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Abstract. It is shown that each pseudonorm | · |H defined on a subgroup H of an
abelian group G can be extended to a pseudonorm | · |G on G such that the densities
of the pseudometrizable topological groups (H, | · |H) and (G, | · |G) coincide. We derive
from this that any Hausdorff ω-bounded group topology on H can be extended to a
Hausdorff ω-bounded group topology on G. In its turn this result implies that each
separable metrizable abelian group H is a subgroup of a separable metrizable divisible
group G. This result essentially relies on the Axiom of Choice and is not true under
the Axiom of Determinacy (which contradicts to the Axiom of Choice but implies the
Countable Axiom of Choice).

This paper was motivated by the following question having its origin in functional
analysis (see [PZ], [BRZ]): Is it true that every metrizable separable abelian topological
group with no torsion is a subgroup of a metrizable separable divisible abelian group with
no torsion?

From now on all groups considered in the paper are commutative. We recall that a
group G is divisible (resp. has no torsion) if for any element a ∈ G and a positive integer
n the equation nx = a has a solution x ∈ G (resp. does not have two distinct solutions
in G). According to the Baer Theorem [F, 21.1] each divisible group G is injective in
the sense that each homomorphism h : B → G defined on a subgroup B of a group A
can be extended to a homomorphism h̄ : A → G. A classical result of the theory of
infinite abelian groups [F, 24.1] asserts that each group (with no torsion) is a subgroup
of a divisible group (with no torsion). This result allows us to reduce the above question
to the following one: Can every separable group topology on a subgroup H of a group G
be extended to a separable group topology on G?

Note that without the separability requirement this problem is trivial: just announce
H to be an open subgroup of G and take the neighborhood base at the origin of H for a
neighborhood base at the origin in the group G. However if the quotient group G/H is
uncountable such an extension leads to an unseparable topology on G. So, another less
direct approach should be developed.

A classical result in the theory of topological groups asserts that each group topology
is generated by a family of continuous pseudonorms, see [Tk, §2]. This observation allows
us to reduce the problem of extending group topologies to the problem of extending
pseudonorms. As usual, under a (continuous) pseudonorm of a (topological) group G
we understand a (continuous) non-negative function | · | : G → [0,∞) such that |0| = 0
and |x − y| ≤ |x| + |y| for all x, y ∈ G. A pseudonorm | · | is a norm provided |x| = 0
implies x = 0. Each pseudonorm | · | on a group G generates a group topology on G
whose neighborhood base at the origin consists of the ε-balls B|·|(ε) = {x ∈ G : |x| < ε},
ε > 0. The group G endowed with this topology turns into a topological group denoted
by (G, | · |).
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Given a topological space X by d(X) we denote its density (that is the smallest size
of a dense subset of X), by w(X) its weight (that is the smallest size of a base of the
topology of X) and by χ(X) its character (i.e., a smallest cardinal τ such that any point
x ∈ X possesses a neighborhood base B of size |B| ≤ τ). It is known that d(X) = w(X)
for any (pseudo)metrizable topological space.

Now we are able to formulate the main result of this paper.

Theorem 1. Any pseudonorm | · |H defined on a subgroup H of an abelian group G can
be extended to a pseudonorm | · |G on G so that d(H, | · |H) = d(G, | · |G).

Because of its technical character we postpone the proof of this theorem till the end of
the paper. Now we consider some its corollaries.

According to [Tk, 4.1], w(G) = χ(G) · ib(G) for any topological group G where ib(G)
stands for the boundedness index of G, equal to the smallest cardinal τ such that for any
neighborhood U of the origin of G there is a subset F ⊂ G with G = F · U and |F | ≤ τ ,
see [Tk, §3]. Topological groups G with ib(G) ≤ ℵ0 are called ω-bounded, see [Gu] or
[Tk]. It is known that a metrizable topological group is ω-bounded if and only if it is
separable. Unlike to separable groups, the class of ω-bounded groups is closed under many
operations, in particular taking subgroups and Tychonov products, see [Tk] or [Gu].

Taking into account that |X| ≤ 2w(X) for any Hausdorff topological space X [En, 1.5.1]
and w(G) = χ(G)·ib(G) for any topological group G, we get |G| ≤ 2χ(G) for any Hausdorff
ω-bounded topological group G. This inequality can be rewritten as χ(G) ≥ log |G|, where
log κ = min{τ : k ≤ 2τ} for a cardinal κ.

