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UNIT II 
BASIC COMPUTER ORGANIZATION AND DESIGN 

 
 Instruction Codes 

The organization of the computer is defined by its internal registers, the timing and control 

structure, and the set of instructions that it uses. The design of the computer is then carried out 

in detail. The internal organization of a digital system is defined by the sequence of micro 

operation it performs on data stored in its registers. The general-purpose digital computer is 

capable of executing various micro operations and, in addition, can be instructed as to what 

specific sequence of operations it must perform. The user of a computer can control the process 

by means of a program. A program is a set of instructions that specify the operations, operands, 

and the sequence by which processing has to occur. The data- processing task may be altered by 

specifying a new program with different instructions or specifying the same instructions with 

different data. 

 
A computer instruction is a binary code that specifies a sequence of micro operations for the 

computer. Instruction codes together with data are stored in memory. The computer reads each 

instruction from memory and places it in a control register. The control then interprets the 

binary code of the instruction and proceeds to execute it by issuing a sequence of micro 

operations. Every computer has its own unique instruction set. The ability to store and execute 

instructions, the stored program concept, is the most important property of a general- purpose 

computer. 

 
An instruction code is a group of bits that instruct the computer to perform a specific operation. 

It is usually divided into parts, each having its own particular interpretation. The most basic  

part of an instruction code is its operation part. The operation code of an instruction is a group 

of bits that define such operations as add, subtract, multiply, shift, and complement. The 

number of bits required for the operation code of an instruction depends on the total number of 

operations available in the computer. 

 
The operation code must consist of at least n bits for a given 2n (or less) distinct operations. As 

an illustration, consider a computer with 64 distinct operations, one of them being an ADD 

operation. The operation code consists of six bits, with a bit configuration 110010 assigned to the 

ADD operation. When this operation code is decoded in the control unit, the computer issues 

control signals to read an operand from memory and add the operand to a processor register. 

 
At this point we must recognize the relationship between a computer operation and a micro 

operation. An operation is part of an instruction stored in computer memory. It is a binary code 

that tells the computer to perform a specific operation. The control unit receives the instruction 

from memory and interprets the operation code bits. It then issues a sequence of control signals 

to initiate micro operations in internal computer registers. For every operation code, the control 

issues a sequence of micro operations needed for the hardware implementation of the specified 

operation. For this reason, an operation code is sometimes called a macro operation because it 

specifies a set of micro operations. The operation part of an instruction code specifies the 

operation to be performed. This operation must be performed on some data stored in processor 

registers or in memory. An instruction code must therefore specify not only the operation but 

also the registers or the memory words where the operands 
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are to be found, as well as the register or memory word where the result is to  be  stored. 

Memory words can be specified in instruction codes by their address. Processor registers can be 

specified by assigning to the instruction another binary code of k bits that specifies one of 2* 

registers. There are many variations for arranging the binary code of instructions, and each 

computer has its own particular instruction code format. Instruction code formats are conceived 

by computer designers who specify the architecture of the computer. 

 
 Stored Program Organization 

The simplest way to organize a computer is to have one processor register and an instruction 

code format with two parts. The first part specifies the operation to be performed and the  

second specifies an address. The memory address tells the control where to find an operand in 

memory. This operand is read from memory and used as the data to be operated on together 

with the data stored in the processor register. 

 
Figure depicts this type of organization. Instructions are stored in one section of memory and 

data in another. For a memory unit with 4096 words we need 12 bits to specify an address since 

212 = 4096. If we store each instruction code in one 16-bit memory word, we have available four 

bits for the operation code (abbreviated opcode) to specify one out of 16 possible operations,  

and 12 bits to specify the address of an operand. The control reads a 16-bit instruction from the 

program portion of memory. It uses the 12-bit address part of the instruction to read a 16-bit 

operand from the data portion of memory. It then executes the operation specified by the 

operation code. 

 
Computers that have a single-processor register usually assign to it the name accumulator and 

label it AC. The operation is performed with the memory operand and the content of AC . If an 

operation in an instruction code does not need an operand from memory, the rest of the bits in 
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the instruction can be used for other purposes. For example, operations such as clear AC, 

complement AC, and increment AC operate on data stored in the AC register. They do not need 

an operand from memory. For these types of operations, the second part of the instruction code 

(bits 0 through 11) is not needed for specifying a memory address and can be used to specify 

other operations for the computer. 

 
 Indirect Address 

It is sometimes convenient to use the address bits of an instruction code not as an address but as 

the actual operand. When the second part of an instruction code specifies an operand, the 

instruction is said to have an immediate operand. When the second part specifies the address of 

an operand, the instruction is said to have a direct address. This is in contrast to a third 

possibility called indirect address, where the bits in the second part of the instruction designate 

an address of a memory word in which the address of. the operand is found. One bit of the 

instruction code can be used to distinguish between a direct and an indirect address. 

 
As an illustration of this configuration, consider the instruction code format shown in  Figure 

(a). It consists of a 3-bit operation code, a 12-bit address, and an indirect address mode bit 

designated by I. The mode bit is 0 for a direct address and 1 for an indirect address. A direct 

address instruction is shown in Figure (b). It is placed in address 22 in memory. 
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The I bit is 0, so the instruction is recognized as a direct address instruction. The opcode 

specifies an ADD instruction, and the address part is the binary equivalent of 457. The control 

finds the operand in memory at address 457 and adds it to the content of AC . The instruction in 

address 35 shown in Figure (c) has a mode bit I=1. Therefore, it is recognized as an indirect 

address instruction. The address part is the binary equivalent of 300. The control goes to 

address 300 to find the address of the operand. The address of the operand in this case is 1350. 

The operand found in address 1350 is then added to the content of AC. The indirect address 

instruction needs two references to memory to fetch an operand. The first reference is needed to 

read the address of the operand; the second is for the operand itself. We define the effective 

address to be the address of the operand in a computation-type instruction or the target address 

in a branch-type instruction. Thus the effective address in the instruction of Figure (b) is 457 and 

in the instruction of Figure (c) is 1350. 

