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Abstract. This work deals with a digital tool to design stable semi-circular masonry arches 

composed of interlocking blocks which are kept together by interlocking connectors on their 

faces. These blocks, comparing to conventional blocks, increase the sliding resistance and 

reduce the workmanship. However, the digital tools were developed mostly to design arches 

with conventional blocks. The proposed tool tries to fill this gap by addressing the work in 

three stages. 

First, a heuristic method is developed to define the relationships between the geometry of an 

interlocking face and the sliding resistance. Then, a structural analysis procedure is 

developed based on the limit analysis and the heuristic method to define the stability 

condition of the arch. Finally, optimization algorithms are developed to find the thinnest arch 

by means of two minimization strategies dealing with the relationship between the sliding 

resistance of the blocks and the geometry of the interlocking faces, differently. The 

algorithms consider some control points on a given thrust line and automatically adjust them 

to minimize the thickness, while the stability condition checks the structural feasibility during 

the geometry adjustment. To evaluate the accuracy of the proposed heuristic method, the 

results obtained with nonlinear FE analysis are used for comparison. 
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1. INTRODUCTION 

This work develops a digital tool to design structurally sound semi-circular masonry arches 

composed of interlocking blocks. The interlocking blocks are rigid block units which, on 

their faces, have connectors keeping the blocks together and preventing blocks from sliding. 

The interlocking blocks, in comparison to the conventional blocks with flat faces, increase 

the shear resistance to external forces [1] and reduce the construction skills and instruments 

required [2]. Despite these advantages of interlocking blocks, the digital tools supporting 

designers for structurally informed architectural design were developed mostly for the 

conventional blocks. Most of those efforts (reviewed by Rippmann [3]) were focused on 

designing single-layer masonry vaults. To design masonry assemblages with diverse 

topologies, Whiting [4] proposed a method in which, given a block assemblage, the block 

geometry changes automatically to obtain the structurally feasible form. In that work, 

however, interlocking the blocks during the geometry modification was avoided. There are a 

few studies [5, 6] that applied simple geometric grammars but no structural constraints to 

design vaults that are composed of interlocking blocks with limited geometries. 

In the literature there are different methods of structural analysis to develop the introduced 

digital tools. Most of them are based on the limit analysis theory aimed at calculating the 

ultimate load factor satisfying static and kinematic conditions. According to this theory, 

internal forces are distributed at the interfaces between rigid blocks. These interfaces have 

infinite compressive, no tensile strength, and infinite [7] or finite sliding resistance including 

associative [8, 9] or non-associative [10-13] frictional resistance. In this framework, it is 

worthy to mention a recent numerical limit analysis procedure, named discontinuity layout 

optimisation (DLO) [14], which has been developed to obtain accurate upper-bound 

solutions for plane-strain collapse problems. With reference to vaulted single-layered 

masonry structures, different methods find the stress states at interfaces: line of thrust 

methods [7, 15, 16]; membrane theory [7, 17, 18]; force network method [19, 20]; convex 

and concave contact formulations [9, 21], non-smooth contact dynamics [22]. Interesting are 

also some recent experimental and/or analytical works on the collapse failure of vaulted 

masonry structures under horizontal loading [23, 24] and after actual displacements of the 

supports [25-27]. However, all these methods were applied to analyze structures composed 

of conventional block with isotropic friction. 

Other distinctive methods of masonry analysis, such as discrete and finite element analysis, 

rarely have been used to develop tools to design structurally feasible masonry assemblages, 
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mostly due to their complex computational techniques. In the former method, masonry is 

modelled as an assemblage of distinct blocks. For such a block system, the equations of 

motion are solved using an explicit time integration method [28-30]. Instead, in finite 

element analysis (FEA), masonry is modelled as connected or distinct elements with different 

material properties for bricks and mortar joints (detailed and simplified micro models) or as a 

continuum by smearing the bricks and mortar joints into an isotropic or anisotropic 

homogeneous continuum (macro models) [31-33]. 

This work aims at filling the gaps described above about design of structurally sound 

assemblages of interlocking blocks and proposes a digital framework for the structurally 

informed design of a semi-circular arch composed of interlocking blocks and subjected to its 

own weight. To develop this framework, limit state analysis is adopted and extended to 

interlocking blocks. This structural typology with symmetrical loading and geometry belongs 

to a special class of non-associative friction problems for which provably unique solutions 

within limit analysis approach exist [16]. Therefore, the application to this structure allows 

focusing the attention to the structural behaviour of interlocking blocks rather than to the 

issue of associated or non-associated flow rules, which is beyond the scope of this work. 

Three main stages are herein introduced to help the designer to evaluate the structural 

feasibility of a model and automatically update the model to make it structurally optimal. 

1. The first stage of this work is to develop a novel heuristic method, assisting the designers 

to estimate the interlocking block resistance to sliding. The proposed method allows 

equating an interlocking block to a conventional block with different sliding resistances 

along two orthogonal directions (normal and parallel to the connectors). 

2. The goal of the second stage is to present a new structural analysis procedure that, 

applying the heuristic method proposed above, checks if the semi-circular arches 

composed of interlocking blocks are stable. To achieve this goal, this work extends the 

limit analysis developed by [16] which applied the line of thrust method to analyze the 

stability of semi-circular arches composed of blocks with isotropic finite friction. The 

extension deals with semi-circular arches composed of interlocking blocks which, using 

the heuristic method, are modelled as conventional blocks with orthotropic finite friction 

(in which the sliding resistances are the minimum and maximum in two orthogonal 

directions, respectively), in order to analyze their structural stability. 

3. Finally, the third stage of this research is to develop an optimization method minimizing 

the structurally feasible semi-circular arch thickness. The structural feasibility of the 

model during optimization is checked by the introduced structural analysis procedure. 
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Considering the relationship between the block resistance to sliding and the geometry of 

interlocking faces, the optimization method offers two strategies to minimize the arch 

thickness: (1) updating the sliding resistance due to the connector geometry change 

during optimization; (2) changing the number of the block connectors (initially given by 

the designer) during the optimization process, to keep the sliding resistant constant. 

The paper is organized as follows. The structural modelling along with the heuristic method 

introduced above are presented in Section 2, while Section 3 performs the extension of limit 

state analysis to interlocking blocks. Section 4 develops two optimization strategies to design 

semi-circular arches with interlocking blocks. Results are presented, discussed and validated 

in Section 5. Finally, the conclusions are summarized in Section 6. 

2. DISCRETE MODEL FOR THE SEMI-CIRCULAR ARCH COMPOSED OF 

INTERLOCKING BLOCKS 

2.1. Structural model of the interlocking block arch 

The structural model adopted in this work is based on the assumption that masonry structures 

are composed of assemblages of discrete rigid interlocking blocks in contact interaction, to be 

constitutively defined, where the displacements of each block should be considered 

separately. How a semi-circular arch and each of its discrete interlocking blocks are modelled 

in the developed framework is described as follows. 

Within the arch modelling, the designer assigns the radius R for the semi-circular arch 

centreline, the arch width b, and the number of blocks m composing the arch (Figure 1a). The 

latter number should be odd to model the arch keystone. All arch blocks have same sizes. 

On the other hand, the block modelling is based on the assumption that each interlocking 

block has two corrugated and two flat faces. Interlocking faces lock blocks to form the arch 

and the corrugated faces of the connectors are assumed to have rectangular cross sections 

(Figure 1b). Different shapes of the connectors could be investigated, but this further analysis 

will be addressed in future work. To model the interlocking faces, the designer should specify 

the total number n of projections and depressions of the block. This number should be an odd 

number in order to guarantee the symmetry of the block shape with respect to the centreline 

of the arch.   

