A|τ = a] and πn

2 (σ) =

Pr[o = A|τ = r].14

Proof: For n finite, the willingness to vote to reject can be rewritten as follows:

Rs(n, σ) =− wPr[Piv, ω = A|s] + CPr[Piv, ω = R|s] + k1Pr[Piv, ω = R|s]
+ k1Pr[o = a,¬Piv, ω = R|s]− k2Pr[o = a,¬Piv, ω = A|s],

where ¬Piv indicates the event that i is not pivotal. This in turn can be written as:

F ′s(Piv, σ, n) + k1Pr[o = a,¬Piv, ω = R|s]− k2Pr[o = a,¬Piv, ω = A|s],
14For notational ease, when there is no risk of confusion we do not explicitly denote the dependence of the

probability terms on n.
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where F ′s(Piv, σ, n) gathers the terms that involve the event that i is pivotal.

With some additional algebra, the above expression can be shown to equal:

F ′s(Piv, σ, n)+[k1Pr[ω = R|τ = a]− k2Pr[ω = A|τ = a]]Pr[τ = a|s]Pr[o = a,¬Piv|τ = a]+

[k1Pr[ω = R|τ = r]− k2Pr[ω = A|τ = r]]Pr[τ = r|s]Pr[o = a,¬Piv|τ = r].

Since Pr[o = a,¬Piv|τ = a] = πn
1 (σ) − Pr[o = a,Piv|τ = a] and Pr[o = a,¬Piv|τ = r] =

πn
2 (σ) − Pr[o = a,Piv|τ = r], we can substitute these terms into the above equation and

rearrange to get:

Rs(n, σ) = πn
1 (σ)[k1e2−k2(1−e2)]Pr[τ = a|s]+πn

2 (σ)[k1(1−e1)−k2e1]Pr[τ = r|s]+Fs(Piv, σ, n),

where Fs(Piv, σ, n) captures all payoffs associated with the pivotal event. Note that since

the probability of being pivotal approaches zero uniformly with respect to σ (see Lemma

1), there exists a function ms(n) converging to 0 as n → ∞ such that for all σ we have

|Fs(Piv, σ, n)| < ms(n). Letm(n) = max{ma(n),mr(n)} and considerN such thatm(n) < h

for all n > N . Then we have that for all n > N :

|Rs(n, σ)−Rs(π
n
1 (σ), πn

2 (σ))| < h

(Lemma 2)

Next, we prove that equilibrium strategies can only take a certain form. This fact greatly

simplifies the task of characterizing the limit behavior of the committee:

Lemma 3

If k2/k1 > e2/(1− e2), k2/k1 6= (1− e1)/e1, then for any δ > 0 there exists N such that for

all n > N , if there is an equilibrium of Gn such that either πn
1 (σn) > δ or πn

2 (σn) > δ, then

σn
a = 1 and σn

r ≤ 1 or σn
a ≥ 0 and σn

r = 0.

Proof of Lemma 3:

First, consider the case of k2/k1 ∈ (e2/(1− e2), (1− e1)/e1). Take h > 0 small enough such

that the following inequality holds:

Rr(π
n
1 (σn), πn

2 (σn))−Ra(π
n
1 (σn), πn

2 (σn))

=πn
1 (σn)

[(
k1e2 − k2(1− e2)

)
(Pr[τ = a|s = r]− Pr[τ = a|s = a])

]
+ πn

2 (σn)
[(
k1(1− e1)− k2e1

)
(Pr[τ = r|s = r]− Pr[τ = r|s = a])

]
> 2h,

where h is well-defined since both terms within brackets are strictly positive for k2/k1 ∈
(e2/(1− e2), (1− e1)/e1), and either πn

1 (σn) or πn
2 (σn) is strictly greater than δ.
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Take N large enough such that Lemma 2 holds for h, then we have that for n > N :

Rr(π
n
1 (σn), πn

2 (σn))−Ra(π
n
1 (σn), πn

2 (σn)) > 2h⇒ Rr(n, σ)−Ra(n, σ) > 0

So any equilibrium of Gn such that either πn
1 (σn) > δ or πn

2 (σn) > δ must be of the form

σn
a = 1 and σn

r ≤ 1 or σn
a ≥ 0 and σn

r = 0.