 
The direct and indirect addressing modes are used in the computer presented in this chapter. 

The memory word that holds the address of the operand in an indirect address instruction is 

used as a pointer to an array of data. The pointer could be placed in a processor register instead 

of memory as done in commercial computers. 

 
 Computer Registers 

Computer instructions are normally stored in consecutive memory locations and are executed 

sequentially one at a time. The control reads an instruction from a specific address in memory 

and executes it. It then continues by reading the next instruction in sequence and executes it, 

and so on. This type of instruction sequencing needs a counter to calculate the address of the 

next instruction after execution of the current instruction is completed. It is also necessary to 

provide a register in the control unit for storing the instruction code after it is read from 

memory. The computer needs processor registers for manipulating data and a register for 

holding a memory address. These requirements dictate the register configuration shown in 

Figure. 
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The registers are also listed in Table together with a brief description of their function and the 

number of bits that they contain. The memory unit has a capacity of 4096 words and each word 

contains 16 bits. Twelve bits of an instruction word are needed to specify the address of an 

operand. This leaves three bits for the operation part of the instruction and a bit to specify a 

direct or indirect address. The data register (DR) holds the operand read from memory. The 

accumulator (AC) register is a general-purpose processing register. The instruction read from 

memory is placed in the instruction register (IR). The temporary register (TR) is used for 

holding temporary data during the processing. 
 

 
The memory address register ( AR ) has 12 bits since this is the width of a memory address. The 

program counter (PC) also has 12 bits and it holds the address of the next instruction to be read 

from memory after the current instruction is executed. The PC goes through a counting 

sequence and causes the computer to read sequential instructions previously stored in memory. 

Instruction words are read and executed in sequence unless a branch instruction is encountered. 

A branch instruction calls for a transfer to a nonconsecutive instruction in the program. The 

address part of a branch instruction is transferred to PC to become the address of the next 

instruction. To read an instruction, the content of PC is taken as the address for memory and a 

memory read cycle is initiated. PC is then incremented by one, so it holds the address of the  

next instruction in sequence. Two registers are used for input and output. The input register (IN 

PR) receives an 8-bit character from an input device. The output register (OUTR) holds an 8-bit 

character for an output device. 

 
 Common Bus System 

The basic computer has eight registers, a memory unit, and a control unit. Paths must be 

provided to transfer information from one register to another and between memory and 

registers. The number of wires will be excessive if connections are made between the outputs of 

each register and the inputs of the other registers. A more efficient scheme for transferring 

information in a system with many registers is to use a common bus. The connection of the 

registers and memory of the basic computer to a common bus system is shown in Figure. The 

outputs of seven registers and memory are connected to the common bus. The specific output 

that is selected for the bus lines at any given time is determined from the binary value of the 

selection variables S2 , S1, and S0 . The number along each output shows the decimal equivalent 

of the required binary selection. 
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For example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the 

bus lines when S2S1S0 = 011 since this is the binary value of decimal 3. The lines from the 

common bus are connected to the inputs of each register and the data inputs of the memory.  

The particular register whose LD (load) input is enabled receives the data from the bus during 

the next clock pulse transition. The memory receives the contents of the bus when  its write 

input is activated. The memory places its 16-bit output onto the bus when the read input is 

activated and S2S1S0 =111. Four registers, DR, AC, IR, and TR, have 16 bits each. Two registers, 

AR memory address and PC, have 12 bits each since they hold a memory address. When the 

contents of AR or PC are applied to the 16-bit common bus, the four most significant bits are set 

to 0's. When AR or PC receive information from the bus, only the 12 least significant bits are 

transferred into the register. The input register INPR and the output register OUTR have 8 bits 

each and communicate with the eight least significant bits in the bus. 1NPR is connected to 

provide information to the bus but OUTR can only receive information from the bus. This is 

because INPR receives a character from an input device which is then transferred to AC. OUTR 

receives a character from AC and delivers it to an output device. There is no transfer from  

OUTR to any of the other registers. The 16 lines of the common bus receive information from six 

registers and the memory unit. The bus lines are connected to the inputs of six registers and the 

memory. Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). 

This type of register is equivalent to a binary counter with parallel load and synchronous clear. 

 
The increment operation is achieved by enabling the count input of the counter. Two registers 

have only a LD input. The input data and output data of the memory are connected to the 

common bus, but the memory address is connected to AR . Therefore, AR must always be used 

to specify a memory address. By using a single register for the address, we eliminate the need  

for an address bus that would have been needed otherwise. The content of any register can be 

specified for the memory data input during a write operation. Similarly, any register can receive 

the data from memory after a read operation except AC. 

 
The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs. 

One set of 16-bit inputs come from the outputs of AC . They are used to implement register 

micro operations such as complement AC and shift AC. Another set of 16-bit inputs come from 

the data register DR. The inputs from DR and AC are used for arithmetic and logic micro 

operations, such as add DR to AC or AND DR to AC. The result of an addition is transferred to 

AC and the end carry-out of the addition is transferred to flip-flop E (extended  AC bit). A third 

set of 8-bit inputs come from the input register INPR. Note that the content of any register can 

be applied onto the bus and an operation can be performed in the adder and logic circuit during 

the same clock cycle. The clock transition at the end of the cycle transfers the content of the bus 

into the designated destination register and the output of the adder and logic circuit into AC. 

 
 Computer Instructions 

The basic computer has three instruction code formats, as shown in Figure. Each format has 16 

bits. The operation code (opcode) part of the instruction contains three bits and the meaning of 

the remaining 13 bits depends on the operation code encountered. A memory-reference 

instruction uses 12 bits to specify an address and one bit to specify the addressing mode 1. 1 is 

equal to 0 for direct address and to 1 for indirect address. The register-reference instructions are 

recognized by the operation code 111 with a 0 in the leftmost bit (bit 15) of the instruction. A 
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register-reference instruction specifies an operation on or a test of the AC register. An operand 

from memory is not needed; therefore, the other 12 bits are used to specify the operation or test 

to be executed. Similarly, an input-output instruction does not need a reference to memory and 

is recognized by the operation code 111 with a 1 in the leftmost bit of the instruction. The 

remaining 12 bits are used to specify the type of input-output operation or test performed. 
 
