1. Laplace Operator and the Laplace Equation

Let U be an open subset of \mathbb{R}^{n}. A function $f: U \rightarrow \mathbb{R}$ is said to be twice continuously differentiable if all of the second partial derivatives of f exist and continuous on U. The set of all real valued twice continuously differentiable functions on U is denoted by $C^{2}(U)$.

Let $f \in C^{2}(U)$. The Laplacian of f is defined to be

$$
\Delta f=\sum_{i=1}^{n} f_{x_{i} x_{i}}
$$

Definition 1.1. A function $f \in C^{2}(U)$ is said to be harmonic if $\Delta f=0$.
Let $g:(0, \infty) \rightarrow \mathbb{R}$ be a C^{2}-function. We define a function $f: \mathbb{R}^{2} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ by

$$
f(x, y)=g(r), \quad r=\sqrt{x^{2}+y^{2}} .
$$

Let us compute Δf. By chain rule,

$$
f_{x}=g^{\prime}(r) \frac{x}{r}, \quad f_{y}=g^{\prime}(r) \frac{y}{r}
$$

and

$$
\begin{aligned}
& f_{x x}=g^{\prime \prime}(r)\left(\frac{x}{r}\right)^{2}+g^{\prime}(r) \frac{r^{2}-x^{2}}{r^{3}} \\
& f_{y y}=g^{\prime \prime}(r)\left(\frac{y}{r}\right)^{2}+g^{\prime}(r) \frac{r^{2}-y^{2}}{r^{3}}
\end{aligned}
$$

We obtain that

$$
\begin{aligned}
\Delta f & =f_{x x}+f_{y y}=g^{\prime \prime}(r) \frac{x^{2}+y^{2}}{r^{2}}+g^{\prime}(r) \frac{2 r^{2}-\left(x^{2}+y^{2}\right)}{r^{3}} \\
& =g^{\prime \prime}(r)+\frac{1}{r} g^{\prime}(r) .
\end{aligned}
$$

Hence $\Delta f=0$ if and only if

$$
g^{\prime \prime}(r)+\frac{1}{r} g^{\prime}(r)=0, \quad r>0 .
$$

Let $h(r)=g^{\prime}(r)$ for $r>0$ We have $r h^{\prime}(r)+h(r)=0$, for $r>0$ i.e. $(r h(t))^{\prime}=0$ for $r>0$. By mean value theorem, $r h^{\prime}(r)=c_{1}$ for $r>0$. Therefore

$$
g^{\prime}(r)=h(r)=\frac{c_{1}}{r} \text { for } r>0
$$

By integrating $g^{\prime}(r)$, we have

$$
g(r)=\int_{r_{0}}^{r} \frac{c_{1}}{t} d t=c_{1} \ln r+c_{2}
$$

where $c_{2}=-c_{1} \ln r_{0}$ and $r_{0}>0$. This shows that

$$
f(x, y)=\frac{c_{1}}{2} \log \left(x^{2}+y^{2}\right)+c_{2} .
$$

Let us try to solve the Laplace equation

$$
\Delta f=0 \text { on } \mathbb{B}(\mathbf{0}, 1) .
$$

Proposition 1.1. Let $f \in C^{2}(\mathbb{B}(\mathbf{0}, 1)) \cap C(\mathbb{D}(\mathbf{0}, 1))$. We set

$$
u(r, \theta)=f(r \cos \theta, r \sin \theta), \quad 0<r<1, \theta \in \mathbb{R}
$$

Then u is a periodic function in θ with period 2π.

$$
\Delta f=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

Assume that $u(r, \theta)=R(r) \Theta(\theta)$ is a nonzero solution to $\Delta f=0$. Then

$$
R^{\prime \prime}(r) \Theta(\theta)+\frac{R^{\prime}(r)}{r} \Theta(\theta)+\frac{R(r)}{r^{2}} \Theta^{\prime \prime}(\theta)=0 .
$$

Dividing the above equation by $R(r) \Theta(\theta)$ and multiplying the above by r^{2}, we obtain

$$
\frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{R(r)}=-\frac{\Theta^{\prime \prime}(\theta)}{\Theta(\theta)} .
$$

The left hand side of the equation is a function of r which is independent of θ while the right hand side of the equation a function of θ which is independent of r. Thus both of the right hand side and the left hand side of the equation must be a constant. Set the constant to be λ We obtain two differential equation

$$
\begin{aligned}
& r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\lambda R(r)=0, \\
& \Theta^{\prime \prime}(\theta)+\lambda \Theta(\theta) \quad=0 .
\end{aligned}
$$

When $\lambda=0, \Theta(\theta)=a \theta+b$ for some a, b. Since Θ is a period function, $a=0$. Therefore $r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)=0$. We have seen that $R(r)=c_{1} \log r+c_{2}$. Since we assume that f is continuously differentiable at $\mathbf{0}$, it is continuous at $\mathbf{0}$. This implies that $c_{1}=0$.