Theorem 2. Any Hausdorff group topology τH defined on a subgroup H of an abelian
group G can be extended to a Hausdorff group topology τG on G so that ib(G, τG) =
ib(H, τH), χ(G, τG) = max{χ(H, τH), log |G|} and w(G, τG) = max{w(H, τH), log |G|}.

In an obvious way Theorem 2 implies

Corollary 1. Any separable metrizable topology defined on a subgroup H of an abelian
group G with |G| ≤ c can be extended to a separable metrizable topology on G.

Here c stands for the size of continuum. The next our corollary follows from Theorem 2
and Theorem 24.1 of [F] asserting that each abelian group H (with no torsion) is a
subgroup of a divisible group G (with no torsion) such that |G| = |H|.
Corollary 2. Any Hausdorff topological abelian group H (with no torsion) is a subgroup
of a Hausdorff abelian divisible group G (with no torsion) such that w(G) = w(H), χ(G) =
χ(H) and ib(G) = ib(H).

The following particular case of the above corollary gives a positive answer to the
question stated at the beginning of the paper.

Corollary 3. Each separable metrizable abelian group H (with no torsion) is a subgroup
of a separable metrizable divisible group G (having no torsion).

In fact, the construction of such a divisible group G ⊃ H hardly uses Axiom of Choice
(see Remark 1). As a result the group G has a complex descriptive structure. We shall
show that in general the group G is not analytic. Let us recall that a topological space is
analytic if it is a metrizable continuous image of a Polish space. As usual, under a Polish
space we understand a topological space homeomorphic to a separable complete metric
space. A topological group is Polish (analytic) if its underlying topological space is Polish
(analytic).

The well-known Open Mapping Principle for Banach spaces generalizes to topological
groups as follows: Any continuous group homomorphism from an analytic group onto a
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Polish group is open. The proof of this Open Mapping Principle follows from Theorem
9.10 [Ke] asserting that any homomorphism h : G → H from a Polish group G into a
ω-bounded group H is continuous provided h has the Baire Property and Theorem 29.5
of [Ke] asserting that analytic subspaces of Polish spaces have Baire Property. We remind
that a subset A of a topological space X has the Baire property if A contains a Gδ-subset
G of X such that A \ G is meager in X.

For a group H with no torsion and a positive integer n let nH = {ny : y ∈ H} ⊂ H
and 1

n
: nH → H be the map assigning to each element x ∈ nH a unique y ∈ H such

that ny = x.

Proposition 1. If a Polish group H is a subgroup of a divisible analytic group G with
no torsion, then for every positive integer n the map 1

n
: nH → H is continuous.

Proof. The subgroup H, being complete, is closed in G. Then the subgroup 1
n
H = {g ∈

G : ng ∈ H}, being the preimage of H under the continuous map n : G → G, n : x 7→ nx,
is a closed subset of G and thus is analytic. Since the group G is divisible and has no
torsion, the map n : 1

n
H → H, n : x → nx, is a bijective continuous group homomorphism

from the analytic group 1
n
H onto the Polish group H. Applying the Open Mapping

Principle for topological groups we conclude that this map is a topological isomorphism
and hence the map 1

n
: H → 1

n
H is continuous. Since nH ⊂ H, the map 1

n
: nH → H is

continuous too.

Finally we give an example of a Polish group without torsion admitting no embedding
into a divisible analytic group without torsion.

Example 1. There is a Polish group H without torsion such that the map 1
2

: 2H → H
is discontinuous. This group H cannot be a subgroup of a divisible analytic group with no
torsion.

Proof. For every k ∈ N let Hk be a copy of the group R of reals and let ek = 1 ∈ Hk. Endow

the group Hk with the norm |x|k =
√

(cos(πz) − 1)2 + sin2(πz) + (2−(k+1)x)2 (which is
generated by the usual Euclidean distance under a suitable winding of Hk = R around a
cylinder in R3). It is easy to verify that |ek|k > 2 while |2ek|k = 2−k.

On the direct sum ⊕k∈NHk consider the norm |(xk)k∈N| =
∑

i∈N |xk|k and let H be the
completion of ⊕k∈NHk with respect to this norm. Then H is a Polish group. We claim
that H has no torsion.

Consider the identity inclusion i : ⊕k∈NHk →
∏

k∈N Hk from the direct sum into the
direct product endowed with the Tychonov topology. Observe that this direct product is
a complete group. To show that the group H has no torsion, it suffices to verify that the
extension ī : H →

∏
k∈N Hk of the homomorphism i onto the completion H is injective.