Next, we consider the case of k2/k1 > (1−e1)/e1. When k2/k1 > (1−e1)/e1, then Rs(π) < 0

for all π 6= (0, 0). Therefore, by Lemma 2 for n large enough the only possible equilibria are

σ = (0, 0), (1, 1). (Lemma 3)

Lemma 4 allows us to further narrow the candidate non-babbling equilibria in the case of

ε < q < 1− ε.

Lemma 4

If ε < q < 1 − ε and if k2/k1 > e2/(1 − e2), k2/k1 6= (1 − e1)/e1, then for any δ > 0, there

exists N such that for all n > N , if there is an equilibrium of Gn such that either πn
1 (σn) > δ

or πn
2 (σn) > δ, then σn

a = 1 and σn
r ≤ 1.

Proof of Lemma 4:

By contradiction, assume that for all N , there is n > N such that there exists an equilibrium,

σ̂n, such that σ̂n
r = 0 and σ̂n

a ≥ 0, and πn
1 (σ̂n) > δ or πn

2 (σ̂n) > δ. Consider N1 large enough

so that Lemma 2 holds for h and so that we can apply Lemma 3 for all n > N1. Given

σn(r) = 0 and σn(a) ≥ 0, then there exists N > N1 such that for all n > N , πn
2 (σn) < δ and

πn
2 (σn)

(
k1(1 − e1) − k2e1

)
Pr[τ = r|s = r] < −δ

(
k1e2 − k2(1 − e2)

)
Pr[τ = a|s = r] − h for

some small h. This implies:

Rr(π
n
1 (σ̂n), πn

2 (σ̂n)) + h = πn
1 (σ̂n)

(
k1e2 − k2(1− e2)

)
Pr[τ = a|s = r]

+ πn
2 (σ̂n)

(
k1(1− e1)− k2e1

)
Pr[τ = r|s = r] + h < 0,

since if πn
2 (σ̂n) < δ it must be the case that πn

1 (σ̂n) > δ.

However, Lemma 2 implies

Rr(n, σ̂) < Rr(π
n
1 (σ̂n), πn

2 (σ̂n)) + h < 0,

which contradicts σ̂n
r = 0. (Lemma 4)

Part 2 (Existence)

We now prove the statement on existence of the proposition. That is, we prove that

when k2/k1 lies in each of the sets specified below, then there exists a sequence of equi-

libria {σn} such that the corresponding sequence of conditional acceptance probabilities

{(πn
1 (σn), πn

2 (σn))} converges to the specified values:
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(i) (0, 0) if k2/k1 < e2/(1− e2)
(ii) (1, π̄2) if k2/k1 ∈ (e2/(1− e2), λ]

(iii) (1, 1) if k2/k1 > λ

Note that (i) follows trivially from the existence of a babbling equilibrium at σa = σb = 0.

Also, we consider the cases of k2
k1

= 1−e1
e1

, k2
k1

= e2
1−e2 at the end of the proof, since these cases

require special treatment.

For k2
k1
> e2

1−e2 , k2
k1
6= 1−e1

e1
, Lemma 3 allows us to constrain the analysis to σr = 0, 0 ≤ σa ≤ 1,

and 0 ≤ σr ≤ 1, σa = 1, allowing us to define equilibria of the game using the same willingness

to vote to reject function used for the main analysis:

R(n, z) =

{
Ra(n, (z, 0)) if z ≤ 1

Rr(n, (1, z − 1)) if z > 1

Where z = σa + σr.
15 Also, since either π∞1 (z) ∈ [0, 1], π∞2 (z) = 0, or π∞1 (z) = 1, π∞2 (z) ∈

[0, 1], it will be useful to define R(Π) as a function of Π = π1+π2 over this subset of (π1, π2).

