1. Suppose the set of atomic propositions is $\{p_1, p_2\}$. Consider the following transition system -

(Notation: For each state, the atoms written inside the curly braces next to the corresponding state are the atoms that are true at that state. For example, p_1 is true at the top left state (initial state), whereas p_2 is true at the bottom right state, and so on.)

Which of the following LTL formulas does this transition system satisfy?

- (a) Fp_2
- (b) $G(p_1 \vee p_2)$
- (c) $(p_1Up_2) \vee G(\neg p_2)$
- (d) $(p_1 \wedge p_2) \rightarrow X p_2$
- (e) $G((p_1 \wedge p_2) \rightarrow Xp_2)$
- 2. Suppose p, q, r are three propositional atoms.
 - (a) Are the two formulas $((p \ U \ q) \ U \ r)$ and $(p \ U \ (q \ U \ r))$ equivalent? That is, whichever (infinite) word satisfies the first formula would satisfy the second and vice versa?
 - (b) Is $(p \ U \ (q \lor r))$ equivalent to $((p \ U \ q) \lor (p \ U \ r))$?
 - (c) Is $((q \lor r) U p)$ equivalent to $((q U p) \lor (r U p))$?
- 3. Suppose the set of atomic propositions is $\{p_1, p_2\}$. Consider the following NBA -

Show that the language of the above NBA is exactly the set of words satisfying the LTL formula $F(\neg p_1) \wedge XGp_1$.

- 4. Draw the NBA corresponding to LTL formulas $p_1 U(\neg p_2), (\neg p_1) U p_2$.
- 5. Let ϕ, ψ and χ be LTL formulas. We say two formulas are *equivalent*, written as $\phi \equiv \psi$ if they define the same language. For each of the following, prove or disprove the equivalences:
 - (a) $\boldsymbol{G}(\phi \wedge \psi) \equiv (\boldsymbol{G}\phi) \wedge (\boldsymbol{G}\psi)$
 - (b) $GFG\phi \equiv FGF\phi$
 - (c) $\mathbf{X}(\phi \mathbf{U}\psi) \equiv (\mathbf{X}\phi)\mathbf{U}(\mathbf{X}\psi)$
 - (d) $(\phi U\psi)U\chi \equiv \phi U(\psi U\chi)$