Within the introduced discrete approach, the block interfaces are treated as the elements of 

the problem while the blocks are simply defining the geometry of the problem. Therefore, the 

analysis is fully related to the behaviour of the interfaces, which can then be regarded as 
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Considering conventional blocks with rough flat faces in contact

, these stresses are governed by unilateral contacts and 

constraints, due to the rugged projections on their faces, termed asperities. 

asperities, they can be regarded as connectors of two interlocked blocks. 

Using corrugated interlocking faces, the block resistance to sliding at the interface is a 

minimum along the connectors and a maximum along the direction normal to the connectors 

). In fact, the friction on the equivalent flat face can be regarde

in which the sliding resistances are the minimum and maximum in two orthogonal 

directions, respectively. The next section presents a method to analyse the sliding resistance 

of an interlocking block and to relate the sliding resistance of interlocking blocks to the 

frictional resistance of conventional blocks. 

Figure 1. Topological models of a) a semi-circular arch and b) a composing interlocking block

 

Heuristic formulations relating the sliding resistance of interlocking 

frictional resistance of conventional blocks 

The interlocking blocks could have different sliding resistances in different directions, 

depending on the orientation and the mechanical and geometrical features of the connectors.

e interlocking block adopted in this work has the maximum

respectively along the direction normal and parallel to the 

section is aimed at defining a heuristic relationship between the sliding resistance of 

interlocking blocks and that of the equivalent conventional blocks with rough 

relationship, limit state analysis method is then extended 

structural behaviour of a semi-circular arch composed of interlocking blocks (

The first step for searching out this relation is to study the sliding resistance along the 

direction orthogonal to the connectors of interlocking blocks. The analysis is carried out with 

reference to a single interface between a fixed lower block and the upper one subjected to a 

and a lateral load T applied to its centre of gravity (Figure 2

conventional blocks with rough flat faces in contact with 

, these stresses are governed by unilateral contacts and isotropic frictional 

asperities. By scaling up the 

, the block resistance to sliding at the interface is a 

minimum along the connectors and a maximum along the direction normal to the connectors 

). In fact, the friction on the equivalent flat face can be regarded as orthotropic 

in which the sliding resistances are the minimum and maximum in two orthogonal 

directions, respectively. The next section presents a method to analyse the sliding resistance 

stance of interlocking blocks to the 

 

a composing interlocking block. 

Heuristic formulations relating the sliding resistance of interlocking blocks to the 

The interlocking blocks could have different sliding resistances in different directions, 

depending on the orientation and the mechanical and geometrical features of the connectors. 

maximum and minimum 

to the connectors. This 

section is aimed at defining a heuristic relationship between the sliding resistance of such 

conventional blocks with rough flat interfaces. 

is then extended to analyse the 

blocks (Section 3).  

is to study the sliding resistance along the 

analysis is carried out with 

d lower block and the upper one subjected to a 

(Figure 2a). In order 



 

to consider the same sliding resistance for two interlocking blocks, depressions and 

projections have the same width 

Figure 2. Geometric parameters of
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failure mode essentially behaves in a rigid perfectly
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second step, after the connector
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the height h of the projections, with reference to the simplest case of uniformly distributed 

horizontal forces sketched in Figure 

the shear failure of the single projection, it should
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to consider the same sliding resistance for two interlocking blocks, depressions and 

idth s, so that a = ns, being n an odd number with 

Geometric parameters of the interlocking blocks and their projections. a) Upper block

own weights; b) limiting shear force and bending moment of the 

 

The assumptions for interlocking blocks are: infinite compressive strength, frictional 

behaviour at the bed joints, finite shear and tensile strengths of the connectors. The sliding 

failure mode essentially behaves in a rigid perfectly-plastic manner as for conventional 

blocks when it is governed by the frictional resistances [34, 35], while it is non

governed by the shear strength. With these assumptions, the lateral resistance of this block at 

first step is strictly related to the shear and/or bending resistances of the connectors and at 

second step, after the connector shear or bending failures, it is related to the cracked block 

the moment failure mode of projections is prevented, though.

the bending failure can be derived in terms of geometrical relation between th

of the projections, with reference to the simplest case of uniformly distributed 

horizontal forces sketched in Figure 2b. In fact, in order to avoid the bending failure before 

the shear failure of the single projection, it should be thick enough, i.e.: 

This constraint is derived by the following assumptions. The limiting shear force and bending 

moment activating the corresponding failure modes of the single projection can respectively 

be expressed in function of the connector dimensions as obtained by using the classic

Jourawski and Navier formulas [36]: 
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Upper block subjected to 

imiting shear force and bending moment of the single projection. 

The assumptions for interlocking blocks are: infinite compressive strength, frictional 

behaviour at the bed joints, finite shear and tensile strengths of the connectors. The sliding 

plastic manner as for conventional 

], while it is non-ductile when 

governed by the shear strength. With these assumptions, the lateral resistance of this block at 

first step is strictly related to the shear and/or bending resistances of the connectors and at 

is related to the cracked block 

the moment failure mode of projections is prevented, though. The exclusion of 

the bending failure can be derived in terms of geometrical relation between the width s and 

of the projections, with reference to the simplest case of uniformly distributed 

. In fact, in order to avoid the bending failure before 
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moment activating the corresponding failure modes of the single projection can respectively 

obtained by using the classical 
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where τk and ftk are the shear and tensile strengths of the material forming the blocks, 

respectively. The calibration of parameter 

properties of the material and it should be experimentally defined. However, for the sake of 

simplicity and conservative results, by assuming as a first approximation that 

case of pure shear and according to the 

the condition to prevent moment failure that is 

to the limiting moment M0 (T’

On the other hand, to analyze how the frictional and shear resistances interact with each 

other, three different models 

with similar heights of connectors 

the lower and upper connectors (Figure

of the bed contacts between each projection and depression, each connector is subjected to 

shear and compressive forces. On the other side, in the

and 5, respectively, the connectors of one block 

forces, while the connectors of the other block 

resistance of a connector which is s

than the shear resistance of a connector which is only subjected to pure shear forces 

because of the effect of the compression. This means that the weaker connectors are the latter 

ones and as a result, this paper aims at considering 

can resist (the more conservative choice).

Figure 3. Sliding resistances of interlocking blocks with 

 

The resultant sliding resistance of the interlocking blocks can be derived 

to Cases 2 and 3. In both cases, the frictional resistances 

activate only after the shear collapse of the 

thicker blue lines in the figure

Therefore, considering Case 2 (Figure 4), where

lower ones, the bed joints of the two interlocking blocks are localized at the bottom 

8 

are the shear and tensile strengths of the material forming the blocks, 

respectively. The calibration of parameter τk is not generally provided within the mechanical 

of the material and it should be experimentally defined. However, for the sake of 

simplicity and conservative results, by assuming as a first approximation that 

and according to the Tresca yield criterion [37]), Eq. (1) is derived from 

the condition to prevent moment failure that is T0 < T’0, where T’0 is the shear corresponding 

’0 = 2M0/h).  

On the other hand, to analyze how the frictional and shear resistances interact with each 

different models have been considered: a model including interlocking blocks 

heights of connectors (Figure 3) and two models including diffe

the lower and upper connectors (Figures 4 and 5). In the first model, due to the simultaneity 

of the bed contacts between each projection and depression, each connector is subjected to 

shear and compressive forces. On the other side, in the second and third models

connectors of one block are subjected to shear and compressive 

connectors of the other block are only subjected to shear forces. The shear 

resistance of a connector which is subjected to shear and compressive forces 

than the shear resistance of a connector which is only subjected to pure shear forces 

because of the effect of the compression. This means that the weaker connectors are the latter 

esult, this paper aims at considering T0 as the ultimate shear 

can resist (the more conservative choice). 

. Sliding resistances of interlocking blocks with same height for two-block connectors

sliding resistance of the interlocking blocks can be derived both 

n both cases, the frictional resistances (Ts and T’s in Figures 4 and 5)

the shear collapse of the connectors on bed joints 

figures. 