Formally:

R(Π) =

{
R(π1, 0) if π2 = 0

R(1, π2)) if π1 = 1

From this expression we derive the bounds of λ and e2/(1− e2), as well as π̄2. Specifically, λ

is the value of k2/k1 that solves R(2) = 0, implying that R(2) < 0 for values of k2/k1 > λ.

Similarly, e2/(1−e2) solves R(0) = 0, and π̄2 solves R(1+π̄2) = 0 for k2/k1 ∈ (e2/(1−e2), λ).

Moreover, this notation allows us to prove the following lemma:16

15What is crucial here, is that when characterizing equilibria in mixed strategies we only need to verify the

indifference of the agent between accepting and rejecting, after observing the signal under which he mixes.

Lemma 3 then implies the optimality of his behavior under the other signal when n is large enough.
16We are interested in the roots of R(Π) to the extent that they correspond to limit points of acceptance

probabilities in sequences of equilibria of the finite games. The fact that π that do not have this shape are

not candidate limit point stems from the informativeness of the signals with respect to the state of the art

(ε < 1
2 ). This assumption along with the shape of the equilibria, imply that from the perspective of an

observer the probability µna that a randomly chosen agent votes to accept conditional on τ = a is always

strictly higher than conditional on τ = r (µnr ) -as long as σn(a) and σn(r) are not both 0 or both 1-. By the

law of large numbers, Pr[o = A|t] ∈ (0, 1) converges to an interior point of [0, 1] only if µnt → q, but it can’t

be the case that both µnr and µna are converging to an interior point of [0, 1].
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Lemma 5

(i) Given (π∗1, π
∗
2) such that Π∗ ∈ (0, 1) and R(Π∗) = 0, there exists a sequence of equilibria

{σn} such that as n → ∞ the corresponding sequence of {(πn
1 (σn), πn

2 (σn))} converges to

(π∗1, π
∗
2) if R(Π∗ − h) < 0 and R(Π∗ + h) > 0 for all h ∈ (0, h̄) for some h̄ > 0.

(ii) If R(2) ≤ 0, there exists a sequence of equilibria {σn} such that as n → ∞ the corre-

sponding sequence of {(πn
1 (σn), πn

2 (σn))} converges to π = (1, 1).

Proof of Lemma 5: We use Lemma 2 and the following expression,

Rs(n, σ) = πn
1 (σ)[k1e2−k2(1−e2)]Pr[τ = a|s]+πn

2 (σ)[k1(1−e1)−k2e1]Pr[τ = r|s]+Fs(Piv, σ, n),

to prove (i) by first proving that for n large, there exists an equilibrium within an h-

neighborhood of (π∗1, π
∗
2) for each n, and then proving that a sequence of equilibria within

the h-neighborhood of (π∗1, π
∗
2) converges to (π∗1, π

∗
2).

Take a sequence of {zn1 }, such that (πn
1 (zn1 ), πn

2 (zn1 )) converges to (Π∗ + h), and {zn2 }, such

that (πn
1 (zn2 ), πn

2 (zn2 )) converges to (Π∗−h). Such sequences exist since π1, π2 are continuous

in z. Moreover, for all n > N+, for some N+, R(n, zn1 ) > 0 by Lemma 2. Similarly, for all

n > N−, for some N−, R(n, zn2 ) < 0. This implies that for each value of n greater than

N , where N = max{N+, N−}, there exists an equilibrium value z∗, such that R(n, z∗) = 0,

since R(n, zn2 ) < 0 < R(n, zn1 ) and R(n, z) is continuous in z. This proves the existence of a

sequence of equilibria within a h-neighborhood of (π∗1, π
∗
2) for n > N .

