UE – 117

IV Semester B.E. (E and C) Degree Examination, June/July 2011 (Y2K6 Scheme) EC 404 : NETWORKS AND LINES

Time : 3 Hours

Max. Marks: 100

10

10

(10x2=20)

Instruction : 1) Answer any five full questions, choosing atleast two from each Part.
2) Write the sketches neatly.

PART – A

- 1. a) Define and explain image and iterative impedance of an asymmetrical N/W. 20
 - b) Obtain an expression for the image and iterative impedances of an asymmetrical T-network.

2. a) S.T. the attenuation and phase constant of an open wire line at high frequency is approximately given by $\alpha = \frac{1}{2} \left[R \sqrt{\frac{C}{L}} + G \sqrt{\frac{L}{C}} \right]$

- b) An open wire telephone line has $R = 10\Omega/km$, $G = 0.4 \times 10^{-6} \text{ o/km}$, L = 0.0037Fumy/km, $C = 0.0083 \times 10^{-6}$ farad/km. Determine Z₀, α , β at 5 Khz. **10**
- a) What is an equalizer? Describe typical attenuation and phase equalizers. Discuss their application in line communication.
 - b) Derive Campbell's equation. What is its significance ?
- 4. Write notes on :

a) Line constants

b) Distortions in Transmission line.

PART - B

5.	a)	Define SWR and Reflection co-efficient. Deduce the relationship between	
		them.	10
	b)	The terminating load of a transmission line ($Z_0 = 5\Omega$'s) marking at 300 Mhz is	
		$(50 + j50)\Omega$. Calculate VSWR and reflection Co-efficient.	10
			P.T.O .

UE – 117

6.	a)	Clearly explain stub matching. Discuss the advantages and disadvantages of single stub matching and double stub matching.	10
	b)	A 200 + j75 Ω load is to be matched to a 300 Ω line to give SWR = 1. Calculate the reactance of the stub and Z ₀ of $\lambda/4$ transformer, both connected to the load.	10
7.	a)	What is a smith chart ? Why must impedances be normalized before being plotted on a standard Smith chart ? What are its applications ?	10
	b)	A load $Z_L = 100 - j50\Omega$ is connected to a line whose $Z_0 = 75 \Omega$. Calculate using Smith chart. i) The pt. nearest to the load at which $\lambda/4$ transformer be inserted to provide correct matching. ii) Z_0 if transmission line to be used for the transformer.	10
8.	Wr	tite notes on : (5x4=	=20)
	a)	Impedance matching	
	b)	Lorses in RF transmission lines	
	c)	Normalised impedance	
	d)	Effects of frequency variation in stub.	

IV Semester B.E. (E & C) Degree Examination, June/July 2017 (Y2K6 Scheme) EC 404 : NETWORKS AND LINES

Time : 3 Hours

Max. Marks: 100

Instruction : 1) Answer any five full questions, choosing atleast two from each

Part.

2) Write the sketches neatly.

PART – A

- a) Define image impedance, iterative impedance and characteristic impedance of a two-port network.
 10
 - b) A T-network is formed with series and shunt arm impedances Z_1 and Z_2 (series) and Z_3 (shunt). Determine the iterative and image impedances if $Z_1 = 30 + j 7.5 \Omega$, $Z_2 = 50 + j10$ and $Z_3 = -j 3.229 \Omega$'s.
- 2. a) What is attenuator? Derive the design equations of T-type attenuator.
 - b) It is desired to design a T-type attenuator pad with 40 dB loss to work between a source impedance of 70Ω 's and a load impedance of 600Ω 's. Determine the resistance value of the elements of the pad.
- 3. a) Starting from 1st principles, S.T. $Z_0 = \sqrt{\frac{Z}{Y}}$ and $\lambda = \sqrt{ZY}$ where Z_0 is the

characteristic impedance, λ = propagation constant, Z is the series impedance per unit length and Y is the shunt admittance per unit length.

- b) A transmission line of 10 km long has $Z_0 = 600\Omega$ and $\alpha = 0.1$ neper/km and $\beta = 0.5$ radians per km. Find the received current and voltage when 20m. amps are sent down to one end and the receiving end is shorted. **10**
- 4. a) Explain different types of distortions encountered in transmission line.
 - b) A U.G. cable with constants R = 44Ω 's/km, G = 1 μ U/km, L =0.001 henry/km and C =0.005 μ t/km is loaded with 88 mH coils of resistance 3.7 Ω 's at 1.136 km spacing. Find the approximate value of Z0, α and β if the frequency is 1000 hz.

10

10

4

6

8

10

UJ – 702

5.	a)	Explain the terms reflection co-efficient, reflection loss and SWR. Deduce the relationship between SWR and reflection co-efficient.	10
	b)	Derive the i/p impedance of a $^{\lambda\!/}_4$ line and explain how it can be used as	
		impedance matching device ?	10
6.	a)	Derive the expression for Z in of a transmission line terminated in Z_R .	10
	b)	The Z ₀ of a certain line is $10 \underline{\mid 14^{\circ}} \Omega$ and P = 0.007 + j0.028 /km. The line is terminated by 300 Ω 's. Determine Z in of the line if its length is 100 km.	10
7.	a)	Give a neat sketch of a smith chart and explain clearly step by step procedure of determining the length and location of a short ckt stub line.	10
	b)	A low loss line with $Z_0 = 70 \ \Omega$'s is terminated by $Z_R = 115 - j \ 80 \Omega$'s. If $\lambda = 2.5 \text{ m}$, determine	
		i) SWR	
		ii) Min. and Max. line impedance	
		iii) Distance between the load and first voltage minima using Smith Chart.	10
8.	a)	Explain the theory of single stub matching and derive expression for the length and location of stub.	10
	b)	A UHF transmission line working at 1 Ghz ia connected to an unmatched line producing a voltage reflection co-efficient of 0.5 <u>30</u> . Calculate the length	
		and position of the stub to match the line.	10

IV Semester B.E. (E&C) Degree Examination, June/July 2013 (Y2K6 Scheme) EC-404 : NETWORKS AND LINES

Time : 3 Hours

Max. Marks : 100

Instruction : Answer any five full questions, choosing atleast two from each Part.

PART – A

1.	a)	Explain the following parameters with respect to networks :	9
		i) Characteristic impedance	
		ii) Propagation constant	
		iii) Image impedance.	
	b)	Derive the characteristic impedance and propagation constant of symmetrical T-Networks.	11
2.	a)	Design a symmetrical T-attenuator to give an attenuation of 20 dB and to work in line of 600 Ω impedance. Derive the necessary formulas used.	10
	b)	What is equalizers ? Mention its applications.	5
	c)	Write a note on Inverse network.	5
3.	a)	Design a prototype high pass filter has a cut off frequency of 10 KHz and normal impedance of 600 Ω . Derive the necessary formulas used.	10
	b)	Derive an expression for the characteristic impedance, attenuation constant and phase constant of a Transmission line in terms of primary constants.	10
4.	a)	The characteristic impedance of a certain line is 710 $\lfloor -16^{\circ} \Omega$ when the frequency is 1 KHz. At this frequency the attenuation is 0.01 nepers/kms and the phase constant is 0.035 rad/kms. Calculate R, L, C, G and velocity of propagation.	10
	b)	Derive Compbell's equation for a loading line.	10
		P	.т.о.

5.	a)	What is reflection coefficient and derive the expression of reflection coefficient in terms of Z_R and Z_O ?	8
	b)	An open-wire line made of copper conductors each having a diameter of 3 mm and spaced 3 cm apart is terminated in an impedance of $(100 - j \ 100)\Omega$ and operated at 8 MHz. Calculate K and S.	6
	c)	Write a note on quarter wave section as an impedance transformer.	6
6.	a)	What is Smith chart ? Explain its properties.	10
	b)	A 50 Ω air filled co-axial line is terminated with a complex load impedance of $(80 - j60)\Omega$. Design a double stub matching system using short circuited co-axial lines of characteristic impedance 50 Ω each. Assume spacing between stubs equal to $3\lambda / 8$ at a frequency of 500 MHz. Use Smith chart.	10
7.	a)	Explain the steps involved in the design of single stub matching using Smith chart.	10
	b)	A load of $Z_R = 115 - j75\Omega$ terminates a lossless 100Ω line. Use Smith chart to determine i) Standing wave ratio ii) Input impedance of a 0.2λ long line and iii) The distance from load to the first voltage maximum.	8
8.	a) b)	What are the advantages and disadvantages of a optical fiber over copper wires ? Write a note on : i) Losses in fibres ii) Connectors	8 12
		iii) Splicers.	

IV Semester B.E. (Electronics & Commn.) Degree Examination, June/July 2014 (Y2K6 Scheme) EC - 404 : NETWORKS AND LINES

Time : 3 Hours

Max. Marks: 100

Instruction : Answer any five full questions, choosing atleast two from each Part.