Therefore, considering Case 2 (Figure 4), where the upper projections are higher than the 

lower ones, the bed joints of the two interlocking blocks are localized at the bottom 

are the shear and tensile strengths of the material forming the blocks, 

is not generally provided within the mechanical 

of the material and it should be experimentally defined. However, for the sake of 

simplicity and conservative results, by assuming as a first approximation that τk = 0.5 ftk (as in 

Eq. (1) is derived from 

is the shear corresponding 

On the other hand, to analyze how the frictional and shear resistances interact with each 

a model including interlocking blocks 

different heights of 

). In the first model, due to the simultaneity 

of the bed contacts between each projection and depression, each connector is subjected to 

second and third models in Figures 4 

subjected to shear and compressive 

only subjected to shear forces. The shear 

ubjected to shear and compressive forces T”0 is greater 

than the shear resistance of a connector which is only subjected to pure shear forces T0, 

because of the effect of the compression. This means that the weaker connectors are the latter 

shear forces a connector 

 

block connectors (Case 1). 
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in Figures 4 and 5) may 

 represented by the 

he upper projections are higher than the 

lower ones, the bed joints of the two interlocking blocks are localized at the bottom 



 

depressions of the lower block.

block connector are T”0 and T

Figure 4, the resultant limiting shear force of all connectors and the frictional resistance 

bed joints respectively are: 

T
n

TR

−
= ;
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1
0

where µ is the friction coefficient, 

the upper block).  

Figure 4. Sliding resistances of interlocking blocks with 

Figure 5. Sliding resistances of interlocking blocks with 

 

Since the failure mode is first governed by the shear collapse of the projections, the ultimate

lateral force strongly depends on the amounts of the two resistances of Eq. (3). In fact, if 

TR > TC the ultimate lateral force will be 

frictional resistance is not enough to prevent sliding. This condition, implying non

behaviour of the interface, is represented by the black dot in Figure 

constant shear resistance is superposed on the choesionless Coulomb yield condition. On the 

contrary, if TR < TC the lateral force will be governed by 

may occur because at the onset of the shear failure mode of projections the frictional 

resistances will also be activated and the sliding is prevented until the shear achieves the 

value TC (Figure 5b). 

This means that, to avoid sliding of an interlocking block

connectors, the following inequality should be always met:
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block. In this case, the shear resistances of each upper and lower 

T0, respectively. Whatever the position of projections i) or ii) in 

, the resultant limiting shear force of all connectors and the frictional resistance 

µNTC =  

is the friction coefficient, N is the fixed normal force (including the own weight of 

. Sliding resistances of interlocking blocks with upper connectors higher than lower ones 

 

. Sliding resistances of interlocking blocks with lower connectors higher than upper ones (Case 3)

Since the failure mode is first governed by the shear collapse of the projections, the ultimate

trongly depends on the amounts of the two resistances of Eq. (3). In fact, if 

the ultimate lateral force will be T = TR because once the failure is activated the 

frictional resistance is not enough to prevent sliding. This condition, implying non

behaviour of the interface, is represented by the black dot in Figure 6a, where the greater 

superposed on the choesionless Coulomb yield condition. On the 

the lateral force will be governed by TC (T = TC) and a ductile behaviour 

may occur because at the onset of the shear failure mode of projections the frictional 

be activated and the sliding is prevented until the shear achieves the 

that, to avoid sliding of an interlocking block in the direction normal to the 

, the following inequality should be always met: 

In this case, the shear resistances of each upper and lower 

, respectively. Whatever the position of projections i) or ii) in 

, the resultant limiting shear force of all connectors and the frictional resistance of all 

 (3) 

is the fixed normal force (including the own weight of 

 

higher than lower ones (Case 2). 

 

higher than upper ones (Case 3). 

Since the failure mode is first governed by the shear collapse of the projections, the ultimate 

trongly depends on the amounts of the two resistances of Eq. (3). In fact, if 

because once the failure is activated the 

frictional resistance is not enough to prevent sliding. This condition, implying non-ductile 

, where the greater 

superposed on the choesionless Coulomb yield condition. On the 

) and a ductile behaviour 

may occur because at the onset of the shear failure mode of projections the frictional 

be activated and the sliding is prevented until the shear achieves the 

in the direction normal to the 



10 

 

� � max (μ�, �
)  (4) 

 

 

(a)       (b) 

Figure 6. Ultimate lateral force in the a) non-ductile case TR > TC and b) ductile case TR < TC. 

 

Using the first expression of Eq. (2), Ineq. (4) can be rewritten as:  

� � max �μ�, ����
�� � τ����  (5) 

which represents the relationship between the geometries of the projections and interlocking 

block sliding resistance, limited by being n an integer and odd number. This inequality also 

shows that the sliding resistance depends on either friction coefficient or shear strength of the 

block.  

On the other hand, if Case 3 is considered (Figure 5), the bed joints of the two interlocking 

blocks are localized at the top projections of the lower block. In this case, the shear 

resistances of each lower and upper block connector are T”0 and T0, respectively. In fact, it is 

easy to verify within Figure 5 that the positions of projections i) and ii) for Case 3 are the 

mirrored positions ii) and i) for Case 2, respectively, about a horizontal line. Therefore, as in 

Case 2, the lateral resistance is governed by the relationship between the two resistances 

(Figure 6) and the geometrical parameters satisfying Ineq. (5). 

Besides, the sliding in the direction parallel to the connectors is only governed by the 

inequality � � ��. This means that the interlocking block proposed by this paper can be 

considered as a conventional block with orthotropic friction so that the frictional constraints 

are Ineq. (5) or � � ��, depending on the direction. 

The heuristic formulation given by Ineq. (5) will be applied in the next section to the limit 

state analysis of a semi-circular arch composed of interlocking blocks and subjected to its 

own weight. In this case, only the sliding resistance along the direction orthogonal to the 
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connectors of interlocking blocks is activated. Later in Section 4, this heuristic formulation 

will be implemented to develop the optimization algorithm for such structures. 

3. LIMIT ANALYSIS OF A SEMI-CIRCULAR ARCH COMPOSED OF 

INTERLOCKING BLOCKS 

As introduced in Section 1, standard limit analysis of rigid block assemblages has been found 

to be a valuable computational tool for developing two groups of structural optimization 

problems: 1) to find the maximum load a structure can tolerate (predict the collapse load); 

and 2) to find the minimum material (i.e., minimum thickness) a structure can have to bear a 

specific amount of load. Both approaches lead to find the classical rocking failure mechanism 

of such structures. 

To develop these optimization problems, either static or kinematic theorems can be applied. 

The occurrence of Coulomb frictional sliding, which implies non-associative flow rule, is in 

general excluded from the analysis in order to ensure the validity of the normality condition, 

one basic hypothesis of classic limit state analysis. In fact, it is well-known that the bounding 

theorems of plastic limit analysis do not in general provide unique solutions for the collapse 

load factor if a non-associative flow rule is specified [34] and the classical procedure does not 

assure that the structure is safe. 

However, Casapulla and Lauro [16] have identified a special class of non-associative friction 

problems for which provably unique solutions exist. The class comprises arches with 

symmetrical loading and geometry. The proposed procedure was applied to arches of this sort 

to both verify that the numerical and analytical solutions coincide and to investigate the 

convergence characteristics of the method. 

Exploiting the uniqueness of the solution due to the symmetry, the present work is mainly 

aimed at extending this optimization method to design the minimum thickness of a semi-

circular arch composed of interlocking blocks and subjected to its own weight. 

In fact, to minimize the thickness of such an arch, first the desired radius for the arch 

centreline R is specified and then the optimization problem tries to find the closest thrust line 

to this centreline which satisfies the equilibrium and yield conditions at contact interfaces.  

