Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

The Dynamics of Chemical Equilibrium

Reactants \rightleftarrows Products
$\rightleftarrows \quad=$ symbol for equilibrium
Rate $_{\text {forward }}=$ Rate $_{\text {reverse }}$
Equil. far to the right
(product favored) \longleftrightarrow (product favored)

Equil. far to the left (reactant favored)

Example:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

Reversibility:
If the rxn is interrupted by changing the T, conc. Reactants/products, then the rxn can be forced in the reverse direction

Le Chatelier's Principle

Reaction Rate vs. Time

Kinetics of a Reversible Reaction

$$
\underset{\text { (brown) }}{2 \mathrm{NO}_{2}(\mathrm{~g})} \quad \rightleftarrows \underset{\text { (colorless) }}{\stackrel{\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})}{ }}
$$

From experiments it's known that the forward reaction rate is second order:

$$
\text { rate }_{\text {forward }}=\mathrm{k}_{\mathrm{f}}\left[\mathrm{NO}_{2}\right]^{2}
$$

And the reverse rate is first order:

$$
\text { rate }_{\text {reverse }}=\mathrm{k}_{\mathrm{r}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]
$$

At equilibrium that rates are equal:

$$
\mathrm{k}_{\mathrm{f}}\left[\mathrm{NO}_{2}\right]^{2}=\mathrm{k}_{\mathrm{r}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]
$$

which can be rearranged to:

$$
\frac{k_{f}}{k_{r}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}} \quad \begin{aligned}
& \text { and } \\
& \text { finally }
\end{aligned}
$$

$K_{\text {eq }}=\frac{k_{f}}{k_{r}}$
$\mathrm{K}_{\text {eq }}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
"Equilibrium constant"

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Writing Equilibrium Constant Expressions

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \quad \rightleftarrows \quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Consider 4 experiments with different starting concentrations in a sealed container which are then allowed to reach equilibrium:

TABLE 14.1 Initial and Equilibrium Concentrations of the Reactants and Products in the Water-Gas Shift Reaction $\left[\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)\right]$ at 500 K								
Experiment	INITIAL CONCENTRATION (M)				EQUILIBRIUM CONCENTRATION (M)			
	$\left[\mathrm{H}_{2} \mathrm{O}\right]$	[CO]	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{CO}_{2}\right]$	[$\mathrm{H}_{2} \mathrm{O}$]	[CO]	[H_{2}]	$\left[\mathrm{CO}_{2}\right]$
1	0.0200	0.0200	0	0	0.0034	0.0034	0.0166	0.0166
2	0	0	0.0200	0.0200	0.0034	0.0034	0.0166	0.0166
3	0.0100	0.0200	0.0300	0.0400	0.0046	0.0146	0.0354	0.0454
4	0.0200	0.0100	0.0200	0.0100	0.0118	0.0018	0.0282	0.0182

The Law of Mass Action

Experiments 1 and $2 \quad \frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}=\frac{(0.0166)(0.0166)}{(0.0034)(0.0034)}=24$
Experiment 3
$\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}=\frac{(0.0354)(0.0454)}{(0.0046)(0.0146)}=24$
Experiment 4

$$
\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}=\frac{(0.0282)(0.0182)}{(0.0118)(0.0018)}=24
$$

$$
K=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=24
$$

Generically for any reaction -

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D} \\
K_{\mathrm{c}}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{d}[\mathrm{~B}]^{b}} \quad K_{\mathrm{p}}=\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{\mathrm{D}}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
{[\mathrm{X}]=\text { concentration in }} \\
\begin{array}{c}
\mathrm{P}_{\mathrm{x}}=\text { partial pressures } \\
\text { Molarity }
\end{array} \text { remember Dalton's Law) }
\end{gathered}
$$

Equilibrium constants are unitless (even though there could be different powers on each concentration)

sample exercise 14.1 Writing Equilibrium Constant Expressions

A key reaction in the formation of acid rain involves the reversible combination of SO_{2} and O_{2} in the atmosphere, producing SO_{3} :

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)
$$

Write the K_{c} and K_{p} expressions for this reaction.

