$\begin{array}{c} {\rm Remarks \ on \ p-divisible \ Groups} \\ {\rm A \ Classification \ Theorem \ for \ p-divisible \ Groups \ over \ \mathcal{O}_C} \\ {\rm A \ pplications} \end{array}$

Classification of *p*-divisible groups over rings of mixed characteristic

Timo Henkel

March 17, 2017

Timo Henkel Classification of *p*-divisible groups over rings of mixed characteris

2 A Classification Theorem for *p*-divisible Groups over \mathcal{O}_C

p-divisible groups

Convention

- Throughout this talk we fix a complete and algebraically closed extension C of Q_p. We denote the integral closure of Z_p in C by O_C (take for example C = C_p = Q_p).
- ② *G* denotes a *p*-divisible group over \mathcal{O}_C , i.e. an inductive system of group schemes $(G[p^1] \rightarrow G[p^2] \rightarrow ...)$ such that $G[p^n] = \operatorname{Spec}(A_n)$ (where the A_n are finite and locally free \mathcal{O}_C -algebras) satisfying several conditions.

Example

$$\begin{split} \mu_{p^{\infty}} &= (\mu_p \to \mu_{p^2} \to ...), \text{ where } \mu_{p^n} = \operatorname{Spec}(\mathcal{O}_C[X]/(X^{p^n} - 1)) \\ \text{and hence } \mu_{p^n}(S) &= \{x \in S \mid x^{p^n} = 1\} \text{ for any } \mathcal{O}_C\text{-algebra } S. \end{split}$$

Adification of *p*-divisible groups and its generic fibre

Remark

- To a *p*-divisible group G one can associate an adic space G^{ad} .
- ② G^{ad} is an adic space over \mathcal{O}_C , i.e. there exists a canonical morphism of adic spaces $G^{ad} \rightarrow \text{Spa}(\mathcal{O}_C, \mathcal{O}_C)$.
- Define the generic fibre of G^{ad} to be the fibre product $G_{\eta}^{ad} := G^{ad} \times_{\operatorname{Spa}(\mathcal{O}_{\mathcal{C}}, \mathcal{O}_{\mathcal{C}})} \operatorname{Spa}(\mathcal{C}, \mathcal{O}_{\mathcal{C}}).$
- G_{η}^{ad} is an analytic adic space.
- This happens in a similar way in which a variety over C can be turned into a C-analytic space.
- Whereas a finite scheme is described by polynomial equations, analytic spaces are given by restrictions of formal power series.

Cartier-duality

Proposition

- For a finite group scheme H = Spec(A) over O_C we find a finite group scheme H* = Spec(A*) over O_C with A* = Hom_{O_C}(A, O_C). H* is called the *Cartier-dual* of H.
- Por a *p*-divisible group G = (Spec(A₁) → Spec(A₂) → ...) over O_C there is a Cartier-dual G* = (Spec(A₁*) → Spec(A₂*) → ...).

Example

The Cartier-dual of $G = \mu_{p^{\infty}}$ is $G^* = \mathbb{Q}_p / \mathbb{Z}_p$ and we have $(\mathbb{Q}_p / \mathbb{Z}_p)^* = \mu_{p^{\infty}}.$

The Lie algebra of a *p*-divisible group

Proposition

There exists a functor from the category of *p*-divisible groups over \mathcal{O}_C to the category of locally free \mathcal{O}_C -modules; $G \mapsto \text{Lie } G$.

Proposition

The *dimension* of G is the \mathcal{O}_C -rank of Lie G. We have

$$\mathsf{height}(G) = \mathsf{height}(G^*) = \mathsf{dim}(G) + \mathsf{dim}(G^*).$$

Example

i) Lie
$$\mathbb{Q}_p/\mathbb{Z}_p = \{0\}.$$

ii) Since
$$\mu_{p^{\infty}} = (\mathbb{Q}_p/\mathbb{Z}_p)^*$$
, rank(Lie $\mu_{p^{\infty}}) = \dim(\mu_{p^{\infty}}) = 1$.

iii) The *p*-divisible group $G' := \mathbb{Z}_p^n \otimes_{\mathbb{Z}_p} \mu_{p^{\infty}} := (\mu_{p^{\infty}})^n$ has Lie algebra Lie $G' = \mathcal{O}_C^n$.

 $\begin{array}{c} {\rm Remarks \ on \ p-divisible \ Groups} \\ {\rm A \ Classification \ Theorem \ for \ p-divisible \ Groups \ over \ \mathcal{O}_C} \\ {\rm A \ pplications} \end{array}$

Vector group and logarithm

Proposition (Scholze and Weinstein)

- To Lie G we can associate an adic space Lie G ⊗ G_a which has the structure of an Z_p-module.
- **2** There exists a \mathbb{Z}_p -linear map $\log_G : G_\eta^{ad} \to \text{Lie } G \otimes \mathbb{G}_a$.
- log_G is a local isomorphism.

Remark

- Lie $G \otimes \mathbb{G}_a$ contains the same information as Lie $G \otimes_{\mathcal{O}_C} C$.
- Since p ∈ C is topologically nilpotent, G_η^{ad} → G_η^{ad} is topologically nilpotent. Hence, by p-adically completeness of C, we have a canonical Z_p-module structure on G_η^{ad}.

Tate module reviewed

Proposition

Let G be a p-divisible group over \mathcal{O}_C . The Tate module of G

$$T(G) = \lim_{\stackrel{\leftarrow}{n}} G[p^n](C)$$

is a free \mathbb{Z}_p -module of rank height(*G*).

Example

i)
$$T(\mathbb{Q}_p/\mathbb{Z}_p) = \lim_{\stackrel{\leftarrow}{n}} \mathbb{Z}/p^n \mathbb{Z}(C) = \lim_{\stackrel{\leftarrow}{n}} \mathbb{Z}/p^n \mathbb{Z} = \mathbb{Z}_p$$
.
ii) $T(\mu_{p^{\infty}}) = \lim_{\stackrel{\leftarrow}{n}} \mu_{p^n}(C) = \lim_{\stackrel{\leftarrow}{n}} \mathbb{Z}/p^n \mathbb{Z} = \mathbb{Z}_p$.
iii) For $G' = \mathbb{Z}_p^n \otimes_{\mathbb{Z}_p} \mu_{p^{\infty}}$ as before, we have $T(G') = \mathbb{Z}_p^n$.

 $\begin{array}{c} {\sf Remarks \ on \ p-divisible \ Groups} \\ {\sf A \ Classification \ Theorem \ for \ p-divisible \ Groups \ over \ \mathcal{O}_C} \\ {\sf Applications} \end{array}$

Upcoming questions

Question

How much of the information of G can be recovered from T(G)?

Example

As \mathbb{Z}_{p} -modules, we have $T(\mu_{p^{\infty}}) = T(\mathbb{Q}_{p}/\mathbb{Z}_{p})$ but $\mu_{p^{\infty}}$ and $\mathbb{Q}_{p}/\mathbb{Z}_{p}$ are not isomorphic as *p*-divisible groups over \mathcal{O}_{C} : dim $(\mathbb{Q}_{p}/\mathbb{Z}_{p}) = 0 \neq 1 = \dim(\mu_{p^{\infty}})$

Question

Is G uniquely determined by the pair (T(G), Lie G)?

Hodge-Tate exact sequence

Theorem (Fargues)

There is a natural short exact sequence of C-vector spaces:

$$0 \to \mathsf{Lie}\; G \otimes_{\mathcal{O}_{\mathcal{C}}} C \xrightarrow{\alpha^*_{\mathcal{G}^*}} T(G) \otimes_{\mathbb{Z}_p} C \xrightarrow{\alpha_G} (\mathsf{Lie}\; G^*)^* \otimes_{\mathcal{O}_{\mathcal{C}}} C \to 0$$

Remark

- Via the exact sequence above, we can consider Lie G ⊗_{O_C} C as a linear subspace of T(G) ⊗_{Z_p} C.
- This way we can simultaneously use the data of the Tate module and the Lie algebra of a *p*-divisible group.

