Skip to main content Accessibility help
×
  • Cited by 1
Publisher:
Cambridge University Press
Online publication date:
January 2022
Print publication year:
2022
Online ISBN:
9781108981828
Subjects:
Logic, Philosophy

Book description

Set theory is a branch of mathematics with a special subject matter, the infinite, but also a general framework for all modern mathematics, whose notions figure in every branch, pure and applied. This Element will offer a concise introduction, treating the origins of the subject, the basic notion of set, the axioms of set theory and immediate consequences, the set-theoretic reconstruction of mathematics, and the theory of the infinite, touching also on selected topics from higher set theory, controversial axioms and undecided questions, and philosophical issues raised by technical developments.

References

Asperó, D. & Schindler, R. (2021). Martin’s Maximum++ Implies Woodin’s Axiom (*), Annals of Mathematic 193, 793835.
Barwise, J. (ed.) (1977). Handbook of Mathematical Logic, Amsterdam: North Holland.
Benacerraf, P. (1965). What Numbers Could Not Be, Philosophical Review 74, 4773. Reprinted in Benacerraf, P. & Putnam, H. (eds.) (1983). Philosophy of Mathematics: Selected Readings, 2nd ed., Englewood Cliffs: Prentice Hall (pp. 272–94).
Benacerraf, P. & Putnam, H. (eds.) (1983). Philosophy of Mathematics: Selected Readings, 2nd ed., Englewood Cliffs: Prentice Hall.
Blackwell, D. (1967). Infinite Games and Analytic Sets, Proceedings of the National Academy of Sciences 58, 1836–7.
Blumenthal, L. M. (1940). A Paradox, a Paradox, a Most Ingenious Paradox, American Mathematical Monthly 47, 346–53.
Boole, G. (1854). An Investigation of the Laws of Thought, London: Macmillan.
Boolos, G. S. (1971). The Iterative Conception of Set, Journal of Philosophy 68, 215–31. Reprinted in Benacerraf, P. & Putnam, H. (eds.) (1983). Philosophy of Mathematics: Selected Readings, 2nd ed., Englewood Cliffs: Prentice Hall (pp. 486–502).
Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2002). Computability and Logic, 5th ed., Cambridge: Cambridge University Press.
Bourbaki, N. [collective pseud.] (1939). Théorie d’Ensembles: Fascicule de Résultats [Set Theory: Booklet of Results], Paris: Hermann.
Burgess, J. P. (1977). Forcing. In Barwise, J. (ed.) (1977). Handbook of Mathematical Logic, Amsterdam: North Holland (pp. 403–52).
Cantor, G. (1915). Contributions to the Founding of the Theory of Transfinite Numbers, tr. Jourdain, P. E. B., Chicago: Open Court.
Cohen, P. J. (1966). Set Theory and the Continuum Hypothesis, New York: W. A. Benjamin.
Davis, M. (1964). Infinite Games of Perfect Information, Annals of Mathematical Studies 52, Princeton: Princeton University Press.
Dedekind, R. (1901). Essays on the Theory of Numbers, tr. Beman, W. W., Chicago: Open Court.
Devlin, K. (1977). Constructibility. In Barwise, J. (ed.) (1977). Handbook of Mathematical Logic, Amsterdam: North Holland (pp. 453–90).
Erdös, P. & Tarski, A. (1961). On Some Problems Involving Inaccessible Cardinals,
Feferman, S., Dawson, J., & Kleene, S. (eds.) (1990). Kurt Gödel: Collected Works II, Oxford: Oxford University Press.
Fraenkel, A. (1922/1967). The Notion of “Definite” and the Independence of the Axiom of Choice, tr. Woodward, B. In van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press. (pp. 284–9).
Frege, G. (1879/1967). Begriffsschrift: A Formula Language Modeled on That of Arithmetic, for Pure Thought, tr. Bauer-Mengelberg, S. In van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press (pp. 1–82).
Frege, G. (1893). Grundgesetze der Arithmetik I [Basic Laws of Arithmetic I], Jena: Hermann Pohle.