Table 14.2 contains data from four experiments on the dimerization of NO_{2} :

$$
2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

The experiments were run at $100^{\circ} \mathrm{C}$ in a rigid, closed container. Use the data from each experiment to calculate a value of the equilibrium constant K_{c} for the dimerization

TABLE 14.2 Data for the Reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at $100^{\circ} \mathrm{C}$				
Experiment	INITIAL CONCENTRATION (M)		EQUILIBRIUM CONCENTRATION (M)	
	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	[NO_{2}]	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
1	0.0200	0.0000	0.0172	0.00139
2	0.0300	0.0000	0.0244	0.00280
3	0.0400	0.0000	0.0310	0.00452
4	0.0000	0.0200	0.0310	0.00452

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}
$$

Experiment 1: $\quad \frac{0.00139}{(0.0172)^{2}}=4.70$
Experiment 2: $\frac{0.00280}{(0.0244)^{2}}=4.70$
Experiment 3: $\frac{0.00452}{(0.0310)^{2}}=4.70$
Experiment 4: $\frac{0.00452}{(0.0310)^{2}}=4.70$

A sealed chamber contains an equilibrium mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ at $300^{\circ} \mathrm{C}$ and partial pressures $P_{\mathrm{NO}_{2}}=0.101 \mathrm{~atm}$ and $P_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.074 \mathrm{~atm}$. What is the value of K_{p} for the following reaction under these conditions?

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Relationships Between K_{c} and K_{p} Values

- As will be shown a little later in the chapter, \boldsymbol{K}_{c} does not necessarily equal K_{p} when the number of moles of gaseous reactants isn't equal to the number of moles of gaseous products
- The mathematical relationship between K_{c} and K_{p} can be determined by starting with the Ideal Gas Law:
$\left.\begin{array}{l}P V=n R T \\ P=\frac{n}{V} R T \\ P=M R T\end{array}\right\}$

Back to the example -

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

$2 \mathrm{NO}_{2}(\mathrm{~g})$
 $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

$$
\begin{aligned}
& P_{\mathrm{N}_{2} \mathrm{O}_{4}}=\frac{n_{\mathrm{N}_{2} \mathrm{O}_{4}}}{V} R T=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] R T \quad P_{\mathrm{NO}_{2}}=\frac{n_{\mathrm{NO}_{2}}}{V} R T=\left[\mathrm{NO}_{2}\right] R T \\
& K_{\mathrm{p}}=\frac{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}{\left(P_{\left.\mathrm{NO}_{2}\right)^{2}}\right.}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] R T}{\left(\left[\mathrm{NO}_{2}\right] R T\right)^{2}} \\
& =\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] R T}{\left[\mathrm{NO}_{2}\right]^{2}(R T)^{z}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}(R T)}=K_{\mathrm{c}} \frac{1}{R T} \\
& \quad K_{\mathrm{p}}=K_{\mathrm{c}} \frac{1}{R T}=K_{c}(R T)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D} \quad \text { All in the gas phase } \\
& \Delta \mathrm{n}=\Sigma \text { moles products }-\Sigma \text { moles reactants } \\
& \begin{aligned}
\Delta \mathrm{n}=[\mathrm{c}+\mathrm{d}]-[\mathrm{a}+\mathrm{b}]
\end{aligned} \\
& \begin{aligned}
K_{\mathrm{p}}=\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{\mathrm{D}}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} & =\frac{([C] R T)^{c}([D] R T)^{d}}{([A] R T)^{a}([B] R T)^{b}} \\
& =\frac{[C]^{c}(R T)^{c}[D]^{d}(R T)^{d}}{[A]^{a}(R T)^{a}[B]^{b}(R T)^{b}} \\
& =\frac{{\left.[]^{c}\right]^{c}[D]^{d}}_{[A]^{a}[B]^{b}} x \frac{(R T)^{c}(R T)^{d}}{(R T)^{a}(R T)^{b}}}{} \\
& =\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} x \frac{(R T)^{c+d}}{(R T)^{a+b}} \\
& =\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} x(R T)^{[c+d]-[a+b]} \\
& =K c(R T)^{\Delta n}
\end{aligned}
\end{aligned}
$$

$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$

Returning to the previous statement that \boldsymbol{K}_{c} does not necessarily equal $\boldsymbol{K}_{\boldsymbol{p}}$ when the number of moles of gaseous reactants isn't equal to the number of moles of gaseous products -

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) \quad \Delta \mathrm{n}=2-2=0 \\
\text { so } \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}
\end{gathered}
$$

$$
\begin{array}{ll}
\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+3 \mathrm{H}_{2}(g) & \Delta \mathrm{n}=4-2=2 \\
& K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{2}
\end{array}
$$

In Sample Exercise 14.3 we calculated the value of $K_{\mathrm{p}}(7.3)$ for the dimerization of NO_{2} to $\mathrm{N}_{2} \mathrm{O}_{4}$ at $300^{\circ} \mathrm{C}$. What is the value of K_{c} for this reaction at $300^{\circ} \mathrm{C}$?