PART – A

a)		10
b)	· · ·	10
		4
C)		
	is (200-j100) ohms.	6
a)	Design symmetrical Lattice attenuator.	6
b)	Develop the design equations for series and shunt equalizers.	8
c)		
	·	
	inductance of 40 mH in series. Find the other arm of lattice.	6
a)	Derive the expressions for the voltage nd current at any point along a	
,		12
b)		
,		
	•	•
	$\Sigma_{0,7}$, V_{p} , Λ , sending end current and load current.	8
a)	Obtain the expression for the cut-off frequency of a prototype high pass filter.	
	Design a constant -k- high pass filter with $R_0 = 600\Omega$ and $f_c = 600$ Hz.	8
b)	State and explain Compbell's equation for the loading cables.	4
	 b) c) a) b) a) b) 	 circuit impedance for an symmetrical π -network. b) Mention symmetrical and asymmetrical network parameters. c) Find the characteristic impedance of a symmetrical T section whose total series arm impedance is (50 + j125)Ω and shunt arm impedance is (200-j100) ohms. a) Design symmetrical Lattice attenuator. b) Develop the design equations for series and shunt equalizers. c) The series arm of lattice equalizer used with a telephone cable line of 600 ohms characteristic impedance consists of aresitance of 400 Ω and an inductance of 40 mH in series. Find the other arm of lattice. a) Derive the expressions for the voltage nd current at any point along a uniform transmission line. b) A generator of 1.0 volt, f = 1000 hz, supplies power to a 160kM open-wire line terminated in Z₀ and having the following parameters. R = 6.5Ω/km, L = 2.294 mH/km G = 0.5µ v /km, C = 5.219 nf/km Find Z₀, Y, V_p, λ, sending end current and load current. a) Obtain the expression for the cut-off frequency of a prototype high pass filter. Design a constant -k- high pass filter with R₀ = 600Ω and f_c = 600Hz.

JE – 846

8

c) Show that a line will be distortionless if LG = RC.

In a certain distortionless line the values of R and G were given to be 6 Ω /km and 3.2 μ σ /km respectively. If the phase velocity of a wave travelling through this line was found to be 2x10⁵ km/s.

a) attenuation constant

b) inductance L

c) capacitance C of the line.

a)	Show that the input impedance of dissipation less RF transmission line with open or short-circuited terminations are pure reactance. Sketch their reactance curves.	8
b)	Find the reflection coefficient and voltage standing wave ratio of a line havin $R_0 = 100\Omega$ and Z_R (load –impedance) is (100 – j 100) Ω .	
c)	Explain the Quarter-wave line by deducing the characteristic impedance. Mention Quarter-wave line applications and explain any one of it.	8
a)	Explain the construction of constant resistance and constant reactance circle In Smith chart.	e 8
b)	Mention the applications of Smith chart.	4
c)	The terminating load of a transmission line of $Z_0 = 50 0^{\circ} \Omega$ working at	
	300 MHz is 50 + j50 Ω . Calculate VSWR and position of first V_{min} using Smith chart.	8
a)	Derive expressions for location and length of a short circuited stub for single stub matching.	10
b)	A line of characteristic resistance equal to 300Ω is connected to a load of 73Ω resistance. For a frequency of 45 MHz, the line is to be matched using double stub. Design double stub matching using Quarter-wave spacing between the two stubs.	10
Wı	rite a short note on the following : (4x	(5=20)
i)	5	
	•	
	 b) c) a) b) c) a) b) wiii) iii) iii) 	 with open or short-circuited terminations are pure reactance. Sketch their reactance curves. b) Find the reflection coefficient and voltage standing wave ratio of a line havin R₀ = 100Ω and Z_R (load –impedance) is (100 – j 100) Ω. c) Explain the Quarter-wave line by deducing the characteristic impedance. Mention Quarter-wave line applications and explain any one of it. a) Explain the construction of constant resistance and constant reactance circle In Smith chart. b) Mention the applications of Smith chart. c) The terminating load of a transmission line of Z₀ = 50<u>10°</u> Ω working at 300 MHz is 50 + j50 Ω. Calculate VSWR and position of first V_{min} using Smith chart. a) Derive expressions for location and length of a short circuited stub for single stub matching. b) A line of characteristic resistance equal to 300Ω is connected to a load of 73Ω resistance. For a frequency of 45 MHz, the line is to be matched using double stub. Design double stub matching using Quarter-wave spacing between the two stubs. Write a short note on the following : i) standing wave ratio ii) losses in optical fibres

IV Semester B.E. (E & C) Degree Examination, June/July 2015 (Y2K6 Scheme) EC – 404 : NETWORKS AND LINES

Time : 3 Hours

Max. Marks : 100

Instructions : Answer **any five** full questions, choosing atleast **two** full questions from **each** Part.

