
AP® COMPUTER SCIENCE A
2015 GENERAL SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even
if it occurs multiple times, or in multiple parts of that question. A maximum of 3 penalty points may be
assessed per question.

1-Point Penalty

(v) Array/collection access confusion ([] get)

(w) Extraneous code that causes side effect (e.g., writing to output, failure to compile)

(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

(z) Void method or constructor that returns a value

No Penalty

o Extraneous code with no side effect (e.g., precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared provided other variables are declared in some part

o private or public qualifier on a local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (× • ÷ < > <> ≠)

o [] vs. () vs. <>

o = instead of == and vice versa

o length/size confusion for array, String, List, or ArrayList, with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration (e.g., int[size] nums = new int[size];)

o Missing ; where structure clearly conveys intent

o Missing { } where indentation clearly conveys intent

o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction can
be unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As a
counterexample, note that if the code declares “Bug bug;”, then uses “Bug.move()” instead
of “bug.move()”, the context does not allow for the reader to assume the object instead of the class.

AP® COMPUTER SCIENCE A
2015 SCORING GUIDELINES

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1: Diverse Array

Part (a) arraySum 2 points

Intent: Compute and return sum of elements in 1D array arr, passed as parameter

 +1 Accesses all elements of arr (no bounds errors on arr)

 +1 Initializes, computes, and returns sum of elements

Part (b) rowSums 4 points

Intent: Compute and return 1D array containing sums of each row in the 2D array arr2D, passed as
 parameter

 +1 Constructs correctly-sized 1D array of ints

 +1 Accesses all rows in arr2D (no bounds errors on arr2D)

 +1 Computes sum of row in arr2D using arraySum and assigns to element in 1D array

 +1 Returns 1D array where kth element is computed sum of corresponding row in 2D array
 for all rows

Part (c) isDiverse 3 points

Intent: Determine whether arr2D, passed as parameter, is diverse

 +1 Computes and uses array of row sums from arr2D using rowSums

 +1 Compare all and only pairs of row sums for equality (No bounds errors on row sums array;
 point not awarded if no adjustment when compares any row sum with itself)

 +1 Returns true if all compared row sums are different and false otherwise
 (point not awarded for immediate return)

Question-Specific Penalties

 -1 (g) Uses getLength/getSize for array size

 -1 (y) Destruction of persistent data (arr or arr2D)

AP® COMPUTER SCIENCE A
2015 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2015 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 1: Diverse Array

Part (a):

public static int arraySum(int[] arr){
 int sum=0;
 for (int elem : arr){
 sum += elem;
 }
 return sum;
}

Part (b):

public static int[] rowSums(int[][] arr2D){
 int [] sums=new int[arr2D.length];
 int rowNum=0;
 for(int[] row : arr2D){
 sums[rowNum]=arraySum(row);
 rowNum++;
 }
 return sums;
 }

Part (c):

public static boolean isDiverse(int[][] arr2D){
 int [] sums=rowSums(arr2D);
 for (int i=0; i < sums.length; i++){
 for (int j=i+1; j < sums.length; j++){
 if (sums[i]==sums[j]){
 return false;
 }
 }
 }
 return true;
 }

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

©2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

AP® COMPUTER SCIENCE A
2015 SCORING COMMENTARY

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1

Overview

This question focused on accessing and processing data from one and two-dimensional arrays. It involved
abstraction through the use of methods. Part (a) asked students to sum the integers stored in a one-
dimensional array. Part (b) asked students to sum the rows of a two-dimensional array by explicitly calling
the method from part (a). Part (c) asked students to call the method from part (b) to obtain the sums of the
rows of a two-dimensional array and analyze those sums. More specifically, it asked students to look for
duplicates within the one-dimensional array of sums and to return the answer false if the one-
dimensional array had any duplicate sums and true if it did not have any duplicate sums.

Sample: 1A
Score: 8

The solution accesses all elements of array parameter arr and correctly initializes, computes, and returns
the sum of all elements of arr. The solution earned 2 points for part (a).

The solution constructs a correctly sized one-dimensional array of ints, accesses all rows of the arr2D
parameter to compute the sum of each row using method arraySum, and assigns the computed sum to an
element of the one-dimensional array. It returns a correctly computed array of row sums. The kth element of
the returned array contains the computed sum of the corresponding row in the two-dimensional array for all
rows. The solution earned 4 points for part (b).

The solution computes an array of row sums from arr2D using method rowSums. While doing the
comparison, the student did not adjust the loops for the case where the row sum is being compared to itself.
The value true is returned when all compared sums are different and false is returned otherwise. The
solution earned 2 points for part (c).

Sample: 1B
Score: 6

The solution accesses all elements of array parameter arr, and correctly initializes, computes, and returns
the sum of all elements of arr. The solution earned 2 points for part (a).

The solution constructs a one-dimensional array of ints, but the size is incorrect. All rows of the arr2D
parameter are accessed with no bounds errors. The call to method arraySum is incorrect due to the use of
“this.” in front of the method name. The kth element of the returned array contains the computed sum of
the corresponding row in the two-dimensional array for all rows. The solution earned 2 points for part (b).

The call to method rowSums is incorrect due to the use of “this.” in front of the method name. The
solution checks all and only pairs of row sums for equality and correctly returns true or false
appropriately. The solution earned 2 points for part (c).

Sample: 1C
Score: 2

The solution does not access all elements of arr because of an incorrect bounds test. It does earn the point
for initializing, computing, and returning the sum of elements. The solution earned 1 point for part (a).

AP® COMPUTER SCIENCE A
2015 SCORING COMMENTARY

© 2015 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1 (continued)

The solution does not declare an array for the row sums; it fails to access all rows of arr2D because of
incorrect bounds test in both loops; it does not correctly call method arraySum to compute row sums;
there is no array to be returned. The solution earned no points for part (b).

The solution computes an array of row sums using method rowSums. The solution does not compare all
necessary pairs of row sums. The value true or false is returned after only one comparison, an
immediate return. The solution earned 1 point for part (c).