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Manipulating Equilibrium Constant Expressions

For this hypothetical reaction, let $\mathrm{K}_{\mathrm{c}}=100$

$$
A+B \rightleftharpoons 2 C \quad K_{C}=\frac{[C]^{2}}{[A][B]}=100
$$

What is K_{c} for the reverse reaction?

$$
2 \mathrm{C} \rightleftharpoons \mathrm{~A}+\mathrm{B} \quad \mathrm{~K}_{\mathrm{c}, \text { reverse }}=?
$$

What is K_{c} for the rxn if the stoichiometric coefficients are mult/div by a number, e.g. divide by 2 ?

$$
C \rightleftharpoons 1 / 2 A+1 / 2 B \quad K_{\mathrm{c}, 1 / 2}=?
$$

K for Reverse Reactions

(1) $\mathrm{K}_{\text {reverse }}=1 / \mathrm{K}_{\text {forward }}$

$$
\begin{aligned}
\mathrm{A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C} & \mathrm{~K}_{\mathrm{C}}=\frac{[\mathrm{C}]^{2}}{[\mathrm{~A}][\mathrm{B}]}=100 \\
2 \mathrm{C} \rightleftharpoons \mathrm{~A}+\mathrm{B} & \mathrm{~K}_{\mathrm{C}, \mathrm{rev}}=\frac{[\mathrm{A}][\mathrm{B}]}{\mathrm{[C]}^{2}}=\frac{1}{\mathrm{~K}_{\mathrm{C}}} \\
& =\frac{1}{100}=0.0100
\end{aligned}
$$

K for an Equation Multiplied/Divided by a Number

(2) $\mathrm{K}_{\text {new }}=\left(\mathrm{K}_{\mathrm{c}}\right)^{\mathrm{n}} \quad \begin{aligned} & \text { where } \mathrm{n}=1,2,3 \text { when multiplying } \\ & \text { and } 1 / 2,1 / 3,1 / 4 \text { etc when dividing }\end{aligned}$

$$
A+B \rightleftharpoons 2 C \quad K_{C}=\frac{[C]^{2}}{[A][B]}=100
$$

$1 / 2 \mathrm{~A}+1 / 2 \mathrm{~B} \rightleftharpoons \mathrm{C} \quad \mathrm{K}_{\mathrm{c}, 1 / 2}=\frac{[\mathrm{C}]}{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 2}}=\sqrt{K_{c}}$

$$
\mathrm{K}_{\mathrm{c}, 1 / 2}=\frac{[\mathrm{C}]}{[\mathrm{A}]^{1 / 2}[\mathrm{~B}]^{1 / 2}}=\sqrt{100}=10
$$

$2 A+2 B \rightleftharpoons 4 C \quad K_{\text {new }}=\frac{[C]^{4}}{[A]^{2}[B]^{2}}=\left(K_{c}\right)^{2}=(100)^{2}=10^{4}$

Combining K values

(3) $\mathrm{K}_{\text {new }}=\mathrm{K}_{1} \times \mathrm{K}_{2} \times \mathrm{K}_{3}$ etc
(1) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$

(2) $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$
$\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$

$K_{3}=K_{1} \times K_{2}=\frac{\left[\mathrm{NO}^{-2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]} \times \frac{\left[\mathrm{NO}_{2}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}}$

sAMPLE EXERCISE 14.5 Calculatina the K Values

We learned in Chapter 13 that a key reaction in the formation of photochemical smog is the one between NO and atmospheric O_{2} that forms NO_{2} :
(1) $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$

The K_{p} value of this reaction is 2.4×10^{12} at $25^{\circ} \mathrm{C}$.
a. What is the K_{p} value of the decomposition of $\mathrm{NO}_{2}(\mathrm{~g})$?
(2) $2 \mathrm{NO}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
b. What is the K_{p} value of the reaction in which NO and O_{2} combine to form only one mole of NO_{2} ?

$$
\begin{equation*}
\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{NO}_{2}(g) \tag{3}
\end{equation*}
$$

SAMPLE EXERCISE 14.6 Calculating Overall K Values
 L05 of Combined Reactions

At 1000 K , the K_{c} values of these reactions are as follows:
(1)

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad K_{\mathrm{c}}=1.5 \times 10^{6}
$$

(2)

$$
\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad K_{\mathrm{c}}=1.4 \times 10^{-10}
$$

What is the K_{c} value at 1000 K of the reaction?

$$
\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g)
$$

COLLECT AND ORGANIZE We are given two reactions and their K_{c} values. We need to combine the two reactions in such a way that N_{2} and O_{2} are on the reactant side of the overall equation and $\mathrm{N}_{2} \mathrm{O}_{4}$ is on the product side and then calculate the $K_{\text {c }}$ value of the overall reaction.

