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Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL
Aircraft Using Experimental Data

Benjamin M. Simmons

(ABSTRACT)

Small unmanned aircraft and electric vertical takeoff and landing (eVTOL) aircraft have
recently emerged as vehicles able to perform new missions and stimulate future air trans-
portation methods. This dissertation presents several system identification research ad-
vancements for these modern aircraft configurations enabling accurate mathematical model
development for flight dynamics simulations based on wind-tunnel and flight-test data. The
first part of the dissertation focuses on advances in flight-test system identification methods
using small, fixed-wing, remotely-piloted, electric, propeller-driven aircraft. A generalized
approach for flight dynamics model development for small fixed-wing aircraft from flight data
is described and is followed by presentation of novel flight-test system identification appli-
cations, including: aero-propulsive model development for propeller aircraft and nonlinear
dynamic model identification without mass properties. The second part of the disserta-
tion builds on established fixed-wing and rotary-wing aircraft system identification methods
to develop modeling strategies for transitioning, distributed propulsion, eVTOL aircraft.
Novel wind-tunnel experiment designs and aero-propulsive modeling approaches are devel-
oped using a subscale, tandem tilt-wing, eVTOL aircraft, leveraging design of experiments
and response surface methodology techniques. Additionally, a method applying orthogo-
nal phase-optimized multisine input excitations to aircraft control effectors in wind-tunnel
testing is developed to improve test efficiency and identified model utility. Finally, the culmi-
nation of this dissertation is synthesis of the techniques described throughout the document
to form a flight-test system identification approach for eVTOL aircraft that is demonstrated
using a high-fidelity flight dynamics simulation. The research findings highlighted through-
out the dissertation constitute substantial progress in efficient empirical aircraft modeling
strategies that are applicable to many current and future aeronautical vehicles enabling ac-
curate flight simulation development, which can subsequently be used to foster advancement
in many other pertinent technology areas.



Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL
Aircraft Using Experimental Data

Benjamin M. Simmons

(GENERAL AUDIENCE ABSTRACT)

Small, electric-powered airplanes flown without an onboard pilot, as well as novel electric
aircraft configurations with many propellers that operate at a wide range of speeds, referred
to as electric vertical takeoff and landing (eVTOL) aircraft, have recently emerged as aero-
nautical vehicles able to perform new tasks for future airborne transportation methods. This
dissertation presents several mathematical modeling research advancements for these modern
aircraft that foster accurate description and prediction of their motion in flight. The math-
ematical models are developed from data collected in wind-tunnel tests that force air over a
vehicle to simulate the aerodynamic forces in flight, as well as from data collected while flying
the aircraft. The first part of the dissertation focuses on advances in mathematical modeling
approaches using flight data collected from small traditional airplane configurations that are
controlled by a pilot operating the vehicle from the ground. A generalized approach for math-
ematical model development for small airplanes from flight data is described and is followed
by presentation of novel modeling applications, including: characterization of the coupled
airframe and propulsion aerodynamics and model development when vehicle mass properties
are not known. The second part of the dissertation builds on established airplane, helicopter,
and multirotor mathematical modeling methods to develop strategies for characterization of
the flight motion of eVTOL aircraft. Innovative data collection and modeling approaches
using wind-tunnel testing are developed and applied to a subscale eVTOL aircraft with two
tilting wings. Statistically rigorous experimentation strategies are employed to allow the
effects of many individual controls and their interactions to be simultaneously distinguished
while also allowing expeditious test execution and enhancement of the mathematical model
prediction capability. Finally, techniques highlighted throughout the dissertation are com-
bined to form a mathematical modeling approach for eVTOL aircraft using flight data, which
is demonstrated using a realistic flight simulation. The research findings described through-
out the dissertation constitute substantial progress in efficient aircraft modeling strategies
that are applicable to many current and future vehicles enabling accurate flight simulator
development, which can subsequently be used for many research applications.
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