This section explains how to find a thrust line meeting equilibrium and yield conditions. Next 

section introduces two optimization strategies to find the optimal conditions. 

The general thrust line is defined by a set of control points variable in function of two points 

A(0; YA) and B(XB; 0), respectively at the crown and the springing joints (Figure 7a). The X-



 

coordinates of the control points are the same of the application points of ea

while the Y-coordinates are found

Htot can be found as: 

���� � ���� � ��!
"#  

where Wtot is the weight of the half

mass. Being Wi the weight of block 

of the control point i, ∆%& can be achieved by 

∆%& � ∆�' ∑ )''*+',+-./.  

where ΔXi =  xi+1
t
 − xi

t
. Knowing

0&� � 0&1�� 2 ∆%& 

Figure 7

  

A valid thrust line should also meet the

heuristic method described in Section 2.2, interlocking blocks composing a semi

can be considered as conventional blocks whose sliding resistance can be evaluated by

(5) which for interface i can be rewritten as:

�& � max ��&tan	5�, ������ �

where Ti and Ni are the tangential and normal components of 

tan(φ) equals µ. According to 

circular arch subjected to symmetric loads, 
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coordinates of the control points are the same of the application points of ea

are found as follows. Given XB and YA, the horizontal reactive thrust 

of the half-arch and Xw is the X-coordinate of the half

he weight of block i and xi
t
 the X-coordinate both of its application point and 

can be achieved by applying the equilibrium condition:

nowing ∆%&, Y-coordinate of control point i, can be achieved by

7. Thrust line in the half interlocking block arch. 

A valid thrust line should also meet the yield conditions at contact interfaces. A

heuristic method described in Section 2.2, interlocking blocks composing a semi

can be considered as conventional blocks whose sliding resistance can be evaluated by

can be rewritten as: 

� τ���� 

are the tangential and normal components of Si, respectively,

According to Casapulla and Lauro’s method [16], for the case of semi

symmetric loads, the ultimate value for Ti is independent of 

coordinates of the control points are the same of the application points of each block weight, 

, the horizontal reactive thrust 

 (7) 

coordinate of the half-arch centre of 

coordinate both of its application point and 

the equilibrium condition: 

 (8) 

can be achieved by: 

 (9) 

 

yield conditions at contact interfaces. Applying the 

heuristic method described in Section 2.2, interlocking blocks composing a semi-circular arch 

can be considered as conventional blocks whose sliding resistance can be evaluated by Ineq. 

(10) 

, respectively, (Figure 7b) and 

for the case of semi-

is independent of Ni and 
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the expression �&tan(5) can be substituted by two expressions  
)'67/8

9:;(<'1=) sin 5, for inward Ti  

and 
)'67/8

9:;(<'�=) sin 5, for outward Ti (Figure 7c); where Wi
prog

 is the sum of weights form blocks 

0 to i and αi is the angle between the lower contact joint of the block i and Y-axis. 

After this substitution, Ineq. (10) can be splitted into the two following yield conditions for 

semi-circular arches composed of interlocking blocks:  

|�&| ≤ max (A )'67/8
9:; (<'1=) sin 5B , (�C−1

3C � GH��))    inward �&  (11) 

|�&| � max (A )'67/8
9:; (<'�=) sin 5B , (�C−1

3C � GH��))   outward �& (12) 

Lastly, it should be taken into consideration that since all block weights, the thrust line, and 

the limiting sliding forces for all blocks lie on the same plane, the problem can be considered 

as a 2d problem. In this case, the sliding resistance of all interfaces with orthotropic friction is 

only regarded to be the maximum sliding resistance value on those interfaces (orthogonal to 

the connectors in Fig. 1b). This means that an arch with interlocking blocks which embeds a 

thrust line whose control points are obtained by Eqs. (7) and (9) and meets Ineqs. (11) and 

(12), is a stable arch. 

4. STRUCTURAL OPTIMIZATION 

As explained earlier, the optimization problem of this paper is aimed at finding the closest 

thrust line to the specified arch centreline (minimum thickness) which satisfies the 

equilibrium and yield conditions at interfaces. 

Unlike the conventional blocks whose frictional properties remain fixed during optimization, 

changing the arch thickness during optimization may change the sliding resistance at 

interfaces. In the following sub-sections, two strategies are proposed to minimize the arch 

thickness (Figure 8), based on different relationships between the geometry of the 

interlocking interfaces and the sliding resistance. In the first strategy, the sliding resistance 

changes during the optimization process; in the second strategy, the geometric properties of 

interfaces changes in a way that the sliding resistance remains fixed during optimization. 

For both strategies the objective function is the minimization of the maximum value of the 

arch half-thickness (amin/2), as described in [16] for the arch with conventional blocks. The 

variables of the problem are XB and YA of the generic thrust line (Figure 7). 



 

Figure 8. Two optimization strategies

4.1. First strategy 

In this strategy, the number of projections and depressions 

during the optimization. As a result, changing the arch thickness 

shear resistance of interfaces changes

The thrust line should also meet the yield conditions by satisfying 

the optimization. Hence, the optimization problem for this strategy is as follows:

NOP QRS max�T(U&�)V 2 (0&�

S.T. 

|�&| � max (A )'67/8
9:; (<'1=) sin 5B

|�&| � max (A )'67/8
9:; (<'�=) sin 5B

The optimal arch only embeds the obtained thrust line

indeterminate structure into a mechanism

Section 5. 

4.2. Second strategy 

In this strategy, shear resistance 

number of the connectors. Given the initial values for 

coordinates of the control points 

fact, given the initial n (n
0
) which

half-thickness (a0/2) to be the maximum distance between the radius and control points on 

this thrust line, the initial value of shear resistance 

14 

ies to minimize the thickness of a semi-circular arch with

 

number of projections and depressions n at each interface remains 

. As a result, changing the arch thickness a during optimization, the 

changes as well.  

thrust line should also meet the yield conditions by satisfying Ineqs. (1

optimization problem for this strategy is as follows:

&�)V − W� 

B , ����
�� � G��2 max�T(U&�)V 2 (0&�)V − W�) 

B , ����
�� � G��2 max�T(U&�)V 2 (0&�)V − W�) 

only embeds the obtained thrust line and transforms

indeterminate structure into a mechanism with hinges and/or sliding surfaces, as

In this strategy, shear resistance TR remains fixed during optimization

. Given the initial values for XB and YA (XB
0

 and 

control points (yi
t0

 for block i) and then the fixed TR
0
 can be

) which should be at least three, and considering the arch initial 

/2) to be the maximum distance between the radius and control points on 

this thrust line, the initial value of shear resistance TR
0
 can be calculated as follows:

 

with interlocking blocks. 

at each interface remains fixed 

during optimization, the 

11) and (12) during 

optimization problem for this strategy is as follows: 

(13) 

� inward Ti 

� outward Ti 

transforms the statically 

sliding surfaces, as described in 

optimization via changing the 

and YA
0
), the initial Y-

can be obtained. In 

should be at least three, and considering the arch initial 

/2) to be the maximum distance between the radius and control points on 

can be calculated as follows: 
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�
Y � ��Z��
��Z � G��2max [\]U&̂ Y_V 2 ]0&̂ Y_V − W[ (14) 

where xi
t0

 is the same as xi
t
 of the objective function (13). 