 

 
The type of instruction is recognized by the computer control from the four bits in positions 12 

through 15 of the instruction. If the three opcode bits in positions 12 through 14 are not equal to 

1 11, the instruction is a memory-reference type and the bit in position 15 is taken as the 

addressing mode I. If the 3-bit opcode is equal to 111, control then inspects the bit in position 15. 

If this bit is 0, the instruction is a register-reference type. If the bit is 1, the instruction is an 

input-output type. Note that the bit in position 15 of the instruction code is designated by the 

symbol I but is not used as a mode bit when the operation code is equal to 111. Only three bits   

of the instruction are used for the operation code. It may seem that the computer is restricted to 

a maximum of eight distinct operations. However, since register-reference and input-output 

instructions use the remaining 12 bits as part of the operation code, the total number of 

instructions can exceed eight. In fact, the total number of instructions chosen for the basic 

computer is equal to 25. The instructions for the computer are listed in Table 5-2. The symbol 

designation is a three-letter word and represents an abbreviation intended for programmers  

and users. The hexadecimal code is equal to the equivalent hexa-decimal number of the binary 

code used for the instruction. By using the hexadecimal equivalent we reduced the 16 bits of an 

instruction code to four digits with each hexadecimal digit being equivalent to four bits. A 

memory-reference instruction has an address part of 12 bits. The address part is denoted by 

three x’s and stand for the three hexadecimal digits corresponding to the 12-bit address. The last 

bit of the instruction is designated by the symbol I. When 1 = 0, the last four bits of an 

instruction have a hexadecimal digit equivalent from 0 to 6 since the last bit is 0. When 1 = 1, the 

hexadecimal digit equivalent of the last four bits of the instruction ranges from 8 to E since the 

last bit is 1. Register-reference instructions use 16 bits to specify an operation. The leftmost four 

bits are always 0111, which is equivalent to hexadecimal 7. 



Unit II  
 

 

 

 
 

The other three hexadecimal digits give the binary equivalent of the remaining 12 bits. The 

input-output instructions also use all 16 bits to specify an operation. The last four bits are  

always 1111, equivalent to hexadecimal F. 

 
 Timing and Control 

The timing for all registers in the basic computer is controlled by a master clock generator. The 

clock pulses are applied to all flip-flops and registers in the system, including the flip-flops and 

registers in the control unit. The clock pulses do not change the state of a register unless the 

register is enabled by a control signal. The control signals are generated in the control unit and 

provide control inputs for the multiplexers in the common bus, control inputs in processor 

registers, and micro operations for the accumulator. There are two major types of control 

organization: hardwired control and micro programmed control. In the hardwired organization, 
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the control logic is implemented with gates, flip-flops, decoders, and other digital circuits. It has 

the advantage that it can be optimized to produce a fast mode of operation. In the micro 

programmed organization, the control information is stored in a control memory. The control 

memory is programmed to initiate the required sequence of micro operations. A hardwired 

control, as the name implies, requires changes in the wiring among the various components if 

the design has to be modified or changed. In the micro programmed control, any required 

changes or modifications can be done by updating the micro program in control memory. A 

hardwired control for the basic computer is presented in this section. 

 
The block diagram of the control unit is shown in Figure. It consists of two decoders, a sequence 

counter, and a number of control logic gates. An instruction read from memory is placed in the 

instruction register ( IR ). The instruction register is shown again in Figure, where it is divided 

into three parts: the I bit, the operation code, and bits 0 through 11. The operation code in bits 12 

through 14 are decoded with a 3 x 8 decoder. The eight outputs of the decoder are designated   

by the symbols D0 through D7 . The subscripted decimal number is equivalent to the binary 

value of the corresponding operation code. Bit 15 of the instruction is transferred to a flip-flop 

designated by the symbol I. Bits 0 through 11 are applied to the control logic gates. The 4-bit 

sequence counter can count in binary from 0 through 15. The outputs of the counter are  

decoded into 16 timing signals T0 through T15. 

 

 
The sequence counter SC can be incremented or cleared synchronously. Most of the time, the 

counter is incremented to provide the sequence of timing signals out of the 4 x 16 decoder. Once 

in awhile, the counter is cleared to 0, causing the next active timing signal to be T0 . As an 
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example, consider the case where SC is incremented to provide timing signals T0, T2, T3, and T4 

in sequence. At time T4 , SC is cleared to 0 if decoder output D3 is active. 

 
The timing diagram shows the time relationship of the control signals. The sequence counter SC 

responds to the positive transition of the clock. Initially, the CLR input of SC is active. The first 

positive transition of the clock dears SC to 0, which in turn activates the timing signal T0 out of 

the decoder. T0 is active during one clock cycle. T0 in the diagram will trigger only those 

registers whose control inputs are connected to timing signal T0. SC is incremented with every 

positive clock transition, unless its CLR input is active. This produces the sequence of timing 

signals T0, T1, T2, T3, T4 and so on, as shown in the diagram, If SC is not cleared, the timing 

signals will continue with T5, T6, upto T15 and back to T0. 

 

 
The last three waveforms in Figure show how SC is cleared when D3 T4 = 1. Output D3 from   

the operation decoder becomes active at the end of timing signal T2 . When timing signal T4 

becomes active, the output of the AND gate that implements the control function D3 T4 

becomes active. This signal is applied to the CLR input of SC. On the next positive clock 

transition (the one marked T 4 in the diagram) the counter is cleared to 0. This causes the timing 

signal T0 to become active instead of T5 that would have been active if SC were incremented 

instead of cleared. 
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 Instruction Cycle 

A program residing in the memory unit of the computer consists of a sequence of instructions. 