PART - A

1.	a)	Derive the expressions for propagation constant and characteristic impedance for symmetrical 'T' network.	7
	b)	Derive the design equation for symmetrical ' π ' network in terms of open circuit and short-circuit impedances.	8
	c)	A lattice network has series impedances of 400Ω each and shunt impedance of 900Ω each. Find its characteristic impedance and propagation constant.	5
2.	a)	Derive the design equation for symmetrical 'T' attenuator.	7
	b)	Design symmetrical 'T' attenuator to operate between 75 Ω and provide 20 dB attenuation.	5
	c)	What are equalizers ? Mention their application.	8
3.	a)	Design a full series equalizer to provide 15 dB attenuation at 100 Hz and 2 dB at 200 Hz in a circuit of 600 Ω impedance.	5
	b)	Derive the design equation for a prototype constant k 'T' section low pass filter.	10
	c)	Find the elements of prototype low pass 'T' section filter of constant k type having a cutoff frequency of 8 KHz with a design impedance of 600 Ω .	5
4.	a)	Derive the differential equations of uniform transmission lines.	10
	b)	A transmission line has the following per km parameter at 5 KHz, R = 10 Ω , G = 0.4 ×10 ⁻⁶ $_{\odot}$, L = 0.0037 mH, C = 0.0083 ×10 ⁻⁶ Farad. Find Z ₀ , $_{\alpha}$ and $_{\beta}$.	10

EJ - 1362

EJ-1362

PART-B

5.	a)	Derive the condition for distortion less transmission line.	10
	b)	What is standing wave ratio ? Obtain relationship between V_{SWR} and reflection coefficient K.	10
6.	a)	What is stub matching ? Explain the steps involved in the design of single stub matching using Smith chart.	10
	b)	A low loss line with Z_0 = 70 Ω is terminated by Z_R = 115 – j80 Ω . If λ = 2.5 m find i) SWR	
		ii) Minimum and maximum line impedance	
		iii) Distance between the load an first voltage minima using Smith chart.	10
7.	a)	What is a Smith chart ? Explain the properties of Smith chart.	10
	b)	If Z_0 of a line is $10 14^{\circ} \Omega$ and P = 0.007 + j 0.028/km and it is terminated by	
		300 Ω find Z _{in} of the line if its length is 100 km.	10
8.	Wı	rite short notes on : (5×4=	20)
	a)	Connectors and splicers	
	b)	Composite filters	
	c)	Image impedance	
	d)	Step index and graded index cables.	

IV Semester B.E. (E & C) Degree Examination, June/July 2016 (2K6 Scheme) EC404 – NETWORKS AND LINES

Time : 3 Hours

Max. Marks : 100

Instruction : Answer any five full questions, choosing atleast two full questions from each Part.

PART-A

1.	a)	Derive the design equation for symmetrical ' π ' network in terms of open circuit and short circuit impedances.	10
	b)	A lattice network has series impedances of 300Ω each and shunt impedance of 500Ω each. Find its characteristic impedance and propagation constant.	5
	c)	Explain the conversion of T to π network with relevant equations.	5
2.	a)	Explain the need for an equalizer in a transmission line.	5
	b)	Derive the design equation for symmetrical 'T' attenuator.	10
	c)	Design a full-series equalizer to provide 10 dB attenuation at 200 Hz and 2 dB at 400 Hz in a circuit of 300Ω impedance.	5
3.	a)	Derive the design equation for a prototype constant K 'T' section low pass filter.	10
	b)	Find the elements of prototype high pass 'T' section filter of constant K type having a cut-off frequency of 6 KHz with a design impedance of 400 Ω .	10
4.	a)	The characteristic impedance of a transmission line is 100Ω and the load impedance is 200Ω . Calculate a) Voltage-reflection-coefficient b) VSWR	
		c) Reflected power in percent if Vi is 90 volts.	10
	b)	Derive the differential equation of uniform transmission line.	10