Take a sequence of equilibria, zn∗, such that the corresponding sequence of {πn
1 (zn∗), πn

2 (zn∗)}
is within a h-neighborhood of (π∗1, π

∗
2) for n > N , where h is small enough so that the

neighborhood does not include (0, 0). By construction R(n, z∗,n) = 0 all along the se-

quence, and furthermore Fs(Piv, σ, n) → 0. Therefore, πn
1 (zn)[k2e2 − k1(1 − e2)]Pr[τ =

a|s] + πn
1 (zn)[k2e1 − k1(1− e1)]Pr[τ = r|s] must converge to 0. This can only happen if (1)

(πn
1 (zn∗), πn

2 (zn∗)) are converging to (π∗1, π
∗
2); (2) (πn

1 (zn∗), πn
2 (zn∗)) are converging to (0, 0); or

(3) (πn
1 (zn∗), πn

2 (zn∗)) is alternating between a neighborhood of (π∗1, π
∗
2) and a neighborhood

of (0, 0). However, since (πn
1 (zn∗), πn

2 (zn∗)) is bounded from (0, 0) for n > N by construction,

(2) and (3) are impossible.

The proof of (ii) follows a similar logic. First, if R(2) = 0, then a sequence of equilibria such

that the corresponding {(πn
1 (zn∗), πn

2 (zn∗))} converge to (1, 1) exists by the same argument

as above since R(Π∗ − h) < 0 for all h.

For R(2) < 0, take h > 0, but small enough that R(2) + h < 0. Next, take N large enough

such that |F (Piv, z, n)| < h for all n > N . This implies that for n > N , z = 2 is an

equilibrium since:

Rs(n, 2) = Rs(2) + F (Piv, z, n) < R(2) + h < 0.
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This in turn implies that a sequence of equilibria exist such that (πn
1 (zn∗), πn

2 (zn∗)) = (1, 1)

is an equilibrium for all n > N . (Lemma 5)

The proof of (ii) and (iii) now follow directly from Lemma 5: For (ii), R(1 + π̄2) = 0 and

R(1 + π̄2 − h) < 0 < R(1 + π̄2 + h) for all h ∈ (0, h̄) for h̄ small. For (iii), R(2) ≤ 0.

For k2
k1

= 1−e1
e1

, Lemma 5 does not apply; however, since Rs(1, 1) < 0 it follows that an

equilibrium with (πn
1 (σn), πn

2 (σn)) close to (1, 1) exists for n large.

Part 3 (Uniqueness)

We now prove the uniqueness of the limits of conditional probabilities associated to sequences

of non-babbling equilibria, as discussed at the beginning of the statement of Proposition 3.

That is, we prove that the sequence of conditional acceptance probabilities {(πn
1 (σn), πn

2 (σn))}
associated to any given sequence {σn} of non-babbling equilibria converges to:

(i) (0, 0) if k2/k1 < e2/(1− e2)
(ii) (1, π̄2) if k2/k1 ∈ (e2/(1− e2), λ]

(iii) (1, 1) if k2/k1 > λ

We proceed by contradiction, assuming that there exists δ such that for all N , there is n > N

such that there exists an equilibrium σ̂n such that either πn
1 (σ̂n) or πn

2 (σ̂n) is more than δ

away from the points specified in the proposition. The details of the proof differ between the

individual cases. However, for each case, we make use of the fact that by Lemma 2, given

σn, the willingness to vote to reject, Rs(n, σ
n), will be close to:

Rs(π
n
1 (σn), πn

2 (σn)) = πn
1 (σn)

(
k1e2−k2(1−e2)

)
Pr[τ = a|s]+πn

2 (σn)
(
k1(1−e1)−k2e1

)
Pr[τ = r|s],

and proceed by showing that σ̂n cannot be an equilibrium for n large.