The program is executed in the computer by going through a cycle for each instruction. Each 

instruction cycle in turn is subdivided into a sequence of sub cycles or phases. In the basic 

computer each instruction cycle consists of the following phases: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect address. 

4. Execute the instruction. 

 
Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute the 

next instruction. This process continues indefinitely unless a HALT instruction is encountered. 

 
 Fetch and Decode 

Initially, the program counter PC is loaded with the address of the first instruction in the 

program. The sequence counter SC is cleared to 0, providing a decoded timing signal T 0 . After 

each clock pulse, SC is incremented by one, so that the timing signals go through a sequence T 0 

, T i, T 2 , and so on. The micro operations for the fetch and decode phases can be specified by 

the following register transfer statements. 

 
T0: AR  PC 

T1: IR  M[AR], PC  PC + 1 

T 2 : D0 , . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15) 

 
Since only AR is connected to the address inputs of memory, it is necessary to transfer the 

address from PC to AR during the clock transition associated with timing signal T0. The 

instruction read from memory is then placed in the instruction register IR with the clock 

transition associated with timing signal T1. At the same time, PC is incremented by one to 

prepare it for the address of the next instruction in the program. At time T2, the operation code 

in IR is decoded, the indirect bit is transferred to flip-flop I, and the address part of the 

instruction is transferred to AR. Note that SC is incremented after each clock pulse to produce 

the sequence T0, Tl and T2. Figure shows how the first two register transfer statements are 

implemented in the bus system. To provide the data path for the transfer of PC to AR we must 

apply timing signal T0 to achieve the following connection: 

 
1. Place the content of PC onto the bus by making the bus selection inputs S2S1S0 equal to 010. 

2. Transfer the content of the bus to AR by enabling the LD input of AR. 

 
The next clock transition initiates the transfer from PC to AR since T0 = 1. In order to implement 

the second statement 

 
T1: IR  M[AR], PC  PC + 1 

 
it is necessary to use timing signal T1 to provide the following connections in the bus system. 

 
1. Enable the read input of memory. 

2. Place the content of memory onto the bus by making S2S1S0 = 111. 
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3. Transfer the content of the bus to IR by enabling the LD input of IR. 

4. Increment PC by enabling the INR input of PC. 

 
The next clock transition initiates the read and increment operations since T1 = 1 . 

 

Figure duplicates a portion of the bus system and shows how T0 and T1 are connected to the 

control inputs of the registers, the memory, and the bus selection inputs. Multiple input OR 

gates are included in the diagram because there are other control functions that will initiate 

similar operations. 

 
 Determine the Type of Instruction 

The timing signal that is active after the decoding is T3 . During time T3, the control unit 

determines the type of instruction that was just read from memory. The flowchart presents an 

initial configuration for the instruction cycle and shows how the control determines the 

instruction type after the decoding. Decoder output D7 is equal to 1 if the operation code is  

equal to binary 111. If D7 = 1, the instruction must be a register-reference or input-output type.  

If D7 = 0, the operation code must be one of the other seven values 000 through 110, specifying a 

memory-reference instruction. 
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Control then inspects the value of the first bit of the instruction, which is now available in flip- 

flop I. If D7 = 0 and I = 1, we have a memory-reference instruction with an indirect address. It is 

then necessary to read the effective address from memory. The micro operation for the indirect 

address condition can be symbolized by the register transfer statement AR  M[AR]. Initially, 

AR holds the address part of the instruction. This address is used during the memory read 

operation. The word at the address given by AR is read from memory and placed on  the 

common bus. The LD input of AR is then enabled to receive the indirect address that resided in 

the 12 least significant bits of the memory word. The three instruction types are subdivided into 
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four separate paths. The selected operation is activated with the clock transition associated with 

timing signal T3. This can be symbolized as follows: 

 
D7’IT3 : AR  M[AR] 

D7’I’T3 : Nothing 

D7I’T3 : Execute a register-reference instruction 

D71T3 : Execute an input-output instruction 

 
When a memory-reference instruction with I = 0 is encountered, it is not necessary to do 

anything since the effective address is already in AR. However, the sequence counter SC must  

be incremented when D7’T 3 = 1, so that the execution of the memory-reference instruction can 

be continued with timing variable T4 . A register-reference or input-output instruction can be 

executed with the clock associated with timing signal T3 . After the instruction is executed, SC is 

cleared to 0 and control returns to the fetch phase with T0 = 1. Note that the sequence counter 

SC is either incremented or cleared to 0 with every positive clock transition. We will adopt the 

convention that if SC is incremented, we will not write the statement SC  SC + 1, but it will be 

implied that the control goes to the next timing signal in sequence. When SC is to be cleared, we 

will include the statement SC  0. 

 
 Register-Reference Instructions 

Register-reference instructions are recognized by the control when D7 = 1 and I = 0. These 

instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions. These 

12 bits are available in IR(0-11). They were also transferred to AR during time T2. The control 

functions and micro operations for the register-reference instructions are listed in Table. These 

instructions are executed with the clock transition associated with timing variable T3. Each 

control function needs the Boolean relation D7I’T3, which we designate for convenience by the 

symbol r. The control function is distinguished by one of the bits in IR{ 0-11). By assigning the 

symbol B, to bit i of IR, all control functions can be simply denoted by rB. 
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For example, the instruction CLA has the hexadecimal code 7800, which gives the binary 

equivalent 0111 1000 0000 0000. The first bit is a zero and is equivalent to I’. The next three bits 

constitute the operation code and are recognized from decoder output D7. Bit 11 in IR is 1 and is 

recognized from Bn . The control function that initiates the micro operation for this instruction 

is D7I’T3B11 = rB11 . The execution of a register-reference instruction is completed at time T3. 

