1. LAPLACE OPERATOR AND THE LAPLACE EQUATION

Let U be an open subset of \mathbb{R}^n . A function $f: U \to \mathbb{R}$ is said to be twice continuously differentiable if all of the second partial derivatives of f exist and continuous on U. The set of all real valued twice continuously differentiable functions on U is denoted by $C^2(U)$.

Let $f \in C^2(U)$. The Laplacian of f is defined to be

$$\Delta f = \sum_{i=1}^{n} f_{x_i x_i}$$

Definition 1.1. A function $f \in C^2(U)$ is said to be harmonic if $\Delta f = 0$.

Let $g: (0,\infty) \to \mathbb{R}$ be a C^2 -function. We define a function $f: \mathbb{R}^2 \setminus \{\mathbf{0}\} \to \mathbb{R}$ by

$$f(x,y) = g(r), \quad r = \sqrt{x^2 + y^2}.$$

Let us compute Δf . By chain rule,

$$f_x = g'(r)\frac{x}{r}, \quad f_y = g'(r)\frac{y}{r}$$

and

$$f_{xx} = g''(r) \left(\frac{x}{r}\right)^2 + g'(r) \frac{r^2 - x^2}{r^3},$$

$$f_{yy} = g''(r) \left(\frac{y}{r}\right)^2 + g'(r) \frac{r^2 - y^2}{r^3}.$$

We obtain that

$$\Delta f = f_{xx} + f_{yy} = g''(r) \frac{x^2 + y^2}{r^2} + g'(r) \frac{2r^2 - (x^2 + y^2)}{r^3}$$
$$= g''(r) + \frac{1}{r}g'(r).$$

Hence $\Delta f = 0$ if and only if

$$g''(r) + \frac{1}{r}g'(r) = 0, \quad r > 0.$$

Let h(r) = g'(r) for r > 0 We have rh'(r) + h(r) = 0, for r > 0 i.e. (rh(t))' = 0 for r > 0. By mean value theorem, $rh'(r) = c_1$ for r > 0. Therefore

$$g'(r) = h(r) = \frac{c_1}{r}$$
 for $r > 0$.

By integrating g'(r), we have

$$g(r) = \int_{r_0}^r \frac{c_1}{t} dt = c_1 \ln r + c_2$$

where $c_2 = -c_1 \ln r_0$ and $r_0 > 0$. This shows that

$$f(x,y) = \frac{c_1}{2}\log(x^2 + y^2) + c_2.$$

Let us try to solve the Laplace equation

$$\Delta f = 0 \text{ on } \mathbb{B}(\mathbf{0}, 1).$$

Proposition 1.1. Let $f \in C^2(\mathbb{B}(\mathbf{0},1)) \cap C(\mathbb{D}(\mathbf{0},1))$. We set

$$u(r, \theta) = f(r \cos \theta, r \sin \theta), \quad 0 < r < 1, \theta \in \mathbb{R}.$$

Then u is a periodic function in θ with period 2π .

$$\Delta f = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$$

Assume that $u(r, \theta) = R(r)\Theta(\theta)$ is a nonzero solution to $\Delta f = 0$. Then

$$R''(r)\Theta(\theta) + \frac{R'(r)}{r}\Theta(\theta) + \frac{R(r)}{r^2}\Theta''(\theta) = 0.$$

Dividing the above equation by $R(r)\Theta(\theta)$ and multiplying the above by r^2 , we obtain

$$\frac{r^2 R''(r) + r R'(r)}{R(r)} = -\frac{\Theta''(\theta)}{\Theta(\theta)}.$$

The left hand side of the equation is a function of r which is independent of θ while the right hand side of the equation a function of θ which is independent of r. Thus both of the right hand side and the left hand side of the equation must be a constant. Set the constant to be λ We obtain two differential equation

$$\begin{array}{rcl} r^2 R''(r) &+& r R'(r) &-\lambda R(r) &= 0, \\ \Theta''(\theta) &+& \lambda \Theta(\theta) &= 0. \end{array}$$

When $\lambda = 0$, $\Theta(\theta) = a\theta + b$ for some a, b. Since Θ is a period function, a = 0. Therefore $r^2 R''(r) + rR'(r) = 0$. We have seen that $R(r) = c_1 \log r + c_2$. Since we assume that f is continuously differentiable at $\mathbf{0}$, it is continuous at $\mathbf{0}$. This implies that $c_1 = 0$.