Case (i)
(
k2
k1
< e2

1−e2

)
: Here we consider σ̂n such that either πn

1 (σ̂n) or πn
2 (σ̂n) is more than

δ away from 0. Take h > 0 such that min{δ(k1e2 − k2(1 − e2))Pr[τ = a|s], δ(k1(1 − e1) −
k2e1)Pr[τ = a|s]} > h for each signal s = a and s = r (such an h exists since both expressions

within the brackets are strictly positive given k2/k1 < e2/(1− e2) < (1− e1)/e1).

By assumption, there exists σ̂n such that either πn
1 (σ̂n) > δ or πn

2 (σ̂n) > δ and, by Lemma

2, such that Rs(n, σ̂
n) is within h of Rs(π

n
1 (σ̂n), πn

2 (σ̂n)). Therefore:

Rs(n, σ̂
n) >πn

1 (σ̂n)
(
k1e2 − k2(1− e2)

)
Pr[τ = a|s = r] + πn

2 (σ̂n)
(
k1(1− e1)− k2e1

)
Pr[τ = r|s]− h

>min{δ(k1e2 − k2(1− e2))Pr[τ = a|s], δ(k1(1− e1)− k2e1)Pr[τ = a|s]} − h > 0.

So it follows that the unique best response of an agent is to vote to reject under both signals,

and thereby σ̂n with corresponding πn
1 (σ̂n) cannot be an equilibrium of Gn.
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Case (ii) k2
k1
∈
(

e2
1−e2 , λ

]
: Here we consider σ̂n such that (πn

1 (σ̂n), πn
2 (σ̂n)) is more than δ away

from (0, 0) or (1, π̄2), in either dimension.

First notice that within the stated range of k2/k1, the unique interior crossing of R(Π) is

at (1 + π̄2), which implies that for some small enough h, there exists x > 0 such that if

πn
1 (σn) > 1 − x and |πn

2 (σn) − π̄2| > δ then |Rr(∞, (πn
1 (σn), πn

2 (σn)))| > h. Take h small

enough so that this relationship holds, and so that Rr(∞, (1, 1)) > h and Rr(∞, (1, 0)) < −h
(these two expressions are strictly positive and negative (respectively) for the range of k2/k1

considered).

Next, pick N large enough so that (1) Lemma 4 holds for δ, (2) Lemma 2 holds for h, (3)

πn
1 (σ̂n) > max{1− δ, 1−x}, and (4) Rr(n, (1, 0))) is within h of Rr(∞, (1, 0)) (which follows

from the fact that q ∈ (ε, 1−ε) implies limn→∞(πn
1 (1, 0), πn

2 (1, 0)) = (1, 0)). It follows that for

the conjectured equilibrium σ̂n, Ra(n, σ̂
n) 6= 0 and Rr(n, σ̂

n) 6= 0 since Rs((π
n
1 (σ̂n), πn

2 (σ̂n)))

are at least h away from 0. So both σ̂n
a and σ̂n

r must be extreme points of [0, 1], which implies

that the only candidates for σ̂n are (0, 0), (1, 0) and (1, 1) (pure strategies).

However, σ̂n cannot equal (0, 0), as this implies (πn
1 (σ̂n), πn

2 (σ̂n)) = (0, 0). Nor can σ̂n equal

(1, 1), as this requires Ra(n, σ
n) < 0 and Rr(n, σ

n) < 0 and implies (πn
1 (σ̂n), πn

2 (σ̂n)) = (1, 1),

which cannot be true since Rr(∞, (1, 1)) > h implies Rr(n, (1, 1)) > 0. Finally, σ̂n cannot

equal (1, 0), since this requires Ra(n, σ
n) < 0 and Rr(n, σ

n) > 0, which cannot be true since

Rr(∞, (1, 0)) < −h and Rr(n, (1, 0))) is within h of Rr(∞, (1, 0)), implying Rr(n, (1, 0))) <

0. This chain of arguments contradicts that σn is an equilibrium of Gn.

Case (iii) k2
k1
> λ: Here we consider σ̂n such that either πn

1 (σ̂n) or πn
2 (σ̂n) is more than δ

away from 1 and 0.

