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Orthogonal Transformations 
in Triangulation Adjustment* 
The Gram-Schmidt process allows the reduction of very large 
systems of equation.s to smaller systems through the 
repeated application of partitioning a vector space into a 
subspace and its orthogonal complement. 

1 T 11.t~ n w Y  skiid in  t h e  p i s t  that ;ieriaI tria11g11- 
l~i t ion is simply a p r o l ~ l e m  of matrix inver- 

sion. T o  lje more optimistic, i t  can 11e said that 
aerial triangulation is a p r o l ~ l e m  of solving a 
large linear system of equations. 

T h e  classical method of solr~t ion of such a 
linear system, which usually has a rectangu- 
lar coefficient matrix of' order  11 x 11 where  
I L >  1)  is I)asecl o n : l )  t h e  fbr~nat ion of a set of 
normal eclt~ations \vhich have a square coeffi- 
c ient  matrix of orcler / I  x 1 ) ;  a n d  (2) the  sollr- 
tion of slrcll 11or111:il equations Ily a direct or 
iterative method. 

An alternate approiich for this least-sqt~ares  
~)rol j lem is t h e  soltrtion via orthogonal trans- 

OHSEH\%TIOS EQI'ATIONS I N  THE SILIULTANE~US 
AI)II.,ST\IEST OF BUNDLES 

T h e  mathematical   nod el for t h e  simul- 
t a n e o r ~ s  acljustment of I ~ u n d l e s  i n  aer ial  
triangulation can I)e derived from t h e  projec- 
tive relat ionsl~ips be tween  t h e  photograph 
a n d  t h e  terrain. (See  Schmid, 1959). I t  can b e  
r e d u c e d  eventua l ly  to  a l inear  statistical 
~noclel fbr t h e  form: 

Y = ? I ; @ + e  (1) 
E(e)  = 0 ( 2 )  
D(e)  = $1 ( 3 )  

where  Y = 11 x 1 r a ~ ~ d o m  vector derived from 
t h e  oljservations, i.c., t h e  measured x- a n d  
!/-plate coordinates; P = 11 x 1 vector of un- 

AHSTH.~CT. T11e rirrrtlericcrl .solrrtior~ of /)oirlt e.c.tirntrtor.c. crs tL;ell crs inter- 
~i(11 e.~tir)lcrtor.'i ccf:fect.s t l ~ e  l ) ro l~ le r~ t  0.f treritrl tricrr~grrltitior~ ticljrr.~trtler~t 
uiri ortllogonr~l trcrrtsfor-t~lcrtior~s. Two r ~ ~ e t l l o d s  ([re ])I-eserlted tllrrt 
[rcoitl tlle.fot-r,trrtiort 0.f rlorrt~crl eclritrtior~.v. The first r~tetllocl 111crke.v rise 
of tllc GI-trrll-Scllr~litlt orthortor-tiltrliztitio~l I1roces.s. The  s c c o r ~ d  
rtr~'t110d titi / izt ' ,~ the Ho~rselrolder- or-tllogor~trl t r -c ir l .~for-r t~t i t ior l . s .  PI-oh- 
1ert1.s tire I-epor-tetl t l~ ( i t  trr-o~e drrrirlg i r ~ ~ ~ ) l e r , ~ e r l t n t i o r ~  0.f tlle .sirtlrrlterrle- 
ozr.r. cirfiri.st~tlent 0.f l)trr~tlle,s rr.c.irlg Householt!er trein.s.forrr~citions, to- 
gether- 1c;itll their  solritiorls. 

fi)rmations. This  is 1)usetl on the  direct man- 
ipulation of t h e  columns of t h e  original rec- 
t a n g u l a r  l i n e a r  s y s t e m ,  w h i c h  is  r rs t~al ly 
k ~ l o w ~ l  as the  observittion ecluation. T h e  so111- 
tion via orthogonal t ransforrnat io~~s avoids 
the  in te r~nedia te  s tep of tbrnling t h e  normitl 
eqnations which may Ije ill-conditioned, ant1 
hence  it is theoretically more staljle. 