Friedman, H. (1971). Higher Set Theory and Mathematical Practice, Annals of Mathematical Logic 2, 325–57.
Gillman, L. (2002). Two Classical Surprises Concerning the Axiom of Choice and the Continuum Hypothesis, American Mathematical Monthly 109, 544–53.
Gödel, K. (1940). The Consistency of the Continuum Hypothesis, Annals of Mathematical Studies 3, Princeton: Princeton University Press.
Gödel, K. (1946/1965). Remarks before the Princeton Bicentennial Conference on Problems in Mathematics. In Davis, M. (ed.) (1965). The Undecidable; Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Hewlett: Raven Press (pp. 84–8). Reprinted in Feferman, S., Dawson, J., & Kleene, S. (eds.) (1990). Kurt Gödel: Collected Works II, Oxford: Oxford University Press (pp. 150–3).
Gödel, K. (1947). What Is Cantor’s Continuum Problem? American Mathematical Monthly 9, 515–25. Reprinted with modifications in Benacerraf, P. & Putnam, H. (eds.) (1983). Philosophy of Mathematics: Selected Readings, 2nd ed., Englewood Cliffs: Prentice Hall (pp. 470–85), and in both original and modified versions in Feferman, S., Dawson, J., & Kleene, S. (eds.) (1990). Kurt Gödel: Collected Works II, Oxford: Oxford University Press (pp. 154–84).
Halmos, P. (1960). Naive Set Theory, Princeton: Van Nostrand.
Hamilton, W. R. (1853). Lectures on Quaternions, Dublin: Hodges & Smith.
Hardy, G. H. (1914). A Course of Pure Mathematics, 2nd ed., Cambridge: Cambridge University Press.
Hartogs, F. (1915). Über das Problem der Wohlordnung [On the Problem of Wellordering], Mathematische Annalen 36, 438–43.
Holmes, R. (2014). Alternative Axiomatic Set Theories, Stanford Encyclopedia of Philosophy, plato.stanford.edu/archives/fall2014/entries/settheory-alternative/.
Hrbacek, K. & Jech, T. (1999). Introduction to Set Theory: Revised and Expanded, 3rd ed., New York: Marcel Dekker.
Incurvati, L. (2020). Conceptions of Sets and Foundations of Mathematics, Cambridge: Cambridge University Press.
Kanamori, A. (2003). The Higher Infinite, Large Cardinals in Set Theory from Their Beginnings, Berlin, Springer.
Kanamori, A. (2010) (ed.). Introduction. In Foreman, M. & Kanamori, A. (eds.). Handbook of Set Theory I, Berlin: Springer (pp. 192).
Koellner, P. (2009). On Reflection Principles, Annals of Pure and Applied Logic 157, 206–19.
Kunen, K. (1970). Some Applications of Iterated Ultrapowers in Set Theory, Annals of Mathematical Logic 1, 179227.
Kunen, K. (1977). Combinatorics. In Barwise, J. (ed.) (1977). Handbook of Mathematical Logic, Amsterdam: North Holland (pp. 371402).
Kuratowski, K. (1966). Topologys, Warsaw: Polish Scientific Publishers.
Landau, E. (1930). Foundations of Analysis: The Arithmetic of Whole, Rational, Irrational, and Complex Numbers, tr. Steinhardt, F., Providence: Chelsea.
Lebesgue, H. (1902). Intégrale, Longueur, Aire [Integral, Length, Area], Milan: Bernardoni & Rebeschini.
Levy, A. (1960). Axiom Schemata of Strong Infinity in Axiomatic Set Theory, Pacific Journal of Mathematics 10, 223–38.
Maddy, P. (2011). Defending the Axioms, Oxford: Oxford University Press.
Maddy, P. (2017). Set-Theoretic Foundations. In Caicedo, A. E. (ed.). Foundations of Mathematics: Essays in Honor of W. Hugh Woodin’s 60th Birthday, Providence: American Mathematical Society (pp. 289322).