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Equilibrium Constants and Reaction Quotients

The Law of Mass Action:

$\mathrm{K}_{\text {eq }}=\frac{[\text { products }]^{m}}{[\text { reactants }]^{n}}$ where m and n represent the stoichiometric coefficients.
Even if the initial concentrations of the reactants and products are different from experiment to experiment, once the system reestablishes equilibrium, the value of $\mathrm{K}_{\text {eq }}$ remains the same.

Reaction Quotient (Q):

Has the same general form as $\mathrm{K}_{\text {eq }}$, but the concentrations are not the equilibrium concentrations, but some starting, or initial, amount.
$Q=\frac{[\text { products }]_{0}^{m}}{[\text { reactants }]_{0}^{n}}$ where the subscript 'o' refers to initial
Just like K, there is a \mathbf{Q}_{c} and a $\mathbf{Q}_{\mathbf{p}}$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=24 \text { at } 500 \mathrm{~K}
$$

From Experiment 3 in Table 14.1, the initial concentrations of reactants and products are (note that I have added the 'o' sign):

$\left[\mathrm{H}_{2} \mathbf{O}\right]_{0}(\mathbf{M})$	$[\mathrm{CO}]_{0}(M)$	$\left[\mathrm{H}_{2}\right]_{0}(M)$	$\left[\mathrm{CO}_{2}\right]_{0}(M)$
0.0100	0.0200	0.0300	0.0400

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}=\frac{(0.0300)(0.0400)}{(0.0100)(0.0200)}=6.00
$$

- Since Q_{c} is less than $K_{c}=24$, that means that there are more reactants and fewer products than there are at equilibrium.
- So the reaction will shift towards products until $\boldsymbol{Q}_{c}=K_{c}$

Rate Laws and Equilibrium

What is the underlying cause of the shifting of the reaction towards equilibrium? You're book doesn't explicitly state that it's kinetics and rate laws.

$$
\begin{aligned}
\text { reactants } & \rightleftarrows \text { products } \\
\text { rate }_{\mathrm{f}} & =\text { rate }_{\mathrm{r}} \\
\mathrm{k}_{\mathrm{f}}[\text { reactants }]^{m} & =\mathrm{k}_{\mathrm{r}}\left[\text { products }^{\mathrm{n}}\right.
\end{aligned}
$$

- In our reaction, $\mathrm{Q}_{\mathrm{c}}=6$ and $\mathrm{K}_{\mathrm{c}}=24$
- So the concentration of reactants is too high, and the concentration of products is too low
- Since there are more reactants present than at equil., the forward rate increases
- so the reaction shifts towards the right, generating more products until the system reestablishes equilibrium

Summary

sample exercise 14.7 Using Q and K Values to Predict LO6 the Direction of a Reaction

At 2300 K the value of K of the following reaction is 1.5×10^{-3} :

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)
$$

At the instant when a reaction vessel at 2300 K contains $0.50 \mathrm{M}_{2}, 0.25 \mathrm{M} \mathrm{O}_{2}$, and 0.0042 M NO , is the reaction mixture at equilibrium? If not, in which direction will the reaction proceed to reach equilibrium?

$$
\begin{aligned}
& Q=\frac{[\mathrm{NO}]_{0}^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]_{0}} \quad Q=\frac{(0.0042)^{2}}{(0.50)(0.25)}=1.4 \times 10^{-4} \\
& \mathrm{~K}=1.5 \times 10^{-3}
\end{aligned}
$$

Since $K>Q$, the reaction will shift to the right to produce more product, increasing Q until it equals K

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Heterogeneous Equilibria

- Homogeneous equilibria - products and reactants are all in the same phase
- Heterogeneous equilibria - products and reactants are in different phases

$$
\begin{aligned}
& \mathrm{CaO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})=\mathrm{CaSO}_{3}(\mathrm{~s}) \\
& \mathrm{CaCO}_{3}(\mathrm{~s})=\mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\mathrm{K}=\frac{[\mathrm{CaO}(\mathrm{~s})]\left[\mathrm{CO}_{2}(\mathrm{~g})\right]}{\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right]}
$$

Pure Solids and Liquids do not Appear in Equilibrium Constant Expressions

Do not appear in equil. const. expressions because there is so much mass per unit volume that the amount consumed is insignificant compared to aqueous or gas phase reactants and products.

Write K_{c} expressions for these reactions:
a. $\mathrm{CaO}(s)+\mathrm{SO}_{2}(g) \rightleftharpoons \mathrm{CaSO}_{3}(s)$
b. $\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)$

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Le Chatelier's Principle

If a system at equilibrium is perturbed (or stressed), the position of the equilibrium shifts in the direction that relieves the stress.

Henri Louis Le Chatelier

1. Effects of Adding or Removing Reactants or Products
2. Effects of Changes in Pressure and Volume
3. Effect of Temperature Changes

$$
\overrightarrow{\text { rate }_{f}=\text { rate }_{r}} \text { ? }
$$

?

1. Effects of Adding or Removing Reactants or Products

8

Industrial prep of $\mathrm{H}_{2}(\mathrm{~g})$:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})=\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\text { rate }_{\mathrm{f}}=\text { rate }_{\mathrm{r}} \quad \mathrm{~K}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}
$$

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})=2 \mathrm{KHCO}_{3}(\mathrm{~s}) \\
\mathrm{Q}=\frac{\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{CO}_{2}\right]_{0}}{\left[\mathrm{H}_{2} \mathrm{O}\right]_{0}[\mathrm{CO}]_{0}} & \text { Now } \mathrm{Q}<\mathrm{K} \\
\text { rate } & >\text { rate }_{\mathrm{r}}
\end{array}
$$

Until equilibrium re-established

"Scrubbing" CO_{2} (g) Shifts $1^{\text {st }}$ rxn towards products

```
sample exercise 14.9 Adding or Removing Reactants or Products to Stress an Equilibrium
```

Suggest three ways the production of ammonia via the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

could be increased without changing the reaction temperature.

2. Effects of Changes in Pressure and Volume

- A rxn with gas-phase reactants or products may be perturbed by changing the partial pressures of the gases
- A simple way to do this is to change the volume while keeping the temperature constant

$$
2 \mathrm{NO}_{2}(\mathrm{~g})=\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}}{\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}}
$$

At const T and n , according to Boyle's Law halving the volume will double the pressure.

$$
2 \mathrm{NO}_{2}(\mathrm{~g})=\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}}{\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}}=\frac{\mathrm{Y}}{\mathrm{X}^{2}}
$$

- For clarity, substitute \mathbf{X} and \mathbf{Y} for the partial pressures
- After halving the volume and doubling the pressure, calculate \mathbf{Q}_{p} to determine which direction the equilibrium will shift
- $\mathbf{Q}<\mathrm{K}_{\mathrm{p}}$, so the amount of $Q_{p}=\frac{2 Y}{(2 X)^{2}}=\frac{2 Y}{4(X)^{2}}=\frac{Y}{2 X^{2}}=\frac{1}{2} K_{P}$ products needs to increase in order to re-attain equil
- So the rxn shifts towards products
- Notice that there is a total of 2 moles of gas on the reactant side and 1 mole total of gas on the product side
- Since there are fewer moles on the product side, shifting the rxn to the right decreases the total number of moles in the reaction chamber
- When the total number of moles decreases, so does the pressure, and then equilibrium is re-established
- Conversely, if the volume of the reaction chamber increases, then the rxn would shift towards reactants in order to increase the total pressure

In which of the following reactions would isothermal compression of a reaction mixture at equilibrium promote the formation of more product(s)?
a. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$
b. $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$
c. $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
d. $\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
e. $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$

Reaction	Moles of Gaseous Reactants	Moles of Gaseous Products
a	2	2
b	3	2
c	1	2
d	1	0
e	0	1

3. Effect of Temperature Changes

The only perturbation that changes the value of the equil const K . More in Section 14.10

- Changes in Temperature - Exothermic Reactions

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \underset{ }{\rightleftarrows} \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-180 \mathrm{~kJ}
$$

Reaction gives off heat so THINK OF AS A PRODUCT

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{HEAT}
$$

Change

Increase temperature (add product)
Decrease temperature (remove product)

Shifts the Equilibrium

left
right

3. Effect of Temperature Changes

- Changes in Temperature - Endothermic Reactions

Reaction absorbs heat so THINK OF AS A REACTANT
HEAT $+1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{NO}_{2}(\mathrm{~g})$

Change

Increase temperature (add "reactant")
Decrease temperature ("remove reactant")

Shifts the Equilibrium
right
left

The color of an aqueous acidic solution of cobalt(II) chloride depends on the temperature (Figure 14.9). In aqueous HCl , the solution is pink at $0^{\circ} \mathrm{C}$, magenta at $25^{\circ} \mathrm{C}$, and dark blue at $75^{\circ} \mathrm{C}$. Is the reaction producing the pink-to-blue color change exothermic or endothermic?

$$
\underbrace{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(a q)}_{\text {Pink }}+4 \mathrm{Cl}^{-}(a q) \rightleftharpoons \underbrace{\mathrm{CoCl}_{4}{ }^{2-}(a q)}_{\text {Royal blue }}+6 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Summary - Changes in Concentration

TABLE 14.4 Responses of an Exothermic Reaction [2 $\mathbf{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})$] at Equilibrium to Different Kinds of Stress

Kind of Stress	How Stress Is Relieved	Direction of Shift
Add A	Consume A	To the right
Remove A	Produce A	To the left
Add B	Consume B	To the left
Remove B	Produce B	To the right

Summary - Changes in Pressure and Volume

Responses of an Exothermic Reaction $[2 \mathbf{A}(g) \rightleftharpoons B(g)]$ at Equilibrium to Different Kinds of Stress		
Kind of Stress	How Stress Is Relieved	Direction of Shift
Increase pressure by compressing the reaction mixture	Consume A to relieve pressure increase	To the right
Decrease pressure by expanding volume	Produce A to maintain equilibrium pressure	To the left

Summary - Changes in Temperature

- Exothermic Reactions

Reaction gives off heat so THINK OF AS A PRODUCT

Change
Increase temperature (add product)
Decrease temperature (remove product)

Shifts the Equilibrium
left
right

- Endothermic Reactions

Reaction absorbs heat so THINK OF AS A REACTANT

Change
Increase temperature (add reactant)
Decrease temperature (remove reactant)

Shifts the Equilibrium

right
left

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Calculations Based on K

1. We want to determine whether a reaction mixture has reached equilibrium (Sample Exercise 14.7)
2. We know the value of K and the starting concentrations or partial pressures of reactant and/or products, and we want to calculate their equilibrium concentrations or pressures

$$
\mathrm{K}=\frac{[\text { products }]^{\mathrm{m}}}{[\text { reactants }]^{\mathrm{n}}}
$$

The "RICE" Table

$$
1 \mathrm{~N}_{2}(\mathrm{~g})+1 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}(\mathrm{~g})
$$

Reaction	$\mathbf{N}_{\mathbf{2}}(\boldsymbol{g})$	+	$\mathbf{O}_{\mathbf{2}}(\boldsymbol{g})$	\rightleftharpoons
	$\boldsymbol{P}_{\mathrm{N}_{2}}($ atm $)$	$\mathbf{P O}_{\mathrm{O}_{2}}(\boldsymbol{a t m})$		$\boldsymbol{P}_{\mathrm{NO}}($ atm $)$
Initial	0.79	0.21	0	
Change	$-x$	$-x$	$+2 x$	
Equilibrium	$0.79-x$	$0.21-x$	$2 x$	

Algebra

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Reaction	$\mathbf{N}_{\mathbf{2}}(\boldsymbol{g})$	+	$\mathbf{O}_{\mathbf{2}}(\boldsymbol{g})$	\rightleftharpoons
	$\boldsymbol{P}_{\mathrm{N}_{2}}($ atm $)$	$\boldsymbol{P O}_{\mathrm{O}_{2}}(\boldsymbol{g})$		
	$0.79)$	$\boldsymbol{P}_{\mathrm{NO}}($ atm $)$		
Initial	0.79	0.21	0	
Change	$-x$	$-x$	$+2 x$	
Equilibrium	$0.79-x$	$0.21-x$	$2 x$	

$$
K_{\mathrm{p}}=\frac{\left(P_{\mathrm{NO}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{O}_{2}}\right)}=\frac{(2 x)^{2}}{(0.79-x)(0.21-x)}
$$

$$
\begin{gathered}
=\frac{(2 x)^{2}}{(0.79-x)(0.21-x)}=\frac{4 x^{2}}{0.1659-1.00 x+x^{2}}=1.00 \times 10^{-5} \\
1.659 \times 10^{-6}-\left(1.00 \times 10^{-5}\right) x+\left(1.00 \times 10^{-5}\right) x^{2}=4 x^{2} \\
\underbrace{3.99999}_{\mathrm{a}} x^{2}+\underbrace{\left(1.00 \times 10^{-5}\right)}_{\mathrm{b}} x \underbrace{1.659 \times 10^{-6}=0}_{\mathrm{C}}
\end{gathered}
$$

$$
\begin{aligned}
P_{\mathrm{O}_{2}} & =0.21-x \\
& =0.21-\left(6.428 \times 10^{-4}\right)=0.21 \mathrm{~atm} \\
P_{\mathrm{N}_{2}} & =0.79-x \\
& =0.79-\left(6.428 \times 10^{-4}\right)=0.79 \mathrm{~atm} \\
P_{\mathrm{NO}} & =2 x \\
& =2\left(6.428 \times 10^{-4}\right)=1.2855 \times 10^{-3}=0.0013 \mathrm{~atm}
\end{aligned}
$$

Approximations to Simplify the Math

$$
K_{\mathrm{p}}=\frac{\left(P_{\mathrm{NO}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{O}_{2}}\right)}=\frac{(2 x)^{2}}{(0.79-x)(0.21-x)} \quad \begin{aligned}
& \mathrm{K}_{\mathrm{p}}=1.00 \times 10^{-5} \\
& \mathrm{X}=6.428 \times 10^{-4}
\end{aligned}
$$

The algebra also simplifies when the concentrations of reactants are the same.

Reaction	$\mathbf{N}_{\mathbf{2}}(\boldsymbol{g})$	+	$\mathbf{O}_{\mathbf{2}}(\boldsymbol{g})$	\rightleftharpoons
	$\left[\mathrm{N}_{2}\right](M)$	$\left[\mathrm{O}_{2}\right](M)$		$[\mathrm{NO} \mathbf{(g)}(\boldsymbol{m})$
Initial	0.100	0.100		0
Change	$-x$	$-x$	$+2 x$	
Equilibrium	0.100	0.100	$2 x$	

SAMPLE EXERCISE 14.12 Calculating an Equilibrium

Much of the H_{2} used in the Haber-Bosch process is produced by the water-gas shift reaction:

$$
\begin{equation*}
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \tag{14.2}
\end{equation*}
$$

If a reaction vessel at $400^{\circ} \mathrm{C}$ is filled with an equimolar mixture of CO and steam such that $P_{\mathrm{CO}}=P_{\mathrm{H}_{2} \mathrm{O}}=2.00 \mathrm{~atm}$, what is the partial pressure of H_{2} at equilibrium? The equilibrium constant $K_{\mathrm{p}}=10$ at $400^{\circ} \mathrm{C}$.

Suppose that in a reaction vessel running the water-gas shift reaction,

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

at $400^{\circ} \mathrm{C}$ the initial partial pressures are $P_{\mathrm{CO}}=2.00 \mathrm{~atm}, P_{\mathrm{H}_{2} \mathrm{O}}=2.00 \mathrm{~atm}, P_{\mathrm{H}_{2}}=$ 0.15 atm , and $P_{\mathrm{CO}_{2}}=0.00 \mathrm{~atm}$. What is the partial pressure of H_{2} at equilibrium, given $K_{\mathrm{p}}=10$ at $400^{\circ} \mathrm{C}$?

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Equillbrium and Thermodynamics

It won't be derived here, but there is a relationship between ΔG and the reaction quotient Q -

$$
\Delta \mathbf{G}=\Delta G^{0}+R T \ln Q
$$

This equation incorporates Q and therefore also predicts in which direction an equilibrium will shift

$$
\text { e.g. } \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Case 1: Under standard conditions of $1.0 \mathrm{~atm}, \Delta \mathrm{G}^{\mathrm{O}}=+4.8 \mathrm{~kJ}$

$$
\begin{aligned}
\Delta G_{\mathrm{rxn}}^{\circ} & =\sum n_{\text {products }} \Delta G_{\mathrm{f}, \text { products }}^{\circ}-\sum n_{\text {reactants }} \Delta G_{\mathrm{f}, \text { reactants }}^{\circ} \\
& =2 \mathrm{mel}(51.3 \mathrm{~kJ} / \mathrm{mel})-1 \mathrm{mel}(97.8 \mathrm{~kJ} / \mathrm{mel})=+4.8 \mathrm{~kJ}
\end{aligned}
$$

So the reaction under standard conditions is nonspontaneous, but...

Case 2: What if at 298 K there is only 1 atm of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ and virtually no $\mathrm{NO}_{2}(\mathrm{~g})$?

$$
\begin{aligned}
& \text { e.g. } \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g}) \\
& Q_{p}=\frac{\mathrm{P}^{2} \mathrm{NO}_{2}(\mathrm{~g})}{\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4(\mathrm{~g})}}=\frac{\approx 0}{1} \quad \approx 0 \\
& \text { shifts towards products } \\
& -\infty \\
& \text { So } \Delta \mathrm{G} \lll \lll 0 \text { and } \\
& \text { the reaction is } \\
& \text { spontaneous }
\end{aligned}
$$

Case 3: What if at 298 K there is only 1 atm of $\mathrm{NO}_{2}(\mathrm{~g})$ and virtually no $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$?

$$
\text { e.g. } \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$$
Q_{p}=\frac{P^{2}{ }_{\mathrm{NO} 2(\mathrm{~g})}}{\mathrm{P}_{\mathrm{N} 2 \mathrm{O} 4(\mathrm{~g})}}=\frac{1}{\approx 0} \underset{\begin{array}{l}
\mathrm{Q}_{\mathrm{p}}>K \text { and the reaction } \\
\text { shifts towards reactants }
\end{array}}{\approx \infty}
$$

$$
\Delta \mathbf{G}=\Delta \mathbf{G}^{0}+\underbrace{R T \ln \not \varnothing^{\prime}}_{\infty}
$$