When $\lambda \neq 0$, for each $n \geq 1$, the function $c_n(\theta) = \cos n\theta$ and $s_n(\theta) = \sin n\theta$ are both periodic of period 2π and satisfy $\Theta'' + n^2 \Theta = 0$. In this case, we obtain that for each $n \geq 1$,

$$r^{2}R''(r) + rR'(r) - n^{2}R(r) = 0.$$

To solve this equation, we define a new function $\phi(t) = R(e^t)$, i.e. we make a change of variable $r = e^t$. Then we obtain that

$$\phi''(t) - n^2\phi(t) = 0.$$

By theory of O.D.E., we find that $\phi(t)$ is of the form

$$\phi(t) = C_1 e^{nt} + C_2 e^{-nt}.$$

This implies that

$$R(r) = C_1 r^n + C_2 r^{-n}.$$

Again, by the continuity of f, we find $C_2 = 0$. Set $u_n(r,\theta) = r^n \cos n\theta$ and $v_n(r,\theta) = r^n \sin n\theta$. Then $\{1, u_n(r,\theta), v_n(r,\theta)\}$ are all solutions to the Laplace equation. Fourier's idea: combine all these solutions into one. More precisely, we set

(1.1)
$$u(r,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} r^n (a_n \cos n\theta + b_n \sin n\theta).$$

How do we determine a_0, a_n, b_n ? Observe that

(1.2)
$$u(1,\theta) = f(\cos\theta,\sin\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta).$$

Let us define $g(\theta) = f(\cos \theta, \sin \theta)$ for $\theta \in \mathbb{R}$. It follows from the definition that g is a periodic function of period 2π , in fact,

$$g(\theta + 2\pi) = f(\cos(\theta + 2\pi), \sin(\theta + 2\pi)) = f(\cos\theta, \sin\theta) = g(\theta)$$

for any $\theta \in \mathbb{R}$. We can also use the notation $f|_{S^1}$ to denote g. We call g the restriction of f to $S^1 = \partial \mathbb{B}(\mathbf{0}, 1)$. Hence if we know g, the restriction of f to the boundary of S^1 , and express g as an infinite series of the form (1.2), then we can find (solve for) f. This leads to the following Dirichlet problem

(1.3)
$$\begin{cases} \Delta f = 0 \quad \text{on } \mathbb{B}(\mathbf{0}, 1) \\ f|_{S^1} = g \end{cases}$$

Hence if g has the following series representation

(1.4)
$$g(\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\theta + b_n \sin n\theta,$$

then f is given by (1.1).

Example 1.1. Solve (1.3) with the boundary condition

 $g(\theta) = 1 - \cos \theta + \sin \theta + 3\sin 3\theta.$

The harmonic function is given by

$$f(r\cos\theta,\sin\theta) = 1 - r\cos\theta + r\sin\theta + 3r^3\sin3\theta.$$

We can also express f in terms of x, y as follows. By De Moivre's law, we know

$$(x+iy)^n = r^n(\cos n\theta + i\sin n\theta).$$

We set $C_n(x,y) = \operatorname{Re}(x+iy)^n$ and $S_n(x,y) = \operatorname{Im}(x+iy)^n$. The above function can be rewritten as $f(x,y) = 1 - C_n(x,y) + S_n(x,y) + 3S_n(x,y)$

$$f(x,y) = 1 - C_1(x,y) + S_1(x,y) + 3S_3(x,y).$$

Since $C_1(x,y) = x$ and $S_1(x,y) = y$ and $S_3(x,y) = 3xy^2 - y^3$,
 $f(x,y) = 1 - x + y + 9x^2y - 3y^3.$

In general, if the boundary condition is given by (1.4), then the solution to (1.3) is given by

(1.5)
$$f(x,y) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n C_n(x,y) + b_n S_n(x,y)).$$

Later, we will show that any continuous periodic function of period 2π always possess such a series representation as (1.4) and discuss the convergence of (1.5). We need the notion of uniform convergence.

Example 1.2. Solve (1.3) with the boundary condition

$$g(\theta) = 1 + 2\cos\theta - 3\sin\theta + 4\sin^2\theta + \cos^2\theta + 5\sin\theta\cos\theta + \cos^3\theta + 6\sin^3\theta$$