Note that since R(Π) < 0 for all Π ∈ (0, 1], Ra(n, σ̂
n) 6= 0 and Rr(n, σ̂

n) 6= 0 for large enough

n by the same argument as in Case (ii). Therefore, σ̂n must be a pure strategy equilibrium.

However, as above, σ̂n cannot equal (0, 0) or (1, 1) since this implies (πn
1 (σ̂n), πn

2 (σ̂n)) equals

(0, 0) or (1, 1) (respectively). Also, σ̂n cannot equal (1, 0) for n large enough since, as above,

Rr(∞, (1, 0)) < −h.

Finally, note that when k2/k1 = (1 − e1)/e1, the same argument as above demonstrates

that all equilibria with πn
1 (σn) >> 0 must be within δ of (1, 1) for n large. However, since

R(0, π2) = 0 at this point, Lemma’s 3 and 4 do not apply, and we cannot exclude the exis-

tence of equilibria close to (0, π2). (Proposition 3)
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5.1 Conditions for information aggregation with disesteem payoffs

Here we consider two related cases where perfect information aggregation can be supported

with disesteem payoffs.

SoW model, k1 > 0, k2 = 0:

The proof of Proposition 3 does not cover the case of k1 > 0, k2 = 0 under the SoW model

(e1 = e2 = 0). Therefore, we present the following proposition, which provides a sufficient

condition for perfect information aggregation under the SoW model:

Proposition 4 (Payoffs for Type I errors, SoW: Information aggregation)

Assume that e1 = e2 = 0, w
c
∈
( ε2(1−pA)
(1−ε)2pA

, (1−pA)
pA

)
, and

k1 <
pAw

(
(1−ε)2

ε

)
− cε(1− pA)

ε(1− pA) 1−ε
1−2ε

(2)

If q = 1
2
, then σa = 1, σr = 0 is an equilibrium for all sufficiently large n. In particular, this

implies that the Condorcet Theorem holds for all k1 satisfying the inequality above.17

With k1 > 0 and k2 = 0, the relative payoff from voting to accept, expression 1, simplifies

to:

wPr[Piv, ω = A|s]− cPr[Piv, ω = R|s]− k1Pr[o = a, ω = R|s]. (1’)

The intuition for the proof of Proposition 4 (see the supplementary appendix for the formal

proof) is that, given σa = 1, σr = 0, the probability that the committee makes the wrong

decision converges to 0 at the same rate as the probability that a given agent is pivotal,

and thus the ratio of the two probabilities, Pr[Piv|ω = A]/Pr[o = A|ω = R], approaches a

strictly positive constant. Therefore, when k1 is sufficiently small relative to w, the relative

benefit of voting to accept given a signal of accept outweighs the exposure to the disesteem

payoff in large committees (expression 1’ is positive in the limit for s = a, and negative for

s = r), and truthful voting is supported in equilibrium.

SoA model, k2
k1

= e2
1−e2 :

Here we show that when k2
k1

= e2
1−e2 , information aggregation can be supported in the limit

for certain parameter ranges. Notice that for this value of k2/k1, Rs(π1, π2) is equal to:

Rs(π1, π2) = π2
(
k1(1− e1)− k2e1

)
Pr[τ = r|s],

17Note that this is a sufficient, but not necessary, condition. In particular, this proposition specifies

conditions under which voting is truthful (σa = 1, σr = 0) given a majority rule and k1 positive, a stronger

condition than is needed for the Condorcet Theorem to hold. Also, if the disesteem payoff is “diluted” as n

grows, then the condition on k1 is not restrictive. We discuss this, and the robustness of the following SoA

result to dilution, in a working version of the paper (see Midjord et al. (2014)).

