WATER MAIN CONSTRUCTION TECHNIQUES

ST. J@HN'S

Overview

- Water Main Materials
- Specifications
- Installation
- Future?

DEPARTMENT OF PUBLIC WORKS

Water Main Materials

Material Types

There are various material types used for water mains, these include:

- Ductile Iron Pipe
- Polyvinyl Chloride (PVC)
- Concrete Steel Cylinder
- Polyethylene

Water Main Specifications

Specifications

Provide information on approved materials, installation methods and typical drawings.

- Department of Municipal and Intergovernmental Affairs Municipal Water, Sewer and Roads Master Construction Specification Book, Section 02713
- City of St. John's Specification Book, Section 230

Water Main Specifications

Specifications - Examples

- Approved Pipe Materials
 Ductile Iron, PVC, Conc. Steel Cylinder
- Pressure Classes of Pipe
 - DI Pipe Class = 350, 250, 200
 - PVC Pipe = DR 14, 18, 21
- Valves
 - o Opening Direction, Operating Nut
- Service Pipe
 - Approved Materials and Diameter

ST. JOHN'S DEPARTMENT OF PUBLIC WORKS

WATER & WASTEWATER DIVISION

Pipe Trench

- Excavated to depth specified on drawings, minimum 2 m cover.
- Pipe Bedding

 Class "B" Material
 - o 150 mm Below
 - o 300 mm Above
- Marker Tape

ST. JOHN'S

Pipe Protection

- Debris caps are required on all pipes supplied to CSJ.
- Caps keep debris out of pipes during transportation and installation resulting in lower chance of contamination.
- Required on both bell and spigot ends of pipe

Pipe Assembly

- Pipe laid in trench at design grade and assembled using come-along or pry bar
- However typically pushed together with excavator, there is a risk pushing the pipe into the bell to far and damaging the bell
- On PVC pipe there is a line indicating required insertion depth of pipe.

Thrust Blocks

- Required at specified locations such as bends, tees, valves, reducers, end caps.
- Required to be constructed as per Standards Drawings in Specification

ST. J@HN'S

Thrust Blocks

- An alternate to thrust blocks is the use of mechanical joint restraints.
- Prior to installation location of joint restraints must be determined by design Engineer. Typically the fitting is restrained plus several lengths of pipe on either side of fitting.
- Two types of restraints:
 - Restraining Gland Ring Megalug or Megaholder
 - o Restraining Joint Restraint

ST. JOHN'S

WATER & WASTEWATER DIVISION

Air and Vacuum Release

- The design of a water distribution system must recognize the importance of alleviating air from the system and breaking a vacuum should it form.
- These conditions typically form when a water main is being filled or drained for planned maintenance or during emergencies.
- Air Release can be accomplished by either:
 - Installing a fire hydrant at the high point;
 - Placing a water service at the high point:
 - o Installing an Air Release valve at the high point.

ST. J@HN'S

Corrosion Control

- Metallic components of a water distribution system can experience corrosion.
- Corrosion could be caused by:
 - o Soil conditions;
 - o Dissimilar materials;
 - o Stray current.
- Corrosion control can be accomplished by either:
 - Using non-metallic components;
 - Installing zinc anodes:
 - o Wrapping metallic pipe in polyethylene.

ST. J@HN'S

<u>Service Connections – Ductile Iron</u>

- Direct tapping is permitted up to 25 mm diameter.
- Service greater than 25 mm diameter require service saddle.
- Service connections should be a minimum of 1 m from adjacent service, pipe bell or fitting.
- Direct tap completed using drill and tap bit.
- Tap connection through service saddle completed using shell cutter bit.

ST. JOHN'S

ST. J@HN'S

Service Connections – PVC

- Direct tapping can but done but not recommended.
- New Construction use tap tee.
- Tapping to be completed with service saddle.
- Service connections should be a minimum of 1 m from adjacent service, pipe bell or fitting.
- Tap connection through service saddle completed using shell cutter bit.

ST. JOHN'S

ST. JOHN'S

Testing

- Swabbing or Pigging
- Pressure Test
- Leakage Test
- Chlorination

ST. J@HN'S

Swabbing / Pigging

• To remove material and debris from lines.

Pressure Test

- New water main tested at 150% of normal operating pressure.
- Each section of pipe slowly filled with water and air expelled and tested

Leakage Test

- Conducted concurrently with pressure test.
- Measure quantity of water required to maintain pressure, must not exceed calculated value

ST. JOHN'S DEPARTMENT OF PUBLIC WORKS

WATER & WASTEWATER DIVISION

ST. JOHN

DEPARTMENT OF PUBLIC WORKS WATER & WASTEWATER DIVISION

Chlorination

- Chlorine solution added and left for 24 hours.
- Water flushed from line and sample taken.
- Two consecutive samples required to be collected.