This value remains fixed during optimization, while both arch thickness a and n change 

during optimization. Given n
0
, xi

t0
 and yi

t0
, the relation between a (which equals 

2`T(U&�)V 2 (0&�)V − W`) and n can be defined as follows:  

C � �Z.(Vbcd )
�Z.eV bcd[\]f'._g1]h'._g�
[i1eV bcd[\]f'._g1]h'._g�
[i(���Z)

 (15) 

 

which should be an (a) integer, (b) odd, and (c) positive number during optimization. As a 

result, the optimization problem for the second strategy is as follows:  

NOP max`T(U&�)V 2 (0&�)V − W` (16) 

S.T. 

|�&| � max (A )'67/8
9:; (<'1=) sin 5B , �
Y)    inward Ti 

|�&| � max (A )'67/8
9:; (<'�=) sin 5B , �
Y)    outward Ti 

C � ⌊C⌋; C%2 � 1; C ≥ 0 

This objective function of the optimization problem is the same as the previous strategy and 

the sliding resistance of the arch is met by applying the two first inequalities. 

5. RESULTS AND EVALUATIONS 

This section is composed of two main parts. First, a case study of a semi-circular arch of 10m 

centreline radius, containing 27 discrete blocks is analyzed by means of the two introduced 

optimization strategies. These results are investigated to compare the two proposed 

optimization strategies to each other and to the Casapulla and Lauro’s optimization method 

developed for arches with conventional blocks [16]. Then, to evaluate the accuracy of the 

proposed heuristic method and the limit state analysis method, the interlocking block 

interface and the case study are analysed by Finite Element method for comparison. 



 

5.1. Case study 

In the following, after a brief description on the implemented process, 

presented to investigate the relation between the minimum 

two introduced optimization strategies

Finding these relations, minimum thickness/Radius (t/R) ratio can be defined as a function of 

the parameters determining the block sliding resistance.

5.1.1. Implementation 

For modelling the arch with 

calculations, Grasshopper’s C

programming language which runs within Rhinoceros 3D. 

calculations and optimization are performed by MATLAB used as backend.

optimization, MATLAB’s fminimax method was used. Multiple hard constraints in the 

second strategy imposed on variable 

constraints were used, weighted 

5.1.2. Optimal arches with conventional 

This sub-section uses the results obtained by 

the sake of comparison with 

applied to conventional blocks

minimum arch thickness required for stability and the coefficient of friction 

introduced semi-circular arch 

Figure 9. Relationship between the minimum thickness of an arch composed of conventional blocks and the 

coefficient of friction; red points
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In the following, after a brief description on the implemented process, 

presented to investigate the relation between the minimum arch thickness

introduced optimization strategies, and the sliding resistance of the 

Finding these relations, minimum thickness/Radius (t/R) ratio can be defined as a function of 

parameters determining the block sliding resistance. 

with its interlocking blocks and also for part of the structural 

Grasshopper’s C# component was applied. Grasshopper is a visual 

programming language which runs within Rhinoceros 3D. Another part of the structural 

tions and optimization are performed by MATLAB used as backend.

MATLAB’s fminimax method was used. Multiple hard constraints in the 

variable n could have led to find no solution. To avoid this, soft 

, weighted through trial and error to achieve the most 

ptimal arches with conventional blocks 

the results obtained by Casapulla and Lauro’s optimization method 

with the results obtained by the proposed optimization strategies

applied to conventional blocks. Figure 9 shows the relationship between the predicted 

minimum arch thickness required for stability and the coefficient of friction 

 with conventional blocks. 

elationship between the minimum thickness of an arch composed of conventional blocks and the 

points show formed hinges and green lines represent block sliding interfaces

 

 

In the following, after a brief description on the implemented process, the case study is 

thickness, obtained by the 

and the sliding resistance of the block interfaces. 

Finding these relations, minimum thickness/Radius (t/R) ratio can be defined as a function of 

part of the structural 

# component was applied. Grasshopper is a visual 

Another part of the structural 

tions and optimization are performed by MATLAB used as backend. For the 

MATLAB’s fminimax method was used. Multiple hard constraints in the 

no solution. To avoid this, soft 

trial and error to achieve the most reliable results. 

Casapulla and Lauro’s optimization method for 

optimization strategies 

shows the relationship between the predicted 

minimum arch thickness required for stability and the coefficient of friction for the 

 

elationship between the minimum thickness of an arch composed of conventional blocks and the 

show formed hinges and green lines represent block sliding interfaces. 



 

It results that: 1) for µ > 0.395

centreline radius is approximately reproduced with this discretization (10.74%)

failure mode is governed by a pattern of hinges at the intrados and extrados

0.395 ≥ µ ≥ 0.332, the failure mechanism is characterized by the sliding interfaces at the 

horizontal supports along with

µ < 0.332 the equilibrium is no longer possible

5.1.3. Optimal arches with interlocking blocks obtai

strategy 

Figure 10 shows the relationship between the predicted minimum arch thickness required for 

stability and the friction coefficient 

with fixed n = 5. This relationship

shear resistance obtained by 

resistance of an interface at 

frictional resistance is greater than the shear resistance

 

 

 Figure 10. Relationship between the minimum thickness of an arch composed of interlocking blocks and the 

coefficient of friction- 1
st
 optimization strategy; red circles show formed hinges and green lines represent block 

sliding interfaces. 

 

Figure 10 represents both the case of 

conventional blocks and the case of

side. As shown in the figure, t
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0.395, the Heyman’s theoretical minimum thickness of 10.7% of the 

approximately reproduced with this discretization (10.74%)

failure mode is governed by a pattern of hinges at the intrados and extrados

failure mechanism is characterized by the sliding interfaces at the 

along with hinges at the crown and at variable points in between; 3) 

0.332 the equilibrium is no longer possible. 

 

ptimal arches with interlocking blocks obtained by the first optimization 

shows the relationship between the predicted minimum arch thickness required for 

stability and the friction coefficient for the introduced arch composed of interlocking

relationship varies for different values of parameter

shear resistance obtained by the first of Eq. (3) for amin and TU is the 

at the onset of the sliding failure. Therefore, when

resistance is greater than the shear resistance and when 
op
q

or
m 1 it is vice versa

elationship between the minimum thickness of an arch composed of interlocking blocks and the 

optimization strategy; red circles show formed hinges and green lines represent block 

the case of 
op
q

or
� 0.98, in which the arch behaves as an arch with 

and the case of 
op
q

or
� 1.08, whose curve is horizontally moved to the left 

As shown in the figure, the minimum friction coefficient assuring stability

the Heyman’s theoretical minimum thickness of 10.7% of the 

approximately reproduced with this discretization (10.74%) and the 

failure mode is governed by a pattern of hinges at the intrados and extrados;  2) for 

failure mechanism is characterized by the sliding interfaces at the 

d at variable points in between; 3) for 

ned by the first optimization 

shows the relationship between the predicted minimum arch thickness required for 

composed of interlocking blocks 

parameter 
op
q

or
, where TR

f
 is 

is the ultimate frictional 

Therefore, when 
op
q

or
≤ 1, the 

it is vice versa. 

 
elationship between the minimum thickness of an arch composed of interlocking blocks and the 

optimization strategy; red circles show formed hinges and green lines represent block 

the arch behaves as an arch with 

is horizontally moved to the left 

friction coefficient assuring stability has a lower 



 

value compared to the minimum one for an arch with conventional blocks, since 

TU determines the arch sliding resistance. This result is consistent with the discussion 

provided in Section 2.2 on the heuristic formulations.

The results obtained from the first strategy can also be represented from a larger perspective 

by Figure 11, for µ between 0.3 and 0.4 

 

Figure 11. Relationship between the minimum thickness of an arch composed of interlocking blocks, the 

coefficient of friction, and 

Any section of this figure along the direction of 

minimum arch thickness required for stability 

of the graph in Figure 11, corresponding to 

smaller than one (the frictional

arch thickness is equal to the minimum thickness of an arch composed of conventional blocks 

with µ = 0.37. When 
op
q

or
 is larger than 1.07, the slidi

hinges form earlier than sliding failure. In this case, the minimum 

the minimum thickness of an arch composed of conventional blocks with 
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value compared to the minimum one for an arch with conventional blocks, since 

sliding resistance. This result is consistent with the discussion 

provided in Section 2.2 on the heuristic formulations. 