* Presented at the Annual Convention of' the 
American Society of Photogrammetry in Washinz- 
ton, D.C., March 1873. 

known paranleters, st1c11 as the  spatial coor- 
dinates of pass points and the  positions a n d  
a t t i t ~ ~ d e s  ;)fthe camera during exposures (es- 
timates, p, filr p are be ing  sought in t h e  ad- 
jus tment  ~ ~ r o l ) l e m ) ;  X = a known 11 x /) 
coeff'icient matrix; e = n x 1 unol~servab le  
random vector, which is a f i~nct ion of t h e  
~ l l e i i s u r e ~ n e l ~ t  errors (an est imate 6 for e is 
sor~ght  in  t h e  acljr~stment); E ( e )  dtxnotes the  
expectation of the  r a n d o ~ n  vector e, usually 
assunled equal  to the  11 x 1 zero vector0; D(e) 
d e ~ l o t e s  t h e  disl)ersion matrix of t h e  random 
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vectore; o is the standard error of the observa- 
tions, For details of such reduction, see Yassa 
& McNair (1973). 

To get an idea about the structure of the 
coefficient matrix, consider a small block of 
2 x 3 photographs, as shown in Figure 1. As- 
sume that four error-free complete ground 
control points are available at the corners of 
the block. Assume further that no auxiliary 
data are observed. Then there are six un- 
known elements of exterior orientation for 
each of the six photographs and three un- 
known spatial coordinates for each of the 11 
pass points. Hence, the number of unknowns 
p in the adjustment of the block would be: 

p = 6 ~ 6 + 3 ~ 1 1 = 6 9 .  
As for the number of equations n in the ad- 
justment problem, two observation equations 
can be formed for each measured point on a 
photograph, one for the x-coordinate and the 
other for the y-coordinate measurement. As 
there are six measured points for each end 
photo in the strip and nine points for each 
intermediate photo, the number of observa- 
tion equations n would be: 

n = 2 x 2(6 + 9  + 6) = 84. 
Hence, the coefficient matrix is ofthe order of 
84 x 69. However, the coefficient matrix is a 
highfy sparse matrix characterized by a high 
degree of orthogonality between its columns. 
This orthogonality is due to the fact that, prior 
to the adjustment, there is no correlation be- 
tween: (a) the orientation elements of differ- 
ent photographs in the block; (b) the ground 
coordinates of different pass points in the 
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FIG 1. A sub-block of 2 by 3 photographs. Princi- 
pal points are indicated with plus symbols, pass 
points by round dots, and a triangle with anx inside 
indicates a complete ground control point (or two 
separate horizontal and vertical points). 

block; and (c) a photograph and the pass 
points that are not measured on it. Some cor- 
relation is, however, introduced by the ad- 
justment. For a schematic representation of 
the structure of the coefficient matrix for this 
sub-block, see Figure 2. 

CLASSICAL. LEAST SQUARES SOLUTION 
VIA NORMAL EQUATIONS 

The classical method of solution for the 
unknown parameters may be briefly sum- 
marized as follows: 

1. Form the norm31 equations: 
xlxp = XIY 

where X' denotes the transpose of the coeffi- 
cient matrix, p denotes the least squares es- 
timates for the unknown parameters p. It is to 
be noted that the resulting coefficient matrix 
of the normal equations X'X, is a positive- 
definite symmetric matrix. 

2. Solve the linear System 4 by a direct or 
iterative ~ n ~ t h o d ,  to obtain the least squares 
estimates /3 for the unknown parameters. 

3. Find estimates for the observation er- 
rors e: 

& = Y  - X B .  (5) 
4. Find an estimate for the variance of the 

observation errors: 
G2 = EIBl(n-p) (6) 

where 6' denotes the transpose of the com- 
puted vector of residuals d. 

5. The Covariance matrix of the unknown 
parameter: p, is given by: 

D(p) = w"('X)-l, (7) 
i.e., it is obtained by the inversion of the 
coefficient matrix of the normal Equations 4. 