Tracing / Locating

- Water main material determines type of tracing.
- Metallic material can use be used as a conductor for locating buried infrastructure
- PVC material requires separate method for locating buried infrastructure.

ST. J@HN'S

ST. J@HN'S

ST. J@HN'S

ST. JOHN'S

	FID	Shape	ID_	MODEL	COMPANY	TYPE	SIZE	MATERIAL	DATE_	DESCRPTN	LATITUDE	LONGITUDE	ALTITUDE	LASTSAVED	NORTHING	EASTING
۲	3468	Point	0000699209	1423-XR/ID Water RFID Ball	CSJ	90 Bend	300mm	PVC		Main	47.569	-52.715	87.315	<nul></nul>	5269963.648	326263.743
	3474	Point	0000959608	1423-XR/ID Water RFID Ball	CSJ	Tee	300mm x 300mm	PVC		Main	47.568	-52.715	88.718	<nul></nul>	5269935.849	326246.997
	3472	Point	0001028297	1423-XR/ID Water RFID Ball	CSJ	90 Bend	200mm	PVC		Main	47.568	-52.715	89.928	<nul></nul>	5269942.162	326241.131
	3477	Point	0001080806	1423-XR/ID Water RFID Ball	CSJ	11.25 Bend	300mm	PVC		Main	47.568	-52.715	88.909	<nul></nul>	5269946.158	326259.548
	3473	Point	0001081236	1423-XR/iD Water RFiD Ball	CSJ	Tee	400mm x 300mm	Ductile Iron		Main	47.568	-52.715	88.694	<nul></nul>	5269938.046	326244.195
	3480	Point	0001107373	1423-XR/ID Water RFID Ball	CSJ	Reducer	300mm x 150mm	Ductile Iron		Main	47.568	-52.715	84.992	<nul></nul>	5269954.556	326270.706
	3479	Point	0001109106	1423-XR/ID Water RFID Ball	CSJ	Tee	300mm x 300mm	Ductile Iron		Main	47.568	-52.715	85.22	<nul></nul>	5269954.048	326270.152
	3471	Point	0001109108	1423-XR/iD Water RFiD Ball	CSJ	90 Bend	150mm	PVC		Main	47.568	-52.715	86.789	<nul></nul>	5269948.099	326245.62
	3475	Point	0001109120	1423-XR/iD Water RFiD Ball	CSJ	Tee	200mm x 300mm	PVC		Main	47.568	-52.715	88.215	<nul></nul>	5269935.243	326247.876
	3476	Point	0001109122	1423-XR/ID Water RFID Ball	CSJ	90 Bend	300mm	PVC		Main	47.568	-52.715	88.349	<nul></nul>	5269933.449	326250.015
	3481	Point	0001109153	1423-XR/ID Water RFID Ball	CSJ	90 Bend	150mm	Ductile Iron		Main	47.568	-52.715	85.91	<nul⊳< td=""><td>5269961.231</td><td>326276.934</td></nul⊳<>	5269961.231	326276.934
	3478	Point	0001109154	1423-XR/ID Water RFID Ball	CSJ	90 Bend	300mm	Ductile Iron		Main	47.568	-52.715	85.41	<nul></nul>	5269951.463	326267.88
	3469	Point	0001109238	1423-XR/ID Water RFID Ball	CSJ	45 Bend	300mm	Ductile Iron		Main	47.568	-52.715	86.6	<nul></nul>	5269958.618	326264.713
	3470	Point	0001109243	1423-XR/ID Water RFID Ball	CSJ	22.50 Bend	300mm	Ductile Iron		Main	47.568	-52.715	86.412	<nul></nul>	5269955.051	326263.016

ST. J@HN'S

Internal Joint Restraint

- Current joint restraint system for PVC pipe using external components
- Bulldog joint is an internal joint restraint system.
- No external components therefore no corrosion issues.

ST. J@HN'S

New PVC Material

- Molecularly enhanced PVC – biaxially oriented
- Features:
 - Pipe is lighter therefore it is easier to handle and install.
 - Greater tensile strength
 - Greater impact strength
 - Crack resistance, prevents crack propagation
 - Thinner pipe wall = larger inside pipe diameter resulting in improved flows.

ST. JOHN'S DEPARTMENT OF PUBLIC WORKS

WATER & WASTEWATER DIVISION

PVC Pipe Assembly

- PVC pipe is supposed to be assembled with pry bars or come-along.
- However typically assembled using excavator bucket increased risk of damage to pipe.
- Eagle Claw is a pipe assembly tool

ST. J@HN'S