The results obtained from the first strategy can also be represented from a larger perspective 

between 0.3 and 0.4 and 
op
q

or
 between 0.98 and 1.20. 

elationship between the minimum thickness of an arch composed of interlocking blocks, the 

coefficient of friction, and 
op
q

or
- 1

st
 optimization strategy. 

 

along the direction of µ-axis, presents the relation between the 

minimum arch thickness required for stability and 
op
q

or
. For example, Figure 

corresponding to µ = 0.37. According to this graph

al resistance is greater than the shear resistance), the minimum 

thickness is equal to the minimum thickness of an arch composed of conventional blocks 

larger than 1.07, the sliding resistance is large enough so that 

hinges form earlier than sliding failure. In this case, the minimum arch thickness is equal to 

the minimum thickness of an arch composed of conventional blocks with µ

value compared to the minimum one for an arch with conventional blocks, since TR and not 

sliding resistance. This result is consistent with the discussion 

The results obtained from the first strategy can also be represented from a larger perspective 

 

elationship between the minimum thickness of an arch composed of interlocking blocks, the 

axis, presents the relation between the 

For example, Figure 12 shows a section 

.37. According to this graph when 
op
q

or
 is 

resistance is greater than the shear resistance), the minimum 

thickness is equal to the minimum thickness of an arch composed of conventional blocks 

ng resistance is large enough so that 

thickness is equal to 

µ > 0.395. 



 

Figure 12. Relationship between the minimum thickness of an arch composed of interlocking blocks and 

optimization strategy; red circles show formed hinges and green lines represent block sliding failure

5.1.4. Optimal arches with interlocking blocks obtaine

strategy 

According to the second strategy proposed above, the initial value of the shear resistance is 

fixed while the arch thickness and the 

First, it is worth highlighting that

values of the optimization parameters

YA
0
 and XB

0
, i.e.: 

C � uv'w �Z
uv'w �Z1uZ	���Z�

 

In fact, Eq. (17) is obtained when the initial value of shear resistance 

remain fixed during optimization

to be a positive value in Eq. (17

�x&� CY m �Y	CY D 1� 
and this means that the final result 

determined by YA
0
 and XB

0
. 

Secondly, it should also be underscored that the minimum thickness obtained by 

strategy might differ from that of the first strategy for the same values of friction coefficient 

and 
opZ
or

 in order to guarantee that 

strategy, i.e. that it is: 

�x&�  ���� � �Y  �Z���Z
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elationship between the minimum thickness of an arch composed of interlocking blocks and 

optimization strategy; red circles show formed hinges and green lines represent block sliding failure

 

Optimal arches with interlocking blocks obtained by the second optimization 

According to the second strategy proposed above, the initial value of the shear resistance is 

arch thickness and the number of connectors change during optimization.

First, it is worth highlighting that the final result (amin) is highly dependent 

optimization parameters (YA
0
, XB

0
), due to the way that the final 

is obtained when the initial value of shear resistance 

remain fixed during optimization, is calculated according to Eq. (14). Considering the final 

17), this inequality should be always met: 

the final result amin is dependent on the initial thickness 

be underscored that the minimum thickness obtained by 

strategy might differ from that of the first strategy for the same values of friction coefficient 

that TR
0
 is kept unchanged during the optimization

 

elationship between the minimum thickness of an arch composed of interlocking blocks and 
op
q

or
- 1

st
 

optimization strategy; red circles show formed hinges and green lines represent block sliding failure. 

d by the second optimization 

According to the second strategy proposed above, the initial value of the shear resistance is 

number of connectors change during optimization. 

) is highly dependent on the initial 

due to the way that the final n is related to 

(17) 

is obtained when the initial value of shear resistance TR
0
, which should 

Considering the final n 

(18) 

the initial thickness a0 which is 

be underscored that the minimum thickness obtained by the second 

strategy might differ from that of the first strategy for the same values of friction coefficient 

is kept unchanged during the optimization of the second 

(19) 



 

The right hand side of this equation is a known value while 

that this value is achieved. Both 

equilibrium condition with sliding constraints and 

result, amin satisfying Eq. (19) 

It is concluded that the thrust line which is found as the optimal result 

solution of the arch embedding

arches cannot be precisely found

can be found as follows. 

For example, Figure 13 depicts the tangential force at interface 

by the first strategy when this interface reaches the limiting sliding value (blue curve). This 

figure also depicts the tangential force at interface 

10.81 m) optimized by the second strat

curves are quite close but not identical. In fact, blue curve represent the closest possible value 

to the limiting one satisfying Eq. 

Figure 13. Difference between tangential force at inte

 

Build on the two discussed issues

required for stability and 
opZ
or

 for the arch explained above, 

10.81 m, is as follows (Figure 1

 the minimum arch thickness equals 1.3

set of amin smaller than 1.36 m and 

1.06, the minimum arch thickness equals 1.1
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The right hand side of this equation is a known value while amin and n should be chosen so 

that this value is achieved. Both amin and n are constrained variables; amin

equilibrium condition with sliding constraints and n should be a positive odd value. As a 

) might be different from results of first optimization strategy.

It is concluded that the thrust line which is found as the optimal result may

embedding it. In other words, the rocking failure mechanism of the 

cannot be precisely found. Still, the closest possible solution to that failure mechanism 

depicts the tangential force at interface m of the case study optimized 

by the first strategy when this interface reaches the limiting sliding value (blue curve). This 

depicts the tangential force at interface m of the case study (

10.81 m) optimized by the second strategy (red curve) for the same 
opZ
or

. As shown, these two 

curves are quite close but not identical. In fact, blue curve represent the closest possible value 

to the limiting one satisfying Eq. (17)  

. Difference between tangential force at interface m for the optimal arch optimized by first and second 

optimization strategies 

two discussed issues, the relationship between the minimum arch thickness 

for the arch explained above, with n0 = 3 and X

(Figure 14- yellow continuous curve). When 
opZ
or

 is smaller than 1

thickness equals 1.36 m. It is worth noting that for 1 ≤ o
�

m and n by which Eq. (19) is satisfied. When 

thickness equals 1.12 m. According to Ineq. (17

should be chosen so 

min should satisfy the 

should be a positive odd value. As a 

might be different from results of first optimization strategy. 

may not be the unique 

the rocking failure mechanism of the 

. Still, the closest possible solution to that failure mechanism 

of the case study optimized 

by the first strategy when this interface reaches the limiting sliding value (blue curve). This 

of the case study (XB
0
 and YA

0
 equal 

. As shown, these two 

curves are quite close but not identical. In fact, blue curve represent the closest possible value 

 

rface m for the optimal arch optimized by first and second 

the relationship between the minimum arch thickness 

XB
0
 and YA

0
 equal to 

is smaller than 1.01, 

opZ

�yz
≤ 1.01 there is no 

hen 
opZ
or

 is larger than 

17), amin should be 



 

greater than 1.09. The closest 

to be 1.12 m. 

