Koray Aydin

Koray Aydin

Evanston, Illinois, United States
4K followers 500+ connections

About

I am the director of the Metamaterials and Nanophotonic Devices Lab, which mainly focuses on the broad area of nanophotonics, an emerging field strategically positioned at the intersection of electrical engineering, applied physics, materials science and nano science.

Specifically, I am investigating optical metamaterials, plasmonics, and solid-state nanophotonics to understand the interaction between light and nanoscale photonic materials and to control and manipulate these interactions at will. Our ultimate aim is to design, fabricate and characterize metamaterials and nanophotonic devices with novel optical and photonic functionalities.

We are strongly motivated towards addressing the challenges in energy, health and defense applications. To this end, we are developing novel nanophotonic materials and devices including highly efficient low-cost solar cells, extremely sensitive nanooptical biosensors, active metamaterial-based filters and modulators, and flexible nanophotonic device platforms.

Specialties: Full-filed electromagnetic simulation, Finite Difference Time Domain and Finite Integration Techniques, Electron-beam lithography, optical lithography, microwave techniques, Infrared spectroscopy, optical spectroscopy, Solar cell device modeling, solar cell fabrication and characterization

Activity

Join now to see all activity

Experience

Education

  •  Graphic

    -

    -

    Thesis: Characterization and applications of negative-index metamaterials.

  • -

    -

  • -

    -

Publications

  • Open-channel metal particle superlattices

    Nature

    Although tremendous advances have been made in preparing porous crystals from molecular precursors, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10–1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel…

    Although tremendous advances have been made in preparing porous crystals from molecular precursors, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10–1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA–DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).

    Other authors
    See publication
  • Shape memory in self-adapting colloidal crystals

    Nature

    Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain…

    Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain much larger deformations and more easily recover their original configurations. Here we study the deformation properties of well-faceted colloidal crystals engineered with DNA. These crystals are large in size (greater than 100 µm) and have a body-centred cubic (bcc) structure with a high viscoelastic volume fraction (of more than 97%). Therefore, they can be compressed into irregular shapes with wrinkles and creases, and, notably, these deformed crystals, upon rehydration, assume their initial well-formed crystalline morphology and internal nanoscale order within seconds. For most crystals, such compression and deformation would lead to permanent, irreversible damage. The substantial structural changes to the colloidal crystals are accompanied by notable and reversible optical property changes. For example, whereas the original and structurally recovered crystals exhibit near-perfect (over 98%) broadband absorption in the ultraviolet–visible region, the deformed crystals exhibit significantly increased reflection (up to 50% of incident light at certain wavelengths), mainly because of increases in their refractive index and inhomogeneity.

    Other authors
    See publication
  • Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly

    Science

    DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently…

    DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer and micrometer length scales. These structures, which would be difficult to construct via other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.

    Other authors
    See publication
  • Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus

    Nano Letters

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at…

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

    Other authors
    See publication
  • Ultrawide Angle, Directional Spectrum Splitting with Visible‐Frequency Versatile Metasurfaces

    Advanced Optical Materials

    A virtually flat metasurface is proposed and experimentally realized, which can split different visible-frequency light to completely different or even contrary directions with an ultrawide angular range (>90°). The phase gradients provided by the metasurface have been engineered to exhibit significant wavelength-selective features. The metasurface of mirror-symmetric arrays behaves as a convex, concave, and planar mirror for distinct light wavelengths.

    Other authors
    See publication
  • Integrated optics: Nanostructured silicon success

    Nature Photonics

    An inverse-design approach yields ultra-compact, high-performance photonic components from patterns of complex, subwavelength voids etched into silicon.

    See publication
  • Enhanced Light Emission from Large-Area Monolayer MoS2 using Plasmonic Nanodisc Arrays

    Nano Letters

    Single-layer direct band gap semiconductors such as transition metal dichalcogenides are quite attractive for a wide range of electronics, photonics, and optoelectronics applications. Their monolayer thickness provides significant advantages in many applications such as field-effect transistors for high-performance electronics, sensor/detector applications, and flexible electronics. However, for optoelectronics and photonics applications, inherent monolayer thickness poses a significant…

    Single-layer direct band gap semiconductors such as transition metal dichalcogenides are quite attractive for a wide range of electronics, photonics, and optoelectronics applications. Their monolayer thickness provides significant advantages in many applications such as field-effect transistors for high-performance electronics, sensor/detector applications, and flexible electronics. However, for optoelectronics and photonics applications, inherent monolayer thickness poses a significant challenge for the interaction of light with the material, which therefore results in poor light emission and absorption behavior. Here, we demonstrate enhanced light emission from large-area monolayer MoS2 using plasmonic silver nanodisc arrays, where enhanced photoluminescence up to 12-times has been measured. Observed phenomena stem from the fact that plasmonic resonance couples to both excitation and emission fields and thus boosts the light–matter interaction at the nanoscale. Reported results allow us to engineer light–matter interactions in two-dimensional materials and could enable highly efficient photodetectors, sensors, and photovoltaic devices, where photon absorption and emission efficiency highly dictate the device performance.

