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Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL
Aircraft Using Experimental Data

Benjamin M. Simmons

(ABSTRACT)

Small unmanned aircraft and electric vertical takeoff and landing (eVTOL) aircraft have
recently emerged as vehicles able to perform new missions and stimulate future air trans-
portation methods. This dissertation presents several system identification research ad-
vancements for these modern aircraft configurations enabling accurate mathematical model
development for flight dynamics simulations based on wind-tunnel and flight-test data. The
first part of the dissertation focuses on advances in flight-test system identification methods
using small, fixed-wing, remotely-piloted, electric, propeller-driven aircraft. A generalized
approach for flight dynamics model development for small fixed-wing aircraft from flight data
is described and is followed by presentation of novel flight-test system identification appli-
cations, including: aero-propulsive model development for propeller aircraft and nonlinear
dynamic model identification without mass properties. The second part of the disserta-
tion builds on established fixed-wing and rotary-wing aircraft system identification methods
to develop modeling strategies for transitioning, distributed propulsion, eVTOL aircraft.
Novel wind-tunnel experiment designs and aero-propulsive modeling approaches are devel-
oped using a subscale, tandem tilt-wing, eVTOL aircraft, leveraging design of experiments
and response surface methodology techniques. Additionally, a method applying orthogo-
nal phase-optimized multisine input excitations to aircraft control effectors in wind-tunnel
testing is developed to improve test efficiency and identified model utility. Finally, the culmi-
nation of this dissertation is synthesis of the techniques described throughout the document
to form a flight-test system identification approach for eVTOL aircraft that is demonstrated
using a high-fidelity flight dynamics simulation. The research findings highlighted through-
out the dissertation constitute substantial progress in efficient empirical aircraft modeling
strategies that are applicable to many current and future aeronautical vehicles enabling ac-
curate flight simulation development, which can subsequently be used to foster advancement
in many other pertinent technology areas.



Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL
Aircraft Using Experimental Data

Benjamin M. Simmons

(GENERAL AUDIENCE ABSTRACT)

Small, electric-powered airplanes flown without an onboard pilot, as well as novel electric
aircraft configurations with many propellers that operate at a wide range of speeds, referred
to as electric vertical takeoff and landing (eVTOL) aircraft, have recently emerged as aero-
nautical vehicles able to perform new tasks for future airborne transportation methods. This
dissertation presents several mathematical modeling research advancements for these modern
aircraft that foster accurate description and prediction of their motion in flight. The math-
ematical models are developed from data collected in wind-tunnel tests that force air over a
vehicle to simulate the aerodynamic forces in flight, as well as from data collected while flying
the aircraft. The first part of the dissertation focuses on advances in mathematical modeling
approaches using flight data collected from small traditional airplane configurations that are
controlled by a pilot operating the vehicle from the ground. A generalized approach for math-
ematical model development for small airplanes from flight data is described and is followed
by presentation of novel modeling applications, including: characterization of the coupled
airframe and propulsion aerodynamics and model development when vehicle mass properties
are not known. The second part of the dissertation builds on established airplane, helicopter,
and multirotor mathematical modeling methods to develop strategies for characterization of
the flight motion of eVTOL aircraft. Innovative data collection and modeling approaches
using wind-tunnel testing are developed and applied to a subscale eVTOL aircraft with two
tilting wings. Statistically rigorous experimentation strategies are employed to allow the
effects of many individual controls and their interactions to be simultaneously distinguished
while also allowing expeditious test execution and enhancement of the mathematical model
prediction capability. Finally, techniques highlighted throughout the dissertation are com-
bined to form a mathematical modeling approach for eVTOL aircraft using flight data, which
is demonstrated using a realistic flight simulation. The research findings described through-
out the dissertation constitute substantial progress in efficient aircraft modeling strategies
that are applicable to many current and future vehicles enabling accurate flight simulator
development, which can subsequently be used for many research applications.
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Chapter 1

Introduction

Recent technology advancements have resulted in new aeronautical vehicles being used
for a variety of missions. These aircraft include:

1. small, low-cost, unmanned aerial vehicles (UAVs) and

2. electric vertical takeoff and landing (eVTOