Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 1.1. Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth.

Similar presentations


Presentation on theme: "Section 1.1. Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth."— Presentation transcript:

1 Section 1.1

2 Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth Tables

3 Propositions A proposition is a declarative sentence that is either true or false. Examples of propositions: a) The Moon is made of green cheese. b) Trenton is the capital of New Jersey. c) Toronto is the capital of Canada. d) 1 + 0 = 1 e) 0 + 0 = 2 Examples that are not propositions. a) Sit down! b) What time is it? c) x + 1 = 2 d) x + y = z

4 Propositional Logic Constructing Propositions Propositional Variables: p, q, r, s, … The proposition that is always true is denoted by T and the proposition that is always false is denoted by F. Compound Propositions; constructed from logical connectives and other propositions Negation ¬ Conjunction ∧ Disjunction ∨ Implication → Biconditional ↔

5 Compound Propositions: Negation The negation of a proposition p is denoted by ¬p and has this truth table: Example: If p denotes “The earth is round.”, then ¬p denotes “It is not the case that the earth is round,” or more simply “The earth is not round.” p¬p¬p TF FT

6 Conjunction The conjunction of propositions p and q is denoted by p ∧ q and has this truth table: Example: If p denotes “I am at home.” and q denotes “It is raining.” then p ∧q denotes “I am at home and it is raining.” pqp ∧ q TTT TFF FTF FFF

7 Disjunction The disjunction of propositions p and q is denoted by p ∨q and has this truth table: Example: If p denotes “I am at home.” and q denotes “It is raining.” then p ∨q denotes “I am at home or it is raining.” pqp ∨q TTT TFT FTT FFF

8 The Connective Or in English In English “or” has two distinct meanings. “Inclusive Or” - In the sentence “Students who have taken CS 202 or Math 120 may take this class,” we assume that students need to have taken one of the prerequisites, but may have taken both. This is the meaning of disjunction. For p ∨q to be true, either one or both of p and q must be true. “Exclusive Or” - When reading the sentence “Soup or salad comes with this entrée,” we do not expect to be able to get both soup and salad. This is the meaning of Exclusive Or (Xor). In p ⊕ q, one of p and q must be true, but not both. The truth table for ⊕ is: pqp ⊕q TTF TFT FTT FFF

9 Implication If p and q are propositions, then p →q is a conditional statement or implication which is read as “if p, then q ” and has this truth table: Example: If p denotes “I am at home.” and q denotes “It is raining.” then p →q denotes “If I am at home then it is raining.” In p →q, p is the hypothesis (antecedent or premise) and q is the conclusion (or consequence). pqp →q TTT TFF FTT FFT

10 Understanding Implication In p →q there does not need to be any connection between the antecedent or the consequent. The “meaning” of p →q depends only on the truth values of p and q. These implications are perfectly fine, but would not be used in ordinary English. “If the moon is made of green cheese, then I have more money than Bill Gates. ” “If the moon is made of green cheese then I’m on welfare.” “If 1 + 1 = 3, then your grandma wears combat boots.”

11 Understanding Implication (cont) One way to view the logical conditional is to think of an obligation or contract. “If I am elected, then I will lower taxes.” “If you get 100% on the final, then you will get an A.” If the politician is elected and does not lower taxes, then the voters can say that he or she has broken the campaign pledge. Something similar holds for the professor. This corresponds to the case where p is true and q is false.

12 Different Ways of Expressing p →q if p, then q p implies q if p, q p only if q q unless ¬p q when p q if p q when p q whenever p p is sufficient for q q follows from p q is necessary for p a necessary condition for p is q a sufficient condition for q is p

13 Converse, Contrapositive, and Inverse From p →q we can form new conditional statements. q →p is the converse of p →q ¬q → ¬ p is the contrapositive of p →q ¬ p → ¬ q is the inverse of p →q Example: Find the converse, inverse, and contrapositive of “It is raining is a sufficient condition for me not going to town.” Solution: converse: If I do not go to town, then it is raining. inverse: If it is not raining, then I will go to town. contrapositive: If I go to town, then it is not raining.

14 Biconditional If p and q are propositions, then we can form the biconditional proposition p ↔q, read as “ p if and only if q.” The biconditional p ↔q denotes the proposition with this truth table: If p denotes “I am at home.” and q denotes “It is raining.” then p ↔q denotes “I am at home if and only if it is raining.” pqp ↔q TTT TFF FTF FFT

15 Expressing the Biconditional Some alternative ways “p if and only if q” is expressed in English: p is necessary and sufficient for q if p then q, and conversely p iff q

16 Truth Tables For Compound Propositions Construction of a truth table: Rows Need a row for every possible combination of values for the atomic propositions. Columns Need a column for the compound proposition (usually at far right) Need a column for the truth value of each expression that occurs in the compound proposition as it is built up. This includes the atomic propositions

17 Example Truth Table Construct a truth table for pqr rr p  q p  q →  r TTTFTF TTFTTT TFTFTF TFFTTT FTTFTF FTFTTT FFTFFT FFFTFT

18 Equivalent Propositions Two propositions are equivalent if they always have the same truth value. Example: Show using a truth table that the implication is equivalent to the contrapositive. Solution: pq¬ p¬ qp →q¬q → ¬ p TTFFTT TFFTFF FTTFTT FFTTTT

19 Using a Truth Table to Show Non- Equivalence Example: Show using truth tables that neither the converse nor inverse of an implication are not equivalent to the implication. Solution: pq¬ p¬ qp →q¬ p →¬ qq → p TTFFTTT TFFTFTT FTTFTFF FFTTFTT

20 Problem How many rows are there in a truth table with n propositional variables? Solution: 2 n We will see how to do this in Chapter 6. Note that this means that with n propositional variables, we can construct 2 n distinct (i.e., not equivalent) propositions.

21 Precedence of Logical Operators OperatorPrecedence  1     2323     4545 p  q   r is equivalent to (p  q)   r If the intended meaning is p  (q   r ) then parentheses must be used.


Download ppt "Section 1.1. Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth."

Similar presentations


Ads by Google