
1. Laplace Operator and the Laplace Equation

Let U be an open subset of Rn. A function f : U → R is said to be twice continuously
differentiable if all of the second partial derivatives of f exist and continuous on U. The set
of all real valued twice continuously differentiable functions on U is denoted by C2(U).

Let f ∈ C2(U). The Laplacian of f is defined to be

∆f =
n∑
i=1

fxixi .

Definition 1.1. A function f ∈ C2(U) is said to be harmonic if ∆f = 0.

Let g : (0,∞)→ R be a C2-function. We define a function f : R2 \ {0} → R by

f(x, y) = g(r), r =
√
x2 + y2.

Let us compute ∆f. By chain rule,

fx = g′(r)
x

r
, fy = g′(r)

y

r

and

fxx = g′′(r)
(x
r

)2
+ g′(r)

r2 − x2

r3
,

fyy = g′′(r)
(y
r

)2
+ g′(r)

r2 − y2

r3
.

We obtain that

∆f = fxx + fyy = g′′(r)
x2 + y2

r2
+ g′(r)

2r2 − (x2 + y2)

r3

= g′′(r) +
1

r
g′(r).

Hence ∆f = 0 if and only if

g′′(r) +
1

r
g′(r) = 0, r > 0.

Let h(r) = g′(r) for r > 0 We have rh′(r) + h(r) = 0, for r > 0 i.e. (rh(t))′ = 0 for r > 0.
By mean value theorem, rh′(r) = c1 for r > 0. Therefore

g′(r) = h(r) =
c1
r

for r > 0.

By integrating g′(r), we have

g(r) =

∫ r

r0

c1
t
dt = c1 ln r + c2

where c2 = −c1 ln r0 and r0 > 0. This shows that

f(x, y) =
c1
2

log(x2 + y2) + c2.

Let us try to solve the Laplace equation

∆f = 0 on B(0, 1).
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Proposition 1.1. Let f ∈ C2(B(0, 1)) ∩ C(D(0, 1)). We set

u(r, θ) = f(r cos θ, r sin θ), 0 < r < 1, θ ∈ R.

Then u is a periodic function in θ with period 2π.

∆f = urr +
1

r
ur +

1

r2
uθθ.

Assume that u(r, θ) = R(r)Θ(θ) is a nonzero solution to ∆f = 0. Then

R′′(r)Θ(θ) +
R′(r)

r
Θ(θ) +

R(r)

r2
Θ′′(θ) = 0.

Dividing the above equation by R(r)Θ(θ) and multiplying the above by r2, we obtain

r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
.

The left hand side of the equation is a function of r which is independent of θ while the
right hand side of the equation a function of θ which is independent of r. Thus both of the
right hand side and the left hand side of the equation must be a constant. Set the constant
to be λ We obtain two differential equation

r2R′′(r) + rR′(r) −λR(r) = 0,
Θ′′(θ) + λΘ(θ) = 0.

When λ = 0, Θ(θ) = aθ + b for some a, b. Since Θ is a period function, a = 0. Therefore
r2R′′(r) + rR′(r) = 0. We have seen that R(r) = c1 log r + c2. Since we assume that f is
continuously differentiable at 0, it is continuous at 0. This implies that c1 = 0.

When λ 6= 0, for each n ≥ 1, the function cn(θ) = cosnθ and sn(θ) = sinnθ are both
periodic of period 2π and satisfy Θ′′+n2Θ = 0. In this case, we obtain that for each n ≥ 1,

r2R′′(r) + rR′(r)− n2R(r) = 0.

To solve this equation, we define a new function φ(t) = R(et), i.e. we make a change of
variable r = et. Then we obtain that

φ′′(t)− n2φ(t) = 0.

By theory of O.D.E., we find that φ(t) is of the form

φ(t) = C1e
nt + C2e

−nt.

This implies that

R(r) = C1r
n + C2r

−n.

Again, by the continuity of f, we find C2 = 0. Set un(r, θ) = rn cosnθ and vn(r, θ) =
rn sinnθ. Then {1, un(r, θ), vn(r, θ)} are all solutions to the Laplace equation. Fourier’s
idea: combine all these solutions into one. More precisely, we set

(1.1) u(r, θ) =
a0
2

+

∞∑
n=1

rn(an cosnθ + bn sinnθ).

How do we determine a0, an, bn? Observe that

(1.2) u(1, θ) = f(cos θ, sin θ) =
a0
2

+
∞∑
n=1

(an cosnθ + bn sinnθ).
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Let us define g(θ) = f(cos θ, sin θ) for θ ∈ R. It follows from the definition that g is a
periodic function of period 2π, in fact,

g(θ + 2π) = f(cos(θ + 2π), sin(θ + 2π)) = f(cos θ, sin θ) = g(θ)

for any θ ∈ R. We can also use the notation f |S1 to denote g. We call g the restriction of
f to S1 = ∂B(0, 1). Hence if we know g, the restriction of f to the boundary of S1, and
express g as an infinite series of the form (1.2), then we can find (solve for) f. This leads to
the following Dirichlet problem

(1.3)

{
∆f = 0 on B(0, 1)
f |S1 = g

Hence if g has the following series representation

(1.4) g(θ) =
a0
2

+
∞∑
n=1

an cosnθ + bn sinnθ,

then f is given by (1.1).

Example 1.1. Solve (1.3) with the boundary condition

g(θ) = 1− cos θ + sin θ + 3 sin 3θ.

The harmonic function is given by

f(r cos θ, sin θ) = 1− r cos θ + r sin θ + 3r3 sin 3θ.

We can also express f in terms of x, y as follows. By De Moivre’s law, we know

(x+ iy)n = rn(cosnθ + i sinnθ).

We set Cn(x, y) = Re(x + iy)n and Sn(x, y) = Im(x + iy)n. The above function can be
rewritten as

f(x, y) = 1− C1(x, y) + S1(x, y) + 3S3(x, y).

Since C1(x, y) = x and S1(x, y) = y and S3(x, y) = 3xy2 − y3,
f(x, y) = 1− x+ y + 9x2y − 3y3.

In general, if the boundary condition is given by (1.4), then the solution to (1.3) is given
by

(1.5) f(x, y) =
a0
2

+

∞∑
n=1

(anCn(x, y) + bnSn(x, y)).

Later, we will show that any continuous periodic function of period 2π always possess such
a series representation as (1.4) and discuss the convergence of (1.5). We need the notion of
uniform convergence.

Example 1.2. Solve (1.3) with the boundary condition

g(θ) = 1 + 2 cos θ − 3 sin θ + 4 sin2 θ + cos2 θ + 5 sin θ cos θ + cos3 θ + 6 sin3 θ.