Martin, D. A. (2020) Determinacy of Infinitely Long Games (preprint). www.math.ucla.edu/~dam/booketc/thebook.pdf.
Martin, D. A. & Solovay, R. (1970). Internal Cohen Extensions, Annals of Mathematical Logic 2, 143–78.
Martin, D. A. & Steel, J. R. (1989). A Proof of Projective Determinacy, Journal of the American Mathematical Society 2, 71125.
Mathias, A. R. D. (1992). What Is Mac Lane Missing? In Judah, H., Just, W., & Woodin, H. Set Theory and the Continuum, Mathematical Sciences Research Institute Publications 26, Berlin: Springer.
Moschovakis, Y. (2009) Descriptive Set Theory, 2nd ed., Providence: American Mathematical Society.
Poincaré, H. (1905/1983). On the Nature of Mathematical Reasoning, tr. W. J. G. [initials only indicated], in Benacerraf, P. & Putnam, H. (eds.) (1983). Philosophy of Mathematics: Selected Readings, 2nd ed., Englewood Cliffs: Prentice Hall (pp. 377–93).
Putnam, H. (1980). Models and Reality. Journal of Symbolic Logic 45, 464–82. Reprinted in Benacerraf, P. & Putnam. H. (eds.) Philosophy of Mathematics: Selected Readings, 2nd ed., Englewood Cliffs: Prentice Hall (1983) (pp. 421–46).
Ramsey, F. P. (1925) The Foundations of Mathematics, Proceedings of the London Mathematical Society 25, 338–84.
Ramsey, F. P. (1930) On a Problem of Formal Logic, Proceedings of the London Mathematical Society 30, 264–86.
Rubin, H. & Rubin, J. E. (1970). Equivalents of the Axiom of Choice II, Amsterdam: North Holland.
Rudin, M. E. (1977). Martin’s Axiom. In Barwise, J. (ed.) (1977). Handbook of Mathematical Logic, Amsterdam: North Holland (pp. 491502).
Russell, B. (1902). Letter to Frege. In van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press (pp. 124–5).
Russell, B. (1908). Mathematical Logic as Based on the Theory of Types, American Journal of Mathematics 30, 222–62. Reprinted in van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press (pp. 153–82).
Scott, D. (1961). Measurable Cardinals and Constructible Sets. Bulletin de l’Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques 9, 521–4.
Sierpinski, W. (1956). L’Hypothèse du Continu [The Continuum Hypothesis], Providence: Chelsea.
Sierpinski, W. (1958). Cardinal and Ordinal Numbers, Warsaw: Polish Scientific Publishers.
Skolem, T. (1922/1967). Some Remarks on Axiomatic Set Theory, tr. Bauer-Mengelberg, S. In van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press (pp. 290301).
Tarski, A. & Vaught, R. L. (1956) Arithmetical Extensions of Relational Systems, Compositio Mathematica 13, 81102.
van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press.
Vitali, G. (1905). Sulla Problema della Mesura dei Gruppi di Punti di una Retta [On the Problem of the Measure of Sets of Points on a Line], Bologna: Gamberini & Parmeggiani.
von Neumann, J. (1923/1967). On the Introduction of Transfinite Numbers, tr. Bauer-Mengelberg, S. In van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press (pp. 346–54).
Wachover, N. (2021). How Many Numbers Exist? Infinite Proof Moves Math Closer to an Answer, Quanta Magazine. www.quantamagazine.org/how-many-numbers-exist-infinity-proof-moves-math-closer-to-an-answer-20210715/.
Whitehead, A. N. & Russell, B. (1910). Principia Mathematical I, Cambridge: Cambridge University Press.
Zermelo, E. (1908/1967). Investigations in the Foundations of Set Theory I, tr. Bauer-Mengelberg, S. In van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press (pp. 199–215).
Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre [On Boundary-Numbers and Set-Domains: New Investigations in the Foundations of Set Theory], Fundamenta Mathematicae 16, 2947.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.