The p-columns of the coefficient matrix X, 
viewed as vectors in Rn span a vector space of 
R" denoted by V. As these column vectors are 
linearly independent in the problem of bun- 
dle adjustment, they form an arbitrary basis 
for V. The dimension of V is p. 

An orthonormal basis Ufp) = ul, U Z ,  . . . U P )  
for the vector space V may b e  o b tained by the 
Gram-Schmidt orthonormalization process 
which is a recursive p-step procedure as fol- 
lows: 

1. Normalize the first column vector ul in X 
to obtain the orthonormal set {ul) which con- 
sists of one vector u ,  t Rn: 

ul = u,/ J 1% 1 1 (8) 
where I 10, I I is the Euclidean norm of vector 
o,: If the elements of vector 0, are u l l ,  
021, . . . on,, then 

1 101 1 I = ( ~ 1 1 ~  + 0212 + . . . + v1112)1/2 (9) 
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u ,  E R" denotes that the vector u belongs to the 
vector space R". 

2. For each step k: k = 2, 3 , .  . . p, a s su~ne  
there is an  orthonormal basis U(k-1) = { u l ,  
u,, . . . u k - I }  for the first k - 1 columns in  the 
coefficient matrix. The orthonormal basis Uck) = 
{u , ,  u,, . . . u k )  is the union of U(k-1) and uk 
where uk is computed from the k-th column 
vector ck as follows: 

where <vk, u,> denotes the scalar product of 
the vectors nk and u, .  

The transition matrix from the arbitrary 
basis X = {u l ,  fi2, . . . 0,') to the orthonormal 

basis Q = { u l ,  u g  . . . u, , )  is an upper triangu- 
lar matrix R, of full rank p, thus: 

Q = XR ( 12) 

where X and Q are both n x p matrices, 
whereas R is a p x p matrix. As R is of full 
rank, it is invertible, and 

X = QR-1. (13) 

Substituting From 13 into 4, then the point 
esti~nators that are classically obtained from 
the solution of the normal Equations 4, may 
be  directly obta i r l~d from: 

P = RQ'Y 
(14) 

and the intermediate step of forming normal 
Equations 4 is eliminated. 

Thus for the sin~ultaneous adjustment of 

FIG. 2. Diagram of the coefficient matrix of observation equations for a 
six-photo aerial triangulation. The near-square areas on the right indi- 
cate arrays of 2 x 3 non-zero entries, areas on the left (twice as large) 
are arrays of2 x 6 non-zeroentries. 
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bundles by this method, storage space is 
needed for: 

(a) the random n x 1 vector Y, 
(b) the upper triangular matrix R, which is 

also a sparse matrix, and 
(c) the n x p orthogonal matrix Q. The 

storage of Q in the main memory of an elec- 
tronic digital computer would impose a se- 
vere limitation on the size of blocks that can 
be adjusted all at once in the main memory. 
The adjustment of very large blocks could, 
however, be made by partitioning the vector 
space into orthogonal subspaces using aux- 
iliary storage devices. See Yassa (1974). 

The random vector of residuals, b is simply 
the component ofY which is orthogonal to all 
the vectors of the orthonormal basis U p ) .  

Thus B is computed from: 

i.e., b can be computed even before the com- 
putation of the unknown parameters p. 

The point estimate 6 2  may be computed 
from: 

&2 = 6' b/(n-p). 
Applying the law of expectation to Equa; 

tion 14, one may verify that the estimates P 
are unbiased. 

The covariance matrix of may be also 
derived from Equation 14: 

= R Q'  D(Y) (RQ')' 
= R Q'  $1 Q R1(because D(Y)=D(e)=u21) 
= u 2 R Q ' Q  R' 
= u2 R R' (because Q is orthonormal). (16) 

Thus, the accuracy of the estimates B derived 
by Gram-Schmidt orthonormalization proc- 
ess, can be evaluated without any tedious 
matrix inversion as in the classical method. 

Let Q be an n x n orthogonal matrix chosen 
such that: 

where R is an n x p matrix-with zero entries 
below the main diagonal, R is a p x p upper 
triangular matrix, and 0 is a(n - p) x p matrix 
with zero entries. Apply the orthogonal trans- 
formation Q to both sides of the observation 
Equations 1, and set: 

C = QY (18) 

a = Qe. 

Then the observational equations reduce to: 
C = R P + v  (20) 

where E(rl) = QE(e) = 0 (21) 

and 
D ( d  = QD(e)Q1 

= u2QQ' 
= u21 (because Q is orthogonal) 

(22) 

and the normal equations reduce to: 
R ' R ~  = R'C (23) 

Let then x 1 column vectorC be partitioned: 

where c is a p x 1 vector and c is a(n-p) x 1 
vector. Then the normal Equations 23 can be 
written in the form 

The first p-equations of Equation 25 are: 

If the rank of the coefficient matrix X is p, it 
can be shown that R has also a rank p and, 
hence, it is invertible. Multiply both sides of 
Equation 26 by (R1)-1: 

where C is a p x 1 vector representing the 
first p-elements of the transformed vector 
QY. This is an upper triangular system, which 
can be readily solved for P in a backyard 
scheme, i.e., the unknown parameter p,, is 
computed first, is computed next, andp, 
is computed last. Thus by applying the or- 
thogonal transformation Q, the intermediate 
step of forming the normal equations is 
eliminated. 

An unbiased estimate for u2 is obtained 
from 

which can be reduced to the form 
6 2  = C ' C / ( ~ - ~ )  (29) 

where C is an (n - p )  x 1 vector representing 
the last (n-p) elements of the transformed 
vector QY. 

It is worth noting that: 

and R'R = (QX)' (QX) = X'Q' QX 
= X'IX = X'X 

and hence X'X = R'R 

i.e., R'R is simply the Choleski decomposi- 
tion of the coefficient matrix of the normal 
equations, X'X. 
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The covariance matrix of the estimates 
may be obtained from Equations 7 and 30: 
~(i) = m2 ( R ' R ) - ~ .  (31) 

To realize the triangular decomposition, 
Golub (1965) advocated the use of House- 
holder orthogonal transformations. Golub's 
algorithm is a recursive p-step procedure de- 
fined by: 

XC', = X (32) 

X(k+l) = Q(k) X(k) (k=1,2, . . . p). (33) 

In order to get an upper triangular matrix 
X ( p + l ) ,  every orthogonal matrix Q(k); (k=l ,  
2, . . . p) should transform all elements of the 
k-th column ofX(k) below the main diagonal to 
zero. This is satisfied by putting: 

Q(k) = I - ak U(k) U(k)' (34) 

where 
a k  = ~ / [ a k ( a ~  + x::))] 

( + for 3 o 
ak = f ( 2 (x::))~) Y2 with 

i=k I - for x:;)c 0. 

I is an n x n unit matrix,  is an n x 1 vector 
defined by: 

fori < k  

for i > k. (37) 

The matrices Q(k) need not be computed exp- 
licitly because from Equations 33 and 34: 

Thus the vector Uck) and the  scalar a h  

contain all information about the orthogonal 
transformation Q(k) at step k. They may be 
saved for the transformation of the vector Y 
and for later use with iterative i ~ n -  
provements. Additional space is need- 
ed for only the diagonal elements Z I ~ ~ J  

and for the scalars a k ;  k = 1,2,  . . . , p. In the 
method presented by Golub the elements of 
Uk) below the diagonal element ukik) and the 
upper triangular matrix R are packed in the 
same space originally occupied by the coeffi- 
cient matrix X. 

Golub's scheme for the least-squares solution 
in  conjunction with a compact storage 
scheme known as linked memory allocation. 
In this coinpact scheme, space is reserved for 
only the non-zero entries of the coefficient 
matrix without paying undue attention to 
their locations. Each non-zero entry of the 
matrix is defined by five parameters: value, 
row, column, address of succeeding non-zero 
entry in the row, and address of succeeding 
non-zero entry in the column. 