Figure 14. Relationship between the predicted minimum thickness of an arch composed of interlocking blocks 

and 
opZ
or

- 2
nd

 optimization strategy; red circles show formed hinges

 

Satisfying both Ineq. (17) and Eq. 

different from that of Figure 1

dash curve. Still, their overall configuration is similar

Figure 15 shows the relationship between 

to this graph, for 
opZ
or

 greater than 1.0583, the final 

resistant enough against sliding so that failure occurs due to the hinge formation. The graph 

also shows that increasing 
opZ
or

 the rate of 

 Figure 15. Relationship between the final number of projections and depressions 

composed of interlocking blocks and 
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The closest amin to this limiting value which satisfies Eq. 

elationship between the predicted minimum thickness of an arch composed of interlocking blocks 

optimization strategy; red circles show formed hinges.

and Eq. (19), yellow continuous curve in Figure 1

different from that of Figure 12 (results of the first strategy) which is redisplayed by purple 

dash curve. Still, their overall configuration is similar, as explained above. 

shows the relationship between the final n for the optimal arch and

greater than 1.0583, the final n remains fixed while all interfaces are 

resistant enough against sliding so that failure occurs due to the hinge formation. The graph 

the rate of change of final n increases. 

elationship between the final number of projections and depressions n 

composed of interlocking blocks and 
opZ
or

- 2
nd

 optimization strategy; red circles show formed hinges

to this limiting value which satisfies Eq. (19) is calculated 

 

elationship between the predicted minimum thickness of an arch composed of interlocking blocks 

 

curve in Figure 14 is slightly 

which is redisplayed by purple 

.  

for the optimal arch and 
opZ
or

. According 

remains fixed while all interfaces are 

resistant enough against sliding so that failure occurs due to the hinge formation. The graph 

 

n for the optimal arch 

optimization strategy; red circles show formed hinges. 
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5.2. Validation and calibration via FEA 

The heuristic method and the extension of limit analysis of this paper are validated by 

comparing the results obtained by the proposed methods with the results achieved by Finite 

Element Analysis (FEA) based on the simplified macro modelling technique proposed by 

[32]. In this method, blocks are morphed (controlled expansion) to eliminate mortar joints 

and are considered to be solid or shell elements, while mortar joints are zero-thickness 

interface elements. This validation includes three parts: in the two first parts the proposed 

heuristic method is studied by analysing two sets of interlocking blocks with different 

geometries; the third part studies the proposed limit analysis methods and optimization 

strategies by analysing the case study of the arch analysed above.  

The FEA is developed in ABAQUS 6.11-1 by adopting the brittle cracking model. In the first 

two parts, to purely focus on the shear behaviour at the joint between the main body and the 

connectors of a block, the following model is designed and analysed: two stacked blocks with 

a shared interlocking interface are modelled. The connectors and the main body of each of the 

blocks are modelled with rigid body elements (rigid parts) while the joint between them is 

modelled with C3D8R elements (flexible part with brittle behaviour) (Figures 16b and 18b). 

The material properties of elements are shown in Tables 1. The effective density of the 

expanded blocks is calculated using homogenization process proposed in [32]. 

 

Table 1. Material properties of expanded blocks. 

Compressive strength 4.14 MPa 

Tensile Strength 0.36 MPa 

Shear strength 0.5 |��= 0.18  MPa 

Effective Young’s modulus 3 GPa 

Poisson’s ratio 0.25  

Effective density  } � (150 × 0.5 × 0.24� D 	340 × 0.5 × 0.01�
0.5 × 0.25 � 130.4 

Kg/m
3 

Block density 150 Kg/m
3 

Mortar density 340 Kg/m
3
 

 

The lower face of the lower block is bounded so that no degree of freedom is allowed. The 

upper face of the upper block is bounded so that one degree of freedom is allowed in the 

direction of lateral force application. The loads imposed on the model are the weight of the 

upper block and a lateral force distributed on a vertical face of this block (Figures 16c and 

18c). The lateral force by which the principal stress reaches the tensile strength is found. This 

value is compared to the shear resistance obtained by the proposed heuristic method. The 

distribution of principal stresses and shear stresses τxy in X direction on the plane whose 



 

normal vector is Y is studied as well.

model.  

5.2.1. Analysis of interlocking blocks with 

Figure 16a shows the size of the

each block. 

The maximum lateral force obtained by FEA is 9.42 kN, when the maximum principal stress 

(0.36 MPa) is observed on the joint between the connector and main body of the lower block.

Figure 16. a) Dimensions of the analysed model

conditions and lateral force distributed 

 

The maximum τxy is also 0.17

and τxy on the connector of the lower block which is maximum at two edges of the connector 

(τxy are 0.177 and 0.134 MPa) and minimum in the 

 

Figure 17. Principal stress state for 

blocks; c) directions of the principal stresses; 

two blocks. 

 

23 

is studied as well. The elastic analysis is used to find the stress state of the 

of interlocking blocks with n = 3 

size of the blocks in meters and the layout of rigid an

The maximum lateral force obtained by FEA is 9.42 kN, when the maximum principal stress 

(0.36 MPa) is observed on the joint between the connector and main body of the lower block.

of the analysed model with n = 3; b) layout of rigid and flexible elements; c) boundary 

distributed on the upper block. 

77 MPa. Figure 17 presents the distribution of principal stresses 

on the connector of the lower block which is maximum at two edges of the connector 

MPa) and minimum in the middle of connector (τxy

for a) the whole model with n = 3 and b) for the two flexible layers of 

of the principal stresses; d) τxy for the whole model and e) at the two flexible layers of 

used to find the stress state of the 

blocks in meters and the layout of rigid and flexible parts of 

The maximum lateral force obtained by FEA is 9.42 kN, when the maximum principal stress 

(0.36 MPa) is observed on the joint between the connector and main body of the lower block. 

 

; b) layout of rigid and flexible elements; c) boundary 

the distribution of principal stresses 

on the connector of the lower block which is maximum at two edges of the connector 

xy  is 0.122 Mpa). 

 

two flexible layers of the two 

two flexible layers of the 



 

Using Eq. (3), the sliding resistance of the proposed heuristic method is calculated: 2/3 × 0.18 

× 10
3
 × 0.167 × 0.5 = 10.02 kN. The ratio of sliding resistance obtained by FEA to the 

proposed heuristic method is 0.94, showing a very good agreement between these results.

5.2.2. Analysis of interlocking blocks with 

Figure 18 presents the size of the blocks in meters and the layout of rigid and flexible parts of 

each block.  

Figure 18. a) dimensions of the analysed model with 

condition, the distributed lateral force is imposed on the upper block vertical face in 

 

The maximum lateral force obtained by FE

maximum principal stress (0.36

lower block and the connector that 

applied. The maximum τxy
 
of 

not uniformly distributed on all 

body of the lower block. The more 

stresses it has. For lateral force 

each of the two further connectors and the main body of the lower block are 

MPa. This means that, depending on the interaction 

failure of the first connector, the 

the connectors would be larger than 26.1 

The sliding resistance according to the heuristic method (Eq. 3) equals 3 

0.167 × 0.5 = 30.06 kN. This value is sli

failure of all the connectors. Actually, this difference between the maximum force obtained 

by FEA and the heuristic method could be due to the difference of the lateral force 

application point. In the heuristic method, in fact, this point is considered to be the centroid of 

the upper block and, consequently, the stresses are uniformly distributed on all the joints 

between the connectors and the main body of the
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resistance of the proposed heuristic method is calculated: 2/3 × 0.18 

× 0.167 × 0.5 = 10.02 kN. The ratio of sliding resistance obtained by FEA to the 

proposed heuristic method is 0.94, showing a very good agreement between these results.

interlocking blocks with n = 7 

size of the blocks in meters and the layout of rigid and flexible parts of 

. a) dimensions of the analysed model with n=7; b) layout of rigid and flexible elements; c) boundary 

condition, the distributed lateral force is imposed on the upper block vertical face in –X direction.

The maximum lateral force obtained by FEA is 26.1 kN. As shown in Figure 1

pal stress (0.36 MPa) is observed on the joint between the 

and the connector that is closer to the lateral face where the 

 0.201 MPa occurs on the same joint. However

not uniformly distributed on all the three joints between the three connectors

of the lower block. The more a joint is closer to the applied lateral force, the larger 

For lateral force of 26.1 kN, the maximum principal stresses on joints between 

two further connectors and the main body of the lower block are 

depending on the interaction between the other connectors after 

ector, the final value of the force that corresponds to the failure

larger than 26.1 kN. 