So $\Delta G \ggg \gg 0$ so the reverse rxn is nonspontaneous

The point is that reactions shift in a direction that minimizes the available free energy of a system

Case 2:
Q < K

Shifts towards products

$$
\Delta \mathrm{G}<0
$$

Shifts towards reactants
Case 1:
$\Delta G^{\circ}=+4.8 \mathrm{~kJ}$

$$
Q=K
$$

$\Delta G>0$

$$
\Delta \mathrm{G}=0
$$

Moles $\mathrm{N}_{2} \mathrm{O}_{4}$

The Relationship Between ΔG and K

$\Delta \mathbf{G}=\Delta G^{0}+R T \ln Q$
$\Delta \mathbf{G}=\Delta G^{O}+R T \ln K$
$0=\Delta G^{0}+R T \ln K$
$\Delta G^{0}=-R T \ln K$

\longmapsto

$$
\mathrm{K}=\mathrm{e}^{-\Delta \mathrm{G} \% / R T}
$$

Use $\Delta G_{\mathrm{f}}^{\circ}$ values from Table A4.3 to calculate $\Delta G_{\mathrm{rxn}}^{\circ}$ and the value of K for the formation of NO_{2} from NO and O_{2} at 298 K :

$$
\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{NO}_{2}(g)
$$

$$
\begin{aligned}
\Delta G_{\mathrm{rxn}}^{\circ} & =\left[\Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{NO}_{2}\right)\right]-\left[\Delta G_{\mathrm{f}}^{\circ}(\mathrm{NO})+\frac{1}{2} \Delta G_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)\right] \\
& =[1 \mathrm{mel}(51.3 \mathrm{~kJ} / \mathrm{mel})]-\left[1 \mathrm{mel}(86.6 \mathrm{~kJ} / \mathrm{mel})+\frac{1}{2} \mathrm{mel}(0.0 \mathrm{~kJ} / \mathrm{mel})\right] \\
& =-35.3 \mathrm{~kJ}
\end{aligned}
$$

$-\frac{\Delta G_{\mathrm{rxn}}^{\mathrm{o}}}{R T}=-\frac{\left(\frac{-35,300 \mathrm{~J}}{\mathrm{mel}}\right)}{\left(\frac{8.314 \mathrm{f}}{\mathrm{mel} \cdot \mathrm{K}}\right)(298 \mathrm{~K})}$

Chapter Outline

- 14.1 The Dynamics of Chemical Equilibrium
- 14.2 Writing Equilibrium Constant Expressions
- 14.3 Relationships between K_{c} and K_{p} Values
- 14.4 Manipulating Equilibrium Constant Expressions
- 14.5 Equilibrium Constants and Reaction Quotients
- 14.6 Heterogeneous Equilibria
- 14.7 Le Châtelier's Principle
- 14.8 Calculations Based on K
- 14.9 Equilibrium and Thermodynamics
- 14.10 Changing K with Changing Temperature

Temperature, K and ΔG°

Derivation of the relationship between $\Delta \mathrm{K}, \Delta \mathrm{H}$, and T starting with -

$$
\begin{gathered}
\ln \mathrm{K}=-\frac{\Delta \mathbf{G o}}{\mathrm{RT}} \text { and } \Delta \mathbf{G o}=\Delta \mathrm{Ho}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
\ln \mathrm{K}=-\frac{\left(\Delta \mathrm{Ho}-\mathrm{T} \Delta \mathbf{S}^{\circ}\right)}{\mathrm{RT}} \\
\ln \mathrm{~K}=-\frac{\Delta \mathrm{Ho}}{\mathrm{RT}}-\left(-\frac{\mathrm{T} \Delta \mathrm{~S}^{\circ}}{\mathrm{RT}}\right) \\
\ln \mathrm{K}=-\frac{\Delta \mathrm{Ho}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}
\end{gathered}
$$

Linearization: In K vs. 1/T

Simultaneous Measurement of $\Delta H^{0}{ }_{r x n}$ and $\Delta S^{\circ}{ }_{r x n}$

$$
\begin{array}{ll}
\ln \mathrm{K} & =-\frac{\Delta \mathrm{Ho}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}} \\
\ln \mathrm{~K}=-\frac{\Delta \mathrm{Ho}}{\mathrm{R}} \frac{1}{\mathrm{~T}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}} & \ddots
\end{array}
$$

SAMPLE EXERCIGE 14.15 Calculating an Equilibrium LO10 Constant Value at a Specific Temperature

Use data from Appendix 4 to calculate the equilibrium constant K_{p} for the exothermic reaction

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

at 298 K and at 773 K , a typical temperature used in the Haber-Bosch process for synthesizing ammonia.