It will be convenient to think of elements of the groups ⊕k∈NHk and
∏

k∈N Hk as func-
tions f : N →

⋃
k∈N Hk.

Assuming that the homomorphism ī is not injective, we could find an element f∞ ∈ H
such that f∞ 6= 0 but ī(f∞) = 0. Fix any ε > 0 with ε < |f∞|. Choose a sequence
(fn)n∈N ∈ ⊕k∈NHk converging to f∞ in H. We can assume that |fn| > ε for every n ∈ N.
By the continuity of the map ī, we conclude that the sequence {i(fn)}n∈N converges to
zero in

∏
k∈N Hk (this means that the function sequence (fn) is pointwise convergent to

zero). Since the sequence (fn) is Cauchy in H, there is m ∈ N such that |fm − fj| < ε
2

for any j ≥ m. Without loss of generality, we can assume that fm(k) = 0 for all k > m.
Since for every k limj→∞ fj(k) = 0, we can find j > m so large that |fj(k)|k < ε

2m

for all k ≤ m. Then |fm − fj| =
∑∞

k=1 |fm(k) − fj(k)|k ≥
∑m

k=1 |fm(k) − fj(k)|k ≥
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∑m
k=1 |fm(k)|k −

∑m
k=1 |fj(k)|k ≥ |fm| −

∑m
k=1

ε
2m

> ε − ε
2

= ε
2
, which contradicts to

|fm − fj| < ε
2
.

Therefore, the homomorphism ī is injective and the group H has no torsion. Since
|ek| = |ek|k > 2 and |2ek| = |2ek|k = 2−k for all k, we see that the sequence (2ek)
converges to zero in H while (ek) does not. This means that the map 1

2
: 2H → H is

discontinuous.

.

Remark 1. Corollary 3 can not be proven without the full Axiom of Choice and is not
true under the Axiom of Determinacy. This axiom contradicts the Axiom of Choice but
implies its weaker form, the Countable Axiom of Choice, see [JW, §9.2 and §9.3]. It is
known that under the Axiom of Determinacy, any subset of a Polish space has the Baire
Property, see [Ke, 8.35]. This fact and Theorem 9.10 of [Ke] implies that under Axiom
of Determinacy the Open Mapping Principle for topological groups holds in the following
more strong form: any continuous homomorphism h : H → G from a ω-bounded group H
onto a Polish group G is open. Using this stronger form of the Open Mapping Principle
and repeating the proof of Proposition 1 we see that under the Axiom of Determinacy
this proposition holds without the analycity assumption on the group G. Thus we come
to a rather unexpected conclusion: Under the Axiom of Determinacy the group H from
Example 1 cannot be embedded into a metrizable separable divisible group with no torsion,
in spite of the fact that algebraically, H is a subgroup of the countable product Rω of lines.
This shows that Corollary 3 is not true under the Axiom of Determinacy.

1. Proof of Theorem 1

In the proof of Theorem 1 we shall need one combinatorial lemma. A collection A of
subsets of a set X is called k-uniform where k ∈ N if |A| = k for each A ∈ A; A is disjoint
if it consists of pairwise disjoint sets.

Lemma 1. Suppose k ∈ N and A, B are two disjoint k-uniform finite collections of
subsets of an infinite set X. Then there is a subset I ⊂ X such that |I ∩ C| = 1 for each
C ∈ A ∪ B.

Proof. It is easy to construct k-uniform disjoint finite collections C, D of subsets of X
such that A ⊂ C, B ⊂ D, |C| = |D|, and ∪C = ∪D. Let n = |C| = |D| and write
C = {C1, . . . , Cn}, D = {D1, . . . , Dn}. Consider the matrix [aij]

n
i,j=1 where aij = 1

k
|Ci∩Dj|

and observe that it is double stochastic, that is
∑n

i=1 aij = 1 =
∑n

j=1 aij for all i, j ∈
{1, . . . , n}. According to the Birkhoff Theorem (see [Bi], [Ga, p.556], or [A, 8.40]) each
double stochastic matrix is a convex combination of permutating matrices, that is matrices
of the form [δi,σ(j)]

n
i,j=1 where σ is a permutation of the set {1, . . . , n} and [δij]

n
i,j=1 is the

identity matrix. This result implies the existence of a permutation σ of the set {1, . . . , n}
such that ai,σ(i) > 0 for all i. This means that the intersection Ci ∩ Dσ(i) is not empty
and thus contains some point xi. Let I = {x1, . . . , xn} and observe that |C ∩ I| = 1 for
any element C ∈ C ∪ D ⊃ A∪ B.