    Other authors
    See publication
  • Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities.

    Scientific reports

    We show that a triple-layer metal-insulator-metal (MIM) structure has spectrally selective IR absorption, while an ultra-thin metal film has non-selective absorption in the near infrared wavelengths. Both sub-wavelength scale structures were implemented with an ultra-thin 6 nm Cr top layer. MIM structure was demonstrated to have near perfect absorption at λ = 1.2 μm and suppressed absorption at λ = 1.8 μm in which experimental and simulated absorptions of the thin Cr film are even higher than…

    We show that a triple-layer metal-insulator-metal (MIM) structure has spectrally selective IR absorption, while an ultra-thin metal film has non-selective absorption in the near infrared wavelengths. Both sub-wavelength scale structures were implemented with an ultra-thin 6 nm Cr top layer. MIM structure was demonstrated to have near perfect absorption at λ = 1.2 μm and suppressed absorption at λ = 1.8 μm in which experimental and simulated absorptions of the thin Cr film are even higher than the MIM. Occurrence of absorption peaks and dips in the MIM were explained with the electric field intensity localization as functions of both the wavelength and the position. It has been shown that the power absorption in the lossy material is a strong function of the electric field intensity i.e. the more the electric field intensity, the more the absorption and vice versa. Therefore, it is possible to engineer IR emissive properties of these ultra-thin nanocavities by controlling the electric field localization with proper designs.

    See publication
  • Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers

    Nature Communications

    Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials…

    Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials comprising only lossless dielectric materials and highly reflective noble metals represents a new research direction. Here we demonstrate an ultrathin (260 nm) plasmonic super absorber consisting of a metal–insulator–metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays. Our super absorber yields broadband and polarization-independent resonant light absorption over the entire visible spectrum (400–700 nm) with an average measured absorption of 0.71 and simulated absorption of 0.85. Proposed nanostructured absorbers open a path to realize ultrathin black metamaterials based on resonant absorption.

    Other authors
    See publication
  • Compact size highly directive antennas based on the SRR metamaterial medium

    New Journal of Physics

Patents

  • Tunable compliant optical metamaterial structures

    Issued United States US8921789

    A tunable metamaterial structure, comprises a flexible substrate capable of being strained, a metamaterial pattern on a surface of the flexible substrate, and a metal layer on the metamaterial pattern. The flexible substrate of the tunable metamaterial structure is a strained and relaxed substrate which has been strained to a degree sufficient to register a resonant response upon relaxation that is shifted relative to the resonant response of the flexible substrate prior to being strained. The…

    A tunable metamaterial structure, comprises a flexible substrate capable of being strained, a metamaterial pattern on a surface of the flexible substrate, and a metal layer on the metamaterial pattern. The flexible substrate of the tunable metamaterial structure is a strained and relaxed substrate which has been strained to a degree sufficient to register a resonant response upon relaxation that is shifted relative to the resonant response of the flexible substrate prior to being strained. The application of strain to the flexible substrate of the metamaterial structure enables tuning of the resonant frequency.

    Other inventors
    See patent

Courses

  • Advanced Photonics

    EE 405

  • Electronic Properties of Materials

    EE 381

  • Fundamentals of Electomagnetics and Photonics

    EE 224

  • Fundamentals of Solid-State Egineering

    EE 223

  • Metamaterials and Plasmonics and Their Applications

    EECS 395/495

  • Optoelectronics

    EE 385

  • Superconductivity and Its Applications

    EECS 389

Honors & Awards

  • 2017 ONR Young Investigator Program Award

    Office of Naval Research

    The ONR YIP is one of the oldest and most selective scientific research advancement programs in the country. Its purpose is to fund early-career academic researchers—called investigators—whose scientific pursuits show outstanding promise for supporting the Department of Defense, while also promoting their professional development.

  • Associate Member

    Turkish Academy of Sciences

    Associate Member of the Turkish Academy of Sciences (TUBA)
    Turkiye Bilimler Akademisi (TUBA) Asosiye Uyesi

Languages

  • Turkish

    Native or bilingual proficiency

  • English

    Full professional proficiency

View Koray’s full profile

  • See who you know in common
  • Get introduced
  • Contact Koray directly
Join to view full profile

People also viewed

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Koray Aydin

Add new skills with these courses