The sliding resistance according to the heuristic method (Eq. 3) equals 3 ×

0.167 × 0.5 = 30.06 kN. This value is slightly larger than that obtained by FEA because of the 

failure of all the connectors. Actually, this difference between the maximum force obtained 

by FEA and the heuristic method could be due to the difference of the lateral force 

heuristic method, in fact, this point is considered to be the centroid of 

the upper block and, consequently, the stresses are uniformly distributed on all the joints 

between the connectors and the main body of the block. 

resistance of the proposed heuristic method is calculated: 2/3 × 0.18 

× 0.167 × 0.5 = 10.02 kN. The ratio of sliding resistance obtained by FEA to the 

proposed heuristic method is 0.94, showing a very good agreement between these results. 

size of the blocks in meters and the layout of rigid and flexible parts of 

 

=7; b) layout of rigid and flexible elements; c) boundary 

X direction. 

As shown in Figure 19, the 

the main body of the 

the horizontal load is 

However, the stresses are 

connectors and the main 

is closer to the applied lateral force, the larger 

, the maximum principal stresses on joints between 

two further connectors and the main body of the lower block are 0.3 and 0.276 

connectors after the 

that corresponds to the failure of all 

× 2/3 × 0.18 × 10
3
 × 

ghtly larger than that obtained by FEA because of the 

failure of all the connectors. Actually, this difference between the maximum force obtained 

by FEA and the heuristic method could be due to the difference of the lateral force 

heuristic method, in fact, this point is considered to be the centroid of 

the upper block and, consequently, the stresses are uniformly distributed on all the joints 



 

Figure 19. Principal stress state for 

blocks; c) directions of the principal stresses; d) 

two blocks. 

 

5.2.3. Analysis of the case study arch composed of

In the case of the arch with assigned radius 

are modelled with C3D8R elements and the mortar joints between them are modelled as shell 

interfaces with friction coefficient

Table 1, with the exception of the

modelling of rigid body elements used in the previous analyses is no longer suitable to the 

case of the arch due to the presence of non

implies some limits of validation for the proposed heuristic method w

pure shear condition. However, the validation of the optimal 

obtained by the first optimization procedure

terms of failure mode. 

In fact, using the proposed limit state method, for this

mechanism is observed, that is fully captured by the FE model, as shown in Figure 20.

In sum, the three cases examined 

proposed heuristic method and optimization procedure

rocking/sliding failure modes

provided by future work. 
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stress state for a) the whole model with n = 7 and b) for the two flexible layers of 

of the principal stresses; d) τxy for the whole model and e) at the two flexible layers of 

study arch composed of interlocking blocks with 

with assigned radius R = 10m and subjected to its own weight

elements and the mortar joints between them are modelled as shell 

iction coefficient µ = 0.37. The material properties are 

, with the exception of the Young’s modulus which is increased to

modelling of rigid body elements used in the previous analyses is no longer suitable to the 

case of the arch due to the presence of non-negligible bending moments at interfaces. This 

implies some limits of validation for the proposed heuristic method which is based on the 

pure shear condition. However, the validation of the optimal arch with thickness of 1.07 m, 

obtained by the first optimization procedure for 
op
q

or
 = 1.08, is herein performed

osed limit state method, for this optimal model the pure rocking 

observed, that is fully captured by the FE model, as shown in Figure 20.

he three cases examined in this section can be considered a good validation of the 

proposed heuristic method and optimization procedure, with some limitations in the case of 

rocking/sliding failure modes. Further studies and experimental investigation 

 

two flexible layers of the two 

two flexible layers of the 

interlocking blocks with n = 5 

subjected to its own weight, blocks 

elements and the mortar joints between them are modelled as shell 

material properties are those reported in 

which is increased to 6 GPa. The 

modelling of rigid body elements used in the previous analyses is no longer suitable to the 

negligible bending moments at interfaces. This 

hich is based on the 

with thickness of 1.07 m, 

performed, mainly in 

optimal model the pure rocking 

observed, that is fully captured by the FE model, as shown in Figure 20. 

good validation of the 

, with some limitations in the case of 

studies and experimental investigation will be 



 

Figure 20. a) boundary condition; b) normal stresses in 

plane whose normal vector is Y (τxy); d) deformation of the arch 

6. CONCLUSIONS 

A Digital tool was developed to des

interlocking blocks. The main achievements of this research 

• a heuristic method to find the relationship between the geometric properties of the 

interlocking connectors and the block sliding resistan

• a limit state analysis approach to analyze the stability of arches composed of interlocking 

blocks; by using the heuristic method, it extends the 

new stability condition for semi

interface sliding resistance varies in different directions

• two optimization methods to minimize the thickness of the semi

of interlocking blocks via adjusting the control points of 

arch; this work extends the optimization algorithm finding the thinnest structurally feasible 

arch composed of blocks with finite friction. In this extension the newly developed condition 

of stability (sliding constraint) 

first method, the sliding resistance changes during the optimization

the shear resistance is less than the frictional resistance, the arch behaves as an arch with 

conventional blocks. When the shear resistance is larger than the frictional resistance, the 
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tion; b) normal stresses in Y direction (σy); c) shear stresses in 

); d) deformation of the arch 
op
q

or
 = 1.08. 

A Digital tool was developed to design the structurally sound semi-circular arch with 

The main achievements of this research are: 

heuristic method to find the relationship between the geometric properties of the 

the block sliding resistance; 

limit state analysis approach to analyze the stability of arches composed of interlocking 

by using the heuristic method, it extends the limit state approach in order to define a 

new stability condition for semi-circular arches composed of interlocking blocks

interface sliding resistance varies in different directions; 

to minimize the thickness of the semi-circular arches composed 

via adjusting the control points of constructed the t

this work extends the optimization algorithm finding the thinnest structurally feasible 

arch composed of blocks with finite friction. In this extension the newly developed condition 

(sliding constraint) for arches composed of interlocking blocks are applied.

method, the sliding resistance changes during the optimization. The results show that 

shear resistance is less than the frictional resistance, the arch behaves as an arch with 

. When the shear resistance is larger than the frictional resistance, the 

 

); c) shear stresses in X direction on a 

circular arch with 

heuristic method to find the relationship between the geometric properties of the 

limit state analysis approach to analyze the stability of arches composed of interlocking 

approach in order to define a 

interlocking blocks when the 

circular arches composed 

the thrust line for the 

this work extends the optimization algorithm finding the thinnest structurally feasible 

arch composed of blocks with finite friction. In this extension the newly developed condition 

osed of interlocking blocks are applied. In the 

. The results show that if 

shear resistance is less than the frictional resistance, the arch behaves as an arch with 

. When the shear resistance is larger than the frictional resistance, the 
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structural behaviour of the arch is governed by the shear strength. For small values of shear 

strength, the combined rocking/sliding mechanism occurs for the optimal result. For large 

values of shear strength, pure rocking mechanism can be observed on the optimal result. 

In the second method, the sliding resistance is kept fixed via changing the number of the 

connectors. The results are mostly dependent on the constraints keeping the number of the 

connectors an odd integer value and also on the initial value of sliding resistance defined by 

the designer. Due to these items, the optimal result for the minimum thickness might be 

thicker comparing to the result of the first optimization method, given the same shear 

strength, friction coefficient and geometric inputs. In this case, the mechanism does not occur 

on the optimal solution. 

A good agreement of the results obtained by the heuristic method and optimization procedure 

was found in case of pure shear conditions, while some limits of validation were highlighted 

in case of mixed rocking/sliding failure modes. Future works will address these issues 

together with the extension of the approach to the 3d models. Furthermore, the sliding 

resistance of interlocking blocks will also be experimentally investigated together with the 

analysis of different shapes of the interfaces. 
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