Theorem 1 will be proved by induction whose inductive step is based of the following

Lemma 2. Let H be a subgroup of a group G such that pG ⊂ H for some prime number
p. Then any pseudonorm | · |H on H can be extended to a pseudonorm | · |G on G so that
d(G, | · |G) = d(H, | · |H).

Proof. The quotient group G/H has prime exponent p and thus has a basis which can
be written as {gα + H : α < µ} for some ordinal µ, see [F, 16.4]. It will be convenient
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to complete this basis by zero letting gµ = 0. It follows that any element of G can be
represented in the form x = u +

∑
i∈ω gαi where u ∈ H and the set {i ∈ ω : αi 6= µ} is

finite. For any element x ∈ G let Rep(x) = {(u, (αi)i∈ω) ∈ H× [0, µ]ω : x = u+
∑

i∈ω gαi}.
Observe that for any x ∈ H and (u, (αi)i∈ω) ∈ Rep(x) the number p divides the cardinality
of the set {i ∈ ω : αi = α} for each ordinal α < µ.

Let | · |H be a pseudonorm on H. Define a function ρ : G × G → [0,∞) letting

ρ(x, y) = inf{|u − v|H +
∑

i∈ω

|pgαi − pgβi|H : (u, (αi)i∈ω) ∈ Rep(x), (v, (βi)i∈ω) ∈ Rep(y)}

for x, y ∈ G.
It is easy to see that ρ is an invariant pseudometric on G. Let us show that d(G, ρ) ≤

d(H, | · |H). Let D be a dense subset of (H, | · |H) with |D| = d(H, | · |H) and I ⊂ [0, µ] be
a subset of size |I| ≤ d(H, | · |H) such that I 3 µ and the set {pgα : α ∈ I} is dense in the
subspace {pgα : α < µ} of (H, | · |H). Then the set E = {x ∈ G : Rep(x) ∩ (D × Iω) 6= ∅}
is a dense subset of (G, ρ) with |E| ≤ d(H, | · |H). This proves the inequality d(G, ρ) ≤
d(H, | · |H).

It remains to show that ρ(x, y) = |x−y|H for any x, y ∈ H. Fix arbitrary (u, (αi)i∈ω) ∈
Rep(x), (v, (βi)i∈ω) ∈ Rep(y). For every α < µ let A(α) = {i ∈ ω : αi = α} and
B(α) = {i ∈ ω : βi = α}. Since x, y ∈ H, the number p divides the cardinalities of the
sets A(α), B(α) for all ordinals α < µ. Applying Lemma 1, find a subset I ⊂ ω such that
|C ∩ I| = 1

p
|C| for every nonempty subset C ∈ {A(α), B(α) : α < µ}. Then

x = u +
∑

i∈ω gαi = u +
∑

α<µ

|A(α)| · gα = u +
∑

α<µ

p|I ∩ A(α)| gα =

= u +
∑

α<µ

∑

i∈I∩A(α)

pgαi = u +
∑

i∈I

pgαi.

By analogy, y = v +
∑

i∈I pgβi. Consequently,

|u − v|H+
∑

i∈ω |pgαi − pgβi|H ≥ |u − v|H +
∑

i∈I |pgαi − pgβi|H ≥
≥ |(u +

∑
i∈I pgαi) − (v +

∑
i∈I pgβi)|H = |x − y|H

Passing to the infimum, we get ρ(x, y) ≥ |x − y|H. The proof of the inverse inequality is
straightforward, hence ρ(x, y) = |x − y|H. Letting |x|G = ρ(x, 0) for x ∈ G we define a
pseudonorm on G extending the pseudonorm | · |H so that d(G, | · |G) = d(H, | · |H).

Lemma 3. Let H be a subgroup of a group G such that the quotient group G/H is peri-
odic. Then any pseudonorm | · |H on H can be extended to a pseudonorm | · |G on G so
that d(G, | · |G) = d(H, | · |H).

Proof. Let (pi)
∞
i=1 be a sequence of prime numbers such that for every prime number p the

set {i ∈ N : pi = p} is infinite. Let H0 = H and for i ≥ 0 let Hi+1 = 1
pi+1

Hi = {x ∈ G :

pi+1x ∈ Hi}. Because of the periodicity of the quotient group G/H we get G =
⋃∞

i=1 Hi.
Let | · |H be any pseudonorm on H and D0 be a dense subset of the topological group

(H, | · |H) with |D0| = d(H, | · |H). Let | · |0 = | · |H . Using the previous lemma, by induction
for every i ≥ 1 find a pseudonorm | · |i on the group Hi and a dense subset Di of the
topological group (Hi, | · |i) such that |x|i = |x|i−1 for each x ∈ Hi−1 and |Di| = |Di−1|.

Completing the inductive construction, define a pseudonorm | · |G on the group G
letting |x|G = |x|i where x ∈ Hi. It is clear that | · |G extends | · |H and D =

⋃∞
i=1 Di is

a dense set in the topological group (G, | · |G) with |D| = |D0| = d(H, | · |H). This yields
d(G, | · |G) ≤ d(H, | · |H).
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Finally we are able to complete the

Proof of Theorem 1. Let H be a subgroup of a group G and | · |H be a pseudonorm on
H. According to [F, 24.1] the group H is a subgroup of a divisible group E. Moreover,
according to Lemma 24.3 [F] we can assume that the quotient group E/H is periodic.
Applying the previous lemma, extend the pseudonorm | · |H to a pseudonorm | · |E on E so
that d(E, | · |E) = d(H, | · |H). According to Baer Theorem [F, 21.1], each divisible group is
injective. Consequently, there is a group homomorphism h : G → E extending the identity
map H → H ⊂ E. Define a pseudonorm | · |G on G letting |x|G = |h(x)|E for x ∈ G and
observe that | · |G extend | · |H and d(H, | · |H) ≤ d(G, | · |G) ≤ d(E, | · |E) = d(H, | · |H).

2. Proof of Theorem 2

Let H be a subgroup of a group G and τH be a Hausdorff group topology on H.
First we define a Hausdorff group topology τG/H on the quotient group G/H such that

ib(G/H, τG/H) ≤ ω and χ(G/H, τG/H) ≤ log |G/H|. By [F, 24.1] G/H is a subgroup of
a divisible group E with |E| = |G/H|. Applying Theorem 23.1 [F] (on the structure of
divisible groups), we can show that the group E is isomorphic to a subgroup of the power
Tκ of the circle T = R/Z where κ = log |G/H| ≤ log |G|. Observe that Tκ endowed with
the natural Tychonov product topology is a compact topological group with ib(Tκ) = ω
and χ(Tκ) = κ ≤ log |G|.

Consequently, the group G/H, being isomorphic to a subgroup of Tκ, carries a Hausdorff
group topology τG/H such that ib(G/H, τG/H) ≤ ω and χ(G/H, τG/H) ≤ κ ≤ log |G|.

Fix a neighborhood base B of size |B| = χ(H, τH) at the origin of the topological group
(H, τH). Applying [Tk, 2.3], for every U ∈ B fix a continuous pseudonorm | · |U on H
such that {x ∈ H : |x|U < 1} ⊂ U . By Theorem 1, the pseudonorm | · |U can be extended
to a pseudonorm ‖ · ‖U on G such that d(G, ‖ · ‖U) = d(H, | · |U). The continuity of the
identity map (H, τH) → (H, | · |U) implies that ib(H, | · |H) ≤ ib(H, τH), see [Tk, 3.2]. Since
the density and the boundedness index coincide for (pseudo)metrizable topological groups
[Tk, §3], we conclude that ib(G, ‖·‖U) = d(G, ‖·‖U) = d(H, |·|U) = ib(H, |·|U) ≤ ib(H, τH).

Let τG be the smallest topology on G making continuous the quotient homomorphism
(G, τG) → (G/H, τG/H) and the identity map (G, τ) → (G, ‖ · ‖U) for all U ∈ B. It is
easy to see that τG is a Hausdorff group topology on G inducing the topology τH on the
subgroup H.

Observe that the topological group (G, τG) can be identified with a subgroup of the
product G/H ×

∏
U∈B(G, ‖ · ‖U) of topological groups whose boundedness indices do

not exceed ib(H, τH) and characters do not exceed log |G|. According to [Tk, 3.2], the
boundedness index of such a product does dot exceed ib(H, τH) while its character does not
exceed χ(G/H) · |B| ≤ log |G| ·χ(H, τH). Consequently, ib(G, τG) ≤ ib(H, τH), χ(G, τG) ≤
χ(H, τH) · log |G|, and w(G, τG) = χ(G, τG) · ib(G, τG) ≤ log |G| · χ(H, τH) · ib(H, τH) =
w(H, τH) · log |G|.
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