UJ – 128

UJ – 128

PART-B

5.	a)	Define reflection coefficient. Derive the equation for reflection coefficient at the load end and at a distance 'd' from load end.	10
	b)	Derive the condition for distortion less transmission line.	10
6.	a)	What is stub matching and describe in detail the design of single stub matching using Smith-chart.	10
	b)	A transmission line with a characteristic impedance (50 + jo) Ω is terminated in an impedance (25 – j100) Ω .	
		Determine the reflection co-efficient at the terminal load end of the line using Smith-chart.	10
7.	a)	What is a Smith chart ? Explain the properties of Smith-chart.	10
	b)	Determine the load-impedance Z_l and the standing wave ratio ρ given that low-loss line has a characteristic impedance Z_o of 500 Ω and that the	
		reflection co-efficient $\Gamma = 0.4 - 50^{\circ}$.	10
8.	a)	What are the advantages of an optical fiber over copper cables.	8
	b)	Define the following terms : i) Total internal reflection ii) Critical angle iii) Acceptance angle iv) Numerical aperture	6
	c)	Briefly discuss the types of losses in an optical fiber.	6

IV Semester B.E. (E&C) Degree Examination, June/July 2017 (Y2K6 Scheme) EC 404 : NETWORKS AND LINES

Time : 3 Hours

Max. Marks: 100

Instruction : 1) Answer any five full questions, choosing atleast two from each Part.
2) Write the sketches neatly.

PART – A

- a) Define image impedance, iterative impedance and characteristic impedance of a two-port network.
 10
 - b) A T-network is formed with series and shunt arm impedances Z_1 and Z_2 (series) and Z_3 (shunt). Determine the iterative and image impedances if $Z_1 = 30 + j 7.5 \Omega$, $Z_2 = 50 + j10$ and $Z_3 = -j 3.229$.
- 2. a) What is attenuator? Derive the design equations of T-type attenuator.
 - b) It is desired to design a T-type attenuator pad with 40 dB loss to work between a source impedance of 70Ω 's and a load impedance of 600 Ω 's. Determine the resistance value of the elements of the pad.
- 3. a) Starting from 1st principles, S.T. $Z_0 = \sqrt{\frac{Z}{Y}}$ and $\lambda = \sqrt{ZY}$ where Z_0 is the characteristic impedance λ - propagation constant Z is the series impedance

characteristic impedance, λ = propagation constant, Z is the series impedance per unit length and Y is the shunt admittance per unit length.

- b) A transmission line of 10 km long has $Z_0 = 600\Omega$'s and $\alpha = 0.1$ neper/km and $\beta = 0.05$ radians per km. Find the received current and voltage when 20m amps are sent down to one end and the receiving end is shorted. **10**
- 4. a) Explain different types of distortions encountered in transmission line.
 - b) A UG cable with constants R = 44Ω 's/km, G = 1 μ U/km, L =0.001 henry/km and C =0.005 μ t/km is loaded with 88 mH coils of resistance 3.7 Ω 's at 1.136 km spacing. Find the approximate value of Z0, α and β if the frequency is 1000 hz.

10

10

4

6

8

10

UJ – 130

5.	a)	Explain the terms reflection co-efficient, reflection loss and SWR. Deduce the relationship between SWR and reflection co-efficient.	10
	b)	Derive the i/p impedance of quarter wave line and explain how it can be used as impedance matching device ?	10
6.	a)	Derive the expression for Z in of a transmission line terminated in Z_R .	10
	b)	The Z ₀ of a certain line is $10 \downarrow 14^{\circ} \Omega$ and P = 0.007 + j0.028 /km. The line is terminated by 300 Ω 's. Determine Z in of the line if its length is 100 km.	10
7.	a)	Give a neat sketch of a Smith chart and explain clearly step-by-step procedure of determining the length and location of a short cktd, stub line.	10
	b)	A low loss line with $Z_0 = 70 \ \Omega$'s is terminated by $Z_R = 115 - j \ 80 \Omega$'s. If $\lambda = 2.5 \text{ m}$, determine i) SWR	
		ii) Min. and Max. line impedance	
		iii) Distance between the load and first voltage minima using Smith Chart.	10
8.	a)	Explain the theory of single stub matching and derive expression for the length and location of stub.	10
	b)	A UHF transmission line working at 1 Ghz ia connected to an unmatched line producing a voltage reflection co-efficient of $0.5 \\ \underline{130}^{\circ}$. Calculate the length and position of the stub to match the line.	10