The sequence counter SC is cleared to 0 and the control goes back to fetch the next instruction 

with timing signal T0. The first seven register-reference instructions perform clear, 

complement, circular shift, and increment micro operations on the AC or E registers. The next 

four instructions cause a skip of the next instruction in sequence when a stated condition is 

satisfied. The skipping of the instruction is achieved by incrementing PC once again (in addition, 

it is being incremented during the fetch phase at time T1). The condition control statements 

must be recognized as part of the control conditions. The AC is positive when the sign bit in 

AC(15) = 0; it is negative when AC(15) = 1. The content of AC is zero {AC = 0) if all the flip-flops 

of the register are zero. The HLT instruction clears a start-stop flip-flop S and stops the 

sequence counter from counting. To restore the operation of the computer, the start-stop flip-

flop must be set manually. 

 
 Memory Reference Instructions 

In order to specify the micro operations needed for the execution of each instruction, it is 

necessary that the function that they are intended to perform be defined precisely. Table lists  

the seven memory-reference instructions. The decoded output D, for i = 0, 1, 2, 3, 4, 5, and 6 

from the operation decoder that belongs to each instruction is included in the table. The 

effective address of the instruction is in the address register AR and was placed there during 

timing signal T2 when I = 0, or during timing signal T3 when I = 1. The execution of the 

memory-reference instructions starts with timing signal T4. The symbolic description of each 

instruction is specified in the table in terms of register transfer notation. The actual execution of 

the instruction in the bus system will require a sequence of micro operations. This is because 

data stored in memory cannot be processed directly. The data must be read from memory to a 

register where they can be operated on with logic circuits. 
 

 
A flowchart showing all micro operations for the execution of the seven memory-reference 

instructions is shown in Fig. 5-11. The control functions are indicated on top of each box. The 
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micro operations that are performed during time T 4 , T 5 , or T 6 depend on the operation code 

value. This is indicated in the flowchart by six different paths, one of which the control takes 

after the instruction is decoded. The sequence counter SC is cleared to 0 with the last timing 

signal in each case. This causes a transfer of control to timing signal T0 to start the next 

instruction cycle. Note that we need only seven timing signals to execute the longest instruction 

(ISZ). The computer can be designed with a 3-bit sequence counter. 
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 Input-Output and Interrupt 

A computer can serve no useful purpose unless it communicates with the external environment. 

Instructions and data stored in memory must come from some input device. Computational 

results must be transmitted to the user through some output device. Commercial computers 

include many types of input and output devices. To demonstrate the most basic requirements 

for input and output communication, we will use as an illustration a terminal unit with a 

keyboard and printer. 

 
 Input-Output Configuration 

The terminal sends and receives serial information. Each quantity of information has eight bits 

of an alphanumeric code. The serial information from the keyboard is shifted into the input 

register INPR. The serial information for the printer is stored in the output register OUTR. 

These two registers communicate with a communication interface serially and with the AC in 

parallel. The input-output configuration is shown in Figure. 
 

 

The transmitter interface receives serial information from the keyboard and transmits it to 

INPR. The receiver interface receives information from OUTR and sends it to the printer 

serially. The input register INPR consists of eight bits and holds an alphanumeric input 

information. The 1-bit input flag FGI is a control flip-flop. The flag bit is set to 1 when new 

information is available in the input device and is cleared to 0 when the information is accepted 

by the computer. The flag is needed to synchronize the timing rate difference between the input 

device and the computer. The process of information transfer is as follows. Initially, the input 

flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanumeric code is 
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shifted into INPR and the input flag FGI is set to 1. As long as the flag is set, the information in 

INPR cannot be changed by striking another key. The computer checks the flag bit; if it is 1, the 

information from INPR is transferred in parallel into AC and FGI is cleared to 0. Once the flag is 

cleared, new information can be shifted into INPR by striking another key. The output register 

OUTR works similarly but the direction of information flow is reversed. Initially, the  output  

flag FGO is set to 1. The computer checks the flag bit; if it is 1, the information from AC is 

transferred in parallel to OUTR and FGO is cleared to 0. The output device accepts the coded 

information, prints the corresponding character, and when the operation is completed, it sets 

FGO to 1. The computer does not load a new character into OUTR when FGO is 0 because this 

condition indicates that the output device is in the process of printing the character. 

 
 Input-Output Instructions 

Input and output instructions are needed for transferring information to and from AC register, 

for checking the flag bits, and for controlling the interrupt facility. Input-output instructions 

have an operation code 1111 and are recognized by the control when D7 = 1 and I = 1. The  

remaining bits of the instruction specify the particular operation. The control functions and 

micro operations for the input-output instructions are listed in Table. These instructions are 

executed with the clock transition associated with timing signal T3. Each control function needs 

a Boolean relation D7IT3, which we designate for convenience by the symbol p. The control 

function is distinguished by one of the bits in IR(6-11). By assigning the symbol B, to bit i of IR, 

all control functions can be denoted by pBi for i = 6 though 11. The sequence counter SC is 

cleared to 0 when p = D7IT3 = 1. 
 

 
The INP instruction transfers the input information from INPR into the eight low-order bits of 

AC and also clears the input flag to 0. The OUT instruction transfers the eight least significant 

bits of AC into the output register OUTR and clears the output flag to 0. The next two 

instructions in Table check the status of the flags and cause a skip of the next instruction if the 

flag is 1. The instruction that is skipped will normally be a branch instruction to return and 

check the flag again. The branch instruction is not skipped if the flag is 0. If the flag is 1, the 

branch instruction is skipped and an input or output instruction is executed. The last two 

instructions set and clear an interrupt enable flip-flop IEN. The purpose of IEN is explained in 

conjunction with the interrupt operation. 
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 Program Interrupt 

The process of communication just described is referred to as programmed control transfer. The 

computer keeps checking the flag bit, and when it finds it set, it initiates an information transfer. 