Equivalence of categories

Definition

Let $(\{T, W\})$ be the category of pairs consisting of a free \mathbb{Z}_p -module T of finite rank and a C-linear subspace $W \subseteq T \otimes_{\mathbb{Z}_p} C$.

The Hodge-Tate exact sequence gives a functor F

$$\begin{array}{rcl} (p\text{-divisible groups over } \mathcal{O}_C) & \longrightarrow & (\{T,W\}) \\ G & \mapsto & (T(G), \text{Lie } G \otimes_{\mathcal{O}_C} C), \end{array}$$

where we consider Lie $G \otimes_{\mathcal{O}_C} C$ as a subspace of $T \otimes_{\mathbb{Z}_p} C$ via $\alpha^*_{G^*}$.

Theorem (Scholze and Weinstein)

F is an equivalence of categories.

Proof of the theorem

Plan

Find a functor $J : \{(T, W)\} \to (p\text{-divisible groups } / \mathcal{O}_C)$ such that J and F are quasi-inverse to each other.

Step 1

- We consider the *p*-divisible group $G' := T \otimes_{\mathbb{Z}_p} \mu_{p^{\infty}}$ for which we have T(G') = T and Lie $G' = T \otimes_{\mathbb{Z}_p} \mathcal{O}_C$.
- G' is a p-divisible group with height(G') = dim(G') = rank(T).

③ We have the natural inclusion $W \hookrightarrow T \otimes_{\mathbb{Z}_p} C = \text{Lie } G' \otimes_{\mathcal{O}_C} C$.

Proof of the theorem

Step 2

We define H to be an adic space, making the following diagram Cartesian

The vertical maps can be considered as inclusions and the horizontal maps are logarithm maps.

Proof of the theorem

Step 3

We define G as the following disjoint union:

$$G = \prod_{Y \subseteq H} \mathsf{Spf}(\mathsf{H}^0(Y, \mathcal{O}_Y^+)),$$

where Y ranges over all connected components of H. (Remember that $H = G'^{ad}_{\eta} \times_{\operatorname{Lie} G' \otimes \mathbb{G}_a} W \otimes \mathbb{G}_a$.)

One can show that G is in fact a p-divisible group over \mathcal{O}_C with $G_\eta^{ad} \cong H$, Lie $G \otimes_{\mathcal{O}_C} C \cong W$ and $T(G) \cong T(G') = T$. Moreover it can be proven that be obtain a functor J which is quasi-inverse to F in this way.

Applications

Consequences

- i) Up to isomorphism, there are exactly two *p*-divisible groups over \mathcal{O}_C of height 1.
- ii) $\mathbb{Q}_p/\mathbb{Z}_p$ corresponds to $(\mathbb{Z}_p, 0)$ and $\mu_{p^{\infty}}$ to (\mathbb{Z}_p, C) .
- iii) Let $d \le h$ be non-negative integers. The problem to find all *p*-divisible groups of height *h* and dimension *d* is equivalent to the problem to find all *d*-dimensional linear subspaces of C^h .
- iv) The Grassmannian variety $Gras(d, C^h)$ gets involved.

Connection to Dieudonné Modules

Remark

The map $\mathcal{O}_C \to k := \mathcal{O}_C / p \mathcal{O}_C$ induces a base change functor

(p-divisible groups over $\mathcal{O}_C) \longrightarrow (p$ -divisible groups over k)

Outlook

We obtain the following commutative diagram of categories:

$$egin{array}{rll} (p ext{-divisible groups over } \mathcal{O}_{\mathcal{C}}) & \stackrel{\cong}{ o} & (\{\mathcal{T}, W\}) \ \downarrow & & \downarrow ??? \ (p ext{-divisible groups over } k) & \stackrel{\cong}{ o} & (ext{Dieudonné modules}) \end{array}$$