21



which suggests that information may be aggregated in the limit, since information aggre-

gation implies limn→∞ π
n
2 (σn) = 0. In fact, we show below that the case of k2

k1
= e2

1−e2 is

analogous to the SoW model, which implies that information aggregation in reached in the

limit for the comparable parameters detailed in Proposition 4.

Lemma 6

When k2
k1

= e2
1−e2 , then there exist parameter values such that {(πn

1 (σn), πn
2 (σn))} converges

to (1, 0).

Proof of Lemma 6:

First, we show that the case of k2
k1

= e2
1−e2 is analogous to the SoW model. Under parameters

w, c, k1, k2, ε, pA, e1 and e2, when k2
k1

= e2
1−e2 we have that for each signal s:

Rs(n, σ) =πn
2

(
k1(1− e1)− k2e1

)
Pr[τ = r|s]

−Pr[Piv|τ = a]
(
(w − k2)(1− e2)− ce2

)
Pr[τ = a|s]

+Pr[Piv|τ = r]
(
c(1− e1)− (w − k2)e1

)
Pr[τ = r|s]

On the other hand under parameters w′, c′, k′1, k
′
2, e

′
1, e

′
2, ε

′ = ε, p′A, when e′2 = 0, e′1 = 0

and k′2 = 0 (the state of the world model analyzed in Proposition 4) we have that for each

signal s:

R′s(n, σ) = πn
2 k
′
1Pr′[τ = r|s]− Pr[Piv|τ = a]w′Pr′[τ = a|s] + Pr[Piv|τ = r]c′Pr′[τ = r|s]

So let k′1 = k1(1−e1)−k2e1, w′ = (w−k2)(1−e2)− ce2, c′ = c(1−e1)− (w−k2)e1 and p′A =
pA−e1

(1−e2)−e1 . Then Pr′[τ = r|s] = Pr[τ = r|s] (and therefore also Pr′[τ = a|s] = Pr[τ = a|s]) ,

and therefore R′s(n, σ) = Rs(n, σ) for all n and σ.18 Therefore, when k2
k1

= e2
1−e2 , Proposition

4 applies directly to w′, c′, p′A, k′1, p
′
A and ε′.

Next, we show that the parameter set for which Proposition 4 applies is non-empty. Note

that if the parameters w, c, k1, ε, and pA meet the two conditions of Proposition 4, then

for sufficiently small (but positive) e1 and e2 and k2, they will be met by w′ c′, p′A. and k′1,

p′A and ε′. The reason is that as e1 → 0, e2 → 0 and k2 → 0, the parameters in the second

problem converge to those of the first problem, and so do the corresponding boundaries of

the open sets that define the two conditions.19

18 πσ
n

2 , Pr[Piv|τ = a] and Pr[Piv|τ = r] are exactly the same in both expressions for all σ and n because

ε′ = ε.
19Concretely, pick w, c and k1 which meet the conditions of proposition 3, given pA and ε. Then set e1,

e2 and k2 low enough so that the conditions are met by w′, c′, k1 and p′A. If at this stage k2
k1

is smaller than
e2

1−e2 then just decrease e2 further in order to restore equality, and this can only make the conditions slacker.

Similarly, if at this stage k2
k1

is bigger than e2
1−e2 then just decrease k2 further in order to restore equality.
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Applying Proposition 4 we therefore have that when q = 1
2

truth-telling is an equilibrium

of the second problem for all sufficiently large n (and therefore of the first one, as they are

exactly the same). Furthermore, since ε < 1
2
< 1 − ε we also have that in the limit π1 = 1

and π2 = 0. That is, the committee aggregates information perfectly in the sense that for

sufficiently large n it approximates the state of the art with arbitrarily precision. (Lemma 6)
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23



McLennan, Andrew (1998), “Consequences of the Condorcet Jury Theorem for Beneficial

Information Aggregation by Rational Agents.” The American Political Science Review,

92, 413–418.
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