The difference of information flow rate between the computer and that of the input-output 

device makes this type of transfer inefficient. This means that at the maximum rate, the 

computer will check the flag multiple times between each transfer. The computer is wasting  

time while checking the flag instead of doing some other useful processing task. An alternative 

to the programmed controlled procedure is to let the external device inform the computer when 

it is ready for the transfer. In the meantime the computer can be busy with other tasks. This type 

of transfer uses the interrupt facility. While the computer is running a program, it does not 

check the flags. However, when a flag is set, the computer is momentarily interrupted from 

proceeding with the current program and is informed of the fact that a flag has been set. The 

computer deviates momentarily from what it is doing to take care of the input or output  

transfer. It then returns to the current program to continue what it was doing before the 

interrupt. The interrupt enable flip-flop IEN can be set and cleared with two instructions. When 

IEN is cleared to 0 (with the IOF instruction), the flags cannot interrupt the computer. When 

IEN is set to 1 (with the ION instruction), the computer can be interrupted. These two 

instructions provide the programmer with the capability of making a decision as to whether or 

not to use the interrupt facility. 
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The way that the interrupt is handled by the computer can be explained by means of the 

flowchart of Figure. An interrupt flip-flop R is included in the computer. When R = 0, the 

computer goes through an instruction cycle. During the execute phase of the instruction cycle 

IEN is checked by the control. If it is 0, it indicates that the programmer does not want to use 

the interrupt, so control continues with the next instruction cycle. If IEN is 1, control checks the 

flag bits. If both flags are 0, it indicates that neither the input nor the output registers are ready 

for transfer of information. In this case, control continues with the next instruction cycle. If 

either flag is set to 1 while IEN = 1, flip-flop R is set to 1. At the end of the execute phase, control 

checks the value of R, and if it is equal to l,it goes to an interrupt cycle instead of an instruction 

cycle. 
 

 
The interrupt cycle is a hardware implementation of a branch and save return address 

operation. The return address available in PC is stored in a specific location where it can be 

found later when the program returns to the instruction at which it was interrupted. This 

location may be a processor register, a memory stack, or a specific memory location. Here we 

choose the memory location at address 0 as the place for storing the return address. Control 

then inserts address 1 into PC and clears IEN and R so that no more interruptions can occur 

until the interrupt request from the flag has been serviced. An example that shows what  

happens during the interrupt cycle is shown in Figure. Suppose that an interrupt occurs and R  

is set to 1 while the control is executing the instruction at address 255. At this time, the return 

address 256 is in PC. The  programmer has previously placed an input-output service program  

in memory starting from address 1120 and a BUN 1120 instruction at address 1. This is shown   

in Figure (a). When control reaches timing signal T 0 and finds that R = 1, it proceeds with the 

interrupt cycle. The content of PC (256) is stored in memory location 0, PC is set to 1, and R is 

cleared to 0. At the beginning of the next instruction cycle, the instruction that is read from 

memory is in address 1 since this is the content of PC. The branch instruction at address 1  

causes the program to transfer to the input-output service program at address 1120. This 

program checks the flags, determines which flag is set, and then transfers the required input or 
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output information. Once this is done, the instruction ION is executed to set IEN to 1 (to 

enable further interrupts), and the program returns to the location where it was interrupted. 

This is shown in Figure (b). The instruction that returns the computer to the original place in 

the main program is a branch indirect instruction with an address part of 0. This instruction is 

placed at the end of the I/O service program. After this instruction is read from memory 

during the fetch phase, control goes to the indirect phase (because I = 1) to read the effective 

address. The effective address is in location 0 and is the return address that was stored there 

during the previous interrupt cycle. The execution of the indirect BUN instruction results in 

placing into  PC the return address from location 0. 

 

MICRO-PROGRAMMED CONTROL  
 

Control Memory 

The function of the control unit in a digital computer is to initiate sequences of micro- 

operations. The number of different types of micro-operations that are available in a given 

system is finite. The complexity of the digital system is derived from the number of sequences 

of micro-operations that axe performed. When the control signals are generated by hardware 

using conventional logic design techniques, the control unit is said to be hardwired. Micro 

programming is a second alternative for designing the control unit of a digital computer. The 

principle of micro programming is an elegant and systematic method for controlling the 

micro-operation sequences in a digital computer. 

 
The control function that specifies a micro-operation is a binary variable. When it  is  in  one 

binary state, the corresponding micro-operation is executed. A control variable in the opposite 

binary state does not change the state of the registers in the system. The active state of a control 

variable may be either the 1 state or the 0 state, depending on the application. In  a  bus-  

organized system, the control signals that specify micro-operations are groups of bits that s elect 

the paths in multiplexers, decoders, and arithmetic lope units. The control unit initiates a series   

of sequential steps of micro-operations. During any given time,  certain micro-operations are to  

be initiated, while others remain idle. The control variables at any given time can be represented 

by a string of l's and 0's called a control word. As such, control words can be programmed to 

perform various operations on the components of the system. A control unit  whose  binary  

control variables are stored in memory is called a micro programmed control unit. Each word in 

control memory contains within it a microinstruction. The microinstruction specifies  one  or 

more micro-operations for the system. A sequence of microinstructions constitutes a micro 

program. Since alterations of the micro program are not needed once the control unit is in 

operation, the control memory can be a read-only memory (ROM). The content of the words in 

ROM are fixed and cannot be altered by simple programming since no writing capability is 

available in the ROM. ROM words are made permanent during the hardware production of the 

unit. The use of a micro program involves placing all control  variables in words of ROM for  use  

by the control unit through successive read operations. The content of the word in ROM  at a  

given address specifies a microinstruction. 

 
A more advanced development known as dynamic micro programming permits a micro 

program to be loaded initially from an auxiliary memory such as a magnetic disk. Control units 

that use dynamic micro programming employ a writable control memory. This type of 

memory can be used for writing (to change the micro program) but is used mostly for reading. 