It was necessary, however, to make a mod- 
ification in Golub's scheme to economize on 
storage requirements. The vectors U(k) which 
are used to apply the orthogonal transforma- 
tion at step k are not saved beyond that step. 
So these vectors are no longer available to 
transform the random vector Y. For the-corn- 
putation of the unknown parameters p, the 
equation: 

R'R P = X'Y (39) 

is used instead of Equation 27. This resulted 
in some additional arithmetic operations to 
form the column vector X'Y, but it relieved 
the memory of a substantial storage space. 

Another storage problem arose during im- 
plementing Golub's scheme in conjunction 
with sparse matrices. Many non-zero entries 
were created during the intermediate steps of 
matrix decomposition. This outbalanced the 
expected benefits from the use of linked 
memory allocation as a compact storage 
scheme and imposed a severe limitation on 
the size ofblocks that could be handled in the 
main memory. Further studies, however, 
showed that a proper preordering of the un- 
known parameters can substantially reduce 
the number of these newly created entries. A 
block of aerial photographs is partitioned into 
subblocks or strips with a minimum correla- 
tion between them. The unknown paramet- 
ers, such as camera orientation elements and 
pass point coordinates, corresponding to 
each subblock are treated as one subset of 
unknown parameters. These subsets are then 
ordered to correspond to the sequence of the 
subblocks or strips within the block. 

For example, the subblock shown in Fig- 
ure 1 may be partitioned into 2 strips and the 
ordered set of unknown parameters is the 
union of 2 subsets of unknowns. The first 
subset consists of the orientation elements of 
photographs 1, 2, 3 and the coordinates of 
pass points 12, 21, 22, 23, 31, 32, 33. (The 
numbering of pass points is such that the first 
digit gives the row position and the second 
digit gives the column position.) The second 
subset of unknowns consists of the orienta- 

A computer program was developed for the tion elements of photographs 4, 5, 6 and the 
simultaneous adjustment of bundles using coordinates of pass points 41,42,43,52. The 
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correlation be tween  t h e  2 strips is  d u e  to  t h e  Ea lum for t h e  h e l p  given for t h e  implementa-  
fact that t h e  pass points 31, 32, 33 are com- tion a n d  testing of t h e  computer  program. H e  
mon. I t  is clear now that  t h e  ordering of un- was hiillself a s tudent  a t  Cornel l  a t  the  t ime 
knowns given i n  Figure 2 is n o t t h e  ideal  one.  this study was first undertaken.  

C~NCLUSIONS 
T h e  fo l lowing  conc lus ions  h a v e  b e e n  

made  fro111 this investigation: 
The nse of orthogonal transforlnations in the 
numerical solution of least squares is quite suit- 
able for the problem of aerial triangulation ad- 
justnlent. Preliminary sttidies indicate that the 
method of orthogonal transforlnations is nuiner- 
ically inore stable than other direct methods of 
solutions. Further tests with larger blocks are 
necessary to verify the indication. 
The storage requirements of Householder 
transformations are inore favorable than those 
of Grain-Schmidt process. Larger blocks could 
be simultaneously adjusted within the main 
memory of an electronic digital computer if 
Householder transforlnations are applied. The 
use of the compact storage scheme known as 
linked rnemorcy allocation proved to be useful 
in this respect. 
For very large blocks which cannot be handled 
all at once in the main memory, the use of aux- 
iliary storage devices, which are rather slow in 
the read and write operations, would be inevit- 
able. The Grain-Schmidt process would be 
inore suitable in this instance. It would allow 
the reduction ofvery large systems ofequations 
to smaller systems through the repeated appli- 
cation of the principle of partitioning a vector 
space into a subspace and its orthogonal com- 
plement. 
The Grain-Schmidt process offers the possibil- 
ity of estimating the accuracy of the unknown 
parameters and computation oftheir covariance 
matrix without any matrix inversion as is usu- 
ally done in the classical least squares via nor- 
mal equations. 
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