When $\lambda \neq 0$, for each $n \geq 1$, the function $c_{n}(\theta)=\cos n \theta$ and $s_{n}(\theta)=\sin n \theta$ are both periodic of period 2π and satisfy $\Theta^{\prime \prime}+n^{2} \Theta=0$. In this case, we obtain that for each $n \geq 1$,

$$
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-n^{2} R(r)=0
$$

To solve this equation, we define a new function $\phi(t)=R\left(e^{t}\right)$, i.e. we make a change of variable $r=e^{t}$. Then we obtain that

$$
\phi^{\prime \prime}(t)-n^{2} \phi(t)=0 .
$$

By theory of O.D.E., we find that $\phi(t)$ is of the form

$$
\phi(t)=C_{1} e^{n t}+C_{2} e^{-n t} .
$$

This implies that

$$
R(r)=C_{1} r^{n}+C_{2} r^{-n}
$$

Again, by the continuity of f, we find $C_{2}=0$. Set $u_{n}(r, \theta)=r^{n} \cos n \theta$ and $v_{n}(r, \theta)=$ $r^{n} \sin n \theta$. Then $\left\{1, u_{n}(r, \theta), v_{n}(r, \theta)\right\}$ are all solutions to the Laplace equation. Fourier's idea: combine all these solutions into one. More precisely, we set

$$
\begin{equation*}
u(r, \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \tag{1.1}
\end{equation*}
$$

How do we determine a_{0}, a_{n}, b_{n} ? Observe that

$$
\begin{equation*}
u(1, \theta)=f(\cos \theta, \sin \theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \tag{1.2}
\end{equation*}
$$

Let us define $g(\theta)=f(\cos \theta, \sin \theta)$ for $\theta \in \mathbb{R}$. It follows from the definition that g is a periodic function of period 2π, in fact,

$$
g(\theta+2 \pi)=f(\cos (\theta+2 \pi), \sin (\theta+2 \pi))=f(\cos \theta, \sin \theta)=g(\theta)
$$

for any $\theta \in \mathbb{R}$. We can also use the notation $\left.f\right|_{S^{1}}$ to denote g. We call g the restriction of f to $S^{1}=\partial \mathbb{B}(\mathbf{0}, 1)$. Hence if we know g, the restriction of f to the boundary of S^{1}, and express g as an infinite series of the form (1.2), then we can find (solve for) f. This leads to the following Dirichlet problem

$$
\left\{\begin{align*}
\Delta f & =0 \tag{1.3}\\
\left.f\right|_{S^{1}} & =g
\end{align*} \quad \text { on } \mathbb{B}(\mathbf{0}, 1)\right.
$$

Hence if g has the following series representation

$$
\begin{equation*}
g(\theta)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \theta+b_{n} \sin n \theta \tag{1.4}
\end{equation*}
$$

then f is given by (1.1).
Example 1.1. Solve (1.3) with the boundary condition

$$
g(\theta)=1-\cos \theta+\sin \theta+3 \sin 3 \theta
$$

The harmonic function is given by

$$
f(r \cos \theta, \sin \theta)=1-r \cos \theta+r \sin \theta+3 r^{3} \sin 3 \theta
$$

We can also express f in terms of x, y as follows. By De Moivre's law, we know

$$
(x+i y)^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

We set $C_{n}(x, y)=\operatorname{Re}(x+i y)^{n}$ and $S_{n}(x, y)=\operatorname{Im}(x+i y)^{n}$. The above function can be rewritten as

$$
f(x, y)=1-C_{1}(x, y)+S_{1}(x, y)+3 S_{3}(x, y)
$$

Since $C_{1}(x, y)=x$ and $S_{1}(x, y)=y$ and $S_{3}(x, y)=3 x y^{2}-y^{3}$,

$$
f(x, y)=1-x+y+9 x^{2} y-3 y^{3}
$$

In general, if the boundary condition is given by (1.4), then the solution to (1.3) is given by

$$
\begin{equation*}
f(x, y)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} C_{n}(x, y)+b_{n} S_{n}(x, y)\right) \tag{1.5}
\end{equation*}
$$

Later, we will show that any continuous periodic function of period 2π always possess such a series representation as (1.4) and discuss the convergence of (1.5). We need the notion of uniform convergence.
Example 1.2. Solve (1.3) with the boundary condition

$$
g(\theta)=1+2 \cos \theta-3 \sin \theta+4 \sin ^{2} \theta+\cos ^{2} \theta+5 \sin \theta \cos \theta+\cos ^{3} \theta+6 \sin ^{3} \theta
$$