A memory that is part of a control unit is referred to as a control memory. A computer that 

employs a micro programmed control unit will have two separate memories: a main memory 

and a control memory. The main memory is available to the user for storing the programs. The 
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contents of main memory may alter when the data are manipulated and every time that the 

program is changed. The user's program in main memory consists of machine instructions and 

data. In contrast, the control memory holds a fixed micro program that cannot be altered by 

the occasional user. The micro program consists of microinstructions that specify various 

internal control signals for execution of register micro-operations. Each machine instruction 

initiates a series of microinstructions in control memory. These microinstructions generate the 

micro- operations to fetch the instruction from main memory; to evaluate the effective address, to  

execute the operation specified by the instruction, and to return control to the fetch phase in  

order to repeat the cycle for the next instruction. The general configuration of a  micro 

programmed control unit is demonstrated in the block diagram of Figure. 
 

 
The control memory is assumed to be a ROM, within which all control information is  

permanently stored. The control memory address register specifies the address of the 

microinstruction, and the control data register holds the microinstruction read  from  memory. 

The microinstruction contains a control word  that  specifies one or  more micro-operations for  

the data processor. Once these operations are executed, the control must determine the next 

address. The location of the next microinstruction may be the one next in sequence, or it may be 

located somewhere else in the control memory. For this reason it is necessary to use some bits of 

the present microinstruction to control the generation of the address of the  next  

microinstruction. The next address may also be a function of  external input  conditions. While  

the micro-operations are being executed, the next address is computed in the next address 

generator circuit and then transferred into the control address register to read the next 

microinstruction. Thus a microinstruction contains bits for initiating micro-operations  in  the 

data processor part and bits that determine the address sequence for the control memory. 

 
The next address generator is sometimes called a micro program sequencer, as it determines the 

address sequence that is read from control memory. The address of  the next  microinstruction  

can be specified in several ways, depending on the sequencer inputs. Typical functions of a micro 

program sequencer are incrementing the control address register by one, loading into the control 

address register an address from control memory, transferring an external address, or loading an 

initial address to start the control operations. The control data register holds the present 

microinstruction while the next address is computed and read from memory. The data register is 

sometimes called a pipeline register. It allows the execution of the micro-operations specified by 

the control word simultaneously with the generation of the next microinstruction. This 

configuration requires a two-phase clock, with one  clock  applied  to  the  address register and the 

other to the data register. The system can operate without the control data register by applying a 

single-phase clock to the address register. The control word and next-address information are 

taken directly from the control memory. It must be  realized  that  a  ROM operates as a 

combinational circuit, with the address value as the input and the corresponding word as the 

output. The content of  the specified word in ROM remains in the  output wires as  long as its 

address value remains in the address register. No read signal is needed as in a random-access 

memory. Each clock pulse will execute the micro-operations specified by the control word and also 
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transfer a new address to the control address register. In the example that follows we assume a 

single-phase clock and therefore we do not use a control data register. In this way the address 

register is the only component in the control system that receives clock pulses. The other two 

components: the sequencer and the control memory are combinational circuits and do not need a 

clock. 

 
The main advantage of the micro programmed control is the fact that once the hardware 

configuration is established, there should be no need for further hardware or wiring changes. If  

we want to establish a different control sequence for the system, all we need to do is specify a 

different set of micro-instructions for control  memory. The  hardware configuration should  not 

be changed for different operations; the only thing that must be changed is the micro program 

residing in control memory. 

 
It should be mentioned that most computers based on the reduced instruction set computer 

(RISC) architecture concept use hardwired control rather than a control memory with a micro 

program. 

 
 Address Sequencing 

Microinstructions are stored in control memory in groups, with each group specifying a routine. 

Each computer instruction has its own micro program routine in control memory to generate the 

micro-operations that execute the instruction. The hardware that controls the  address  

sequencing of the control memory must be capable of sequencing the microinstructions within a 

routine and be able to branch from one routine to another. To  appreciate  the  address  

sequencing in a micro program control unit, let us enumerate the steps that the control must 

undergo during the execution of a single computer instruction. 

 
An initial address is loaded into the control address register when power is turned on in the 

computer. This address is usually the address of the first microinstruction that activates the 

instruction fetch routine. The fetch routine may be sequenced by incrementing the control  

address register through the rest of its microinstructions. At the end of the fetch routine, the 

instruction is in the instruction register of the computer. The control memory next must go 

through the routine that determines the effective address of the operand. A machine instruction 

may have bits that specify various addressing modes, such as indirect address  and  index 

registers. The effective address computation routine in control  memory can  be reached  through 

a branch microinstruction, which is conditioned on the status of the mode bits of the instruction. 

When the effective address computation routine is completed, the address of the operand is 

available in the memory address register. 

 
The next step is to generate the micro-operations that execute the instruction fetched from 

memory. The micro-operation steps to be generated in processor registers depend on the 

operation code part of the instruction. Each instruction has its  own  micro program  routine  

stored in a given location of control memory.  The transformation from the instruction code bits  

to an address in control memory where the routine is located is referred to  as  a  mapping  

process. A mapping procedure is a rule that transforms the instruction code into a control  

memory address. Once the required routine is reached, the microinstructions that execute the 

instruction may be sequenced by incrementing the control address register, but sometimes the 

sequence of micro-operations will depend on values of certain status bits in processor registers. 

Micro programs that employ subroutines will require an external register for storing the return 

address. Return addresses cannot be stored in ROM because the unit has no writing capability. 
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When the execution of  the instruction is completed, control must return to the fetch  routine.  

This is accomplished by executing an unconditional branch microinstruction to the first address  

of the fetch routine. In summary, the address sequencing capabilities required in a control 

memory are: 

1. Incrementing of the control address register. 

2. Unconditional branch or conditional branch, depending on status bit conditions. 

3. A mapping process from the bits of the instruction to an address for control memory. 

4. A facility for subroutine call and return. 

 
Figure shows a block diagram of a control memory and the associated hardware needed for 

selecting the next microinstruction address. The microinstruction in control memory contains a 

set of bits to initiate micro-operations in computer registers and other bits to specify the method 

by which the next address is obtained. 
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The diagram shows four different paths from which the control address register (CAR)  receives 

the address. The incrementer increments the content of the control address register by one, to 

select the next microinstruction in sequence. Branching is achieved by specifying the branch 

address in one of the fields of the microinstruction. Conditional branching is obtained by using 

part of the microinstruction to select a specific status bit in order to determine its condition. An 

external address is transferred into control memory via a mapping logic circuit. The return 

address for a subroutine is stored in a special register whose value is then used when the micro 

program wishes to return from the subroutine. 

 Design of Control Unit 

The bits of the microinstruction are usually divided into fields, with each  field  defining  a  

distinct, separate function. The various fields encountered in  instruction  formats  provide  

control bits to initiate micro-operations in the system, special bits to specify the way  that  the  

next address is to be evaluated, and an address field for branching. The number of control bits  

that initiate micro-operations can be reduced by grouping mutually exclusive variables into fields 

and encoding the k  bits in each field  to provide 2^k micro-operations. Each field  requires  a 

decoder to produce the corresponding control signals. This method reduces the size of the 

microinstruction bits but requires additional hardware external to the control memory. It also 

increases the delay time of the control signals because they must propagate  through  the  

decoding circuits.  The encoding of  control bits was demonstrated in the programming example  

of the preceding section. The nine bits of the micro-operation field are divided into  three  

subfields of three bits each. The control memory output of each subfield must be decoded to 

provide the distinct micro-operations. The outputs of the decoders are connected to the 

appropriate inputs in the processor unit. Figure shows the three decoders and some of the 

connections that must be made from their outputs. 
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Each of the three fields of the microinstruction presently available in the output of control 

memory are decoded with a 3x8 decoder to provide eight  outputs.  Each of these outputs must    

be connected to the proper circuit to initiate the corresponding micro-operation as specified in 

Table. For example, when F1 = 101 (binary 5), the next clock pulse transition  transfers  the 

content of DR(0-10) to AR (symbolized by DRTAR in Table). Similarly, when F1 = 110 (binary 6) 

there is a transfer from PC to AR (symbolized by PCTAR). As shown in Figure, outputs 5 and 6 of 

decoder F1 are connected to the load input of AR so that when either one of these outputs is 

active, information from the multiplexers is transferred to AR. The multiplexers select the 

information from DR when output 5 is active and from PC when output 5 is inactive. The 

transfer into AR occurs with a clock pulse transition only when output 5 or output 6 of the 

decoder are active. The other outputs of the decoders that initiate transfers between registers 

must be connected in a similar fashion. The arithmetic logic shift unit can be designed. Instead 

of using gates to generate the control signals, the inputs will now come from the outputs of the 

decoders associated with the symbols AND, ADD, and DRTAC, respectively, as shown in 

Figure. The other outputs of the decoders that are associated with an AC operation must also be 

connected to the arithmetic logic shift unit in a similar fashion. 

 
 Micro program Sequencer 

The basic components of a micro programmed control unit are the control memory and  the 

circuits that select the next address. The address selection part is called a micro program 

sequencer. A micro program sequencer can be constructed with digital functions to suit a 

particular application. However, just as there are large ROM units available in integrated circuit 

packages, so are general-purpose sequencers suited for the construction  of  micro program  

control units. To guarantee a wide range of acceptability, an integrated circuit sequencer must 

provide an internal organization that can be adapted to a wide range of  applications.  The  

purpose of a micro program sequencer is to present an address to the control memory so that a 

microinstruction may be read and executed. The next-address logic of the sequencer determines 

the specific address source to be loaded into the control address register. The choice of  the 

address source is guided by the next-address information bits that the sequencer receives from  

the present microinstruction. Commercial sequencers include within the  unit  an  internal  

register stack used for temporary storage of addresses during micro program looping and 

subroutine calls. Some sequencers provide an output register which can function as the address 

register for the control memory. 

 
The block diagram of the micro program sequencer is shown in Figure. The control memory is 

included in the diagram to show the interaction between the sequencer  and  the  memory 

attached to it. There are two multiplexers in the circuit. The first multiplexer selects an address 

from one of four sources and routes it into a control address register CAR. The  second  

multiplexer tests the value of a selected status bit and the result of the test is applied to an input 

logic circuit. The output from CAR provides the address for the control memory. The content of 

CAR is incremented and applied to one of the multiplexer inputs and to the subroutine register 

SBR. The other three inputs to multiplexer number 1 come from the address field of the present 

microinstruction, from the output of SBR, and from an external source that  maps  the  

instruction. Although the diagram shows a single subroutine register, a typical sequencer will  

have a register stack about four to eight levels deep. In this way, a number of subroutines can be 

active at the same time. A push and pop operation, in conjunction with a stack pointer, stores    

and retrieves the return address during the call and return  microinstructions. 
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  The  CD (condition) field of the microinstruction selects one of the status bits in the  second  

multiplexer.  If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal 

to 0. The T value together with the two bits from the BR (branch) field go to an  input  logic  

circuit.  The  input logic in a particular sequencer will determine the type of operations  that  are 

available in  the unit. 
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Typical sequencer operations are: increment, branch or jump, call and return from subroutine, 

load an external address, push or pop the stack, and other address sequencing operations. 

With three inputs, the sequencer can provide up to eight address sequencing operations. Some 

commercial sequencers have three or four inputs in addition to the T input and thus provide a 

wider range of operations. Note that the incrementer circuit in the sequencer of Figure is not a 

counter constructed with flip-flops but rather a combinational circuit constructed with gates. 

A combinational circuit incrementer can be designed by cascading a series of half-adder 

circuits.  The output carry from one stage must be applied to the input of the next stage. One 

input in the first least significant stage must be equal to 1 to provide the increment-by-one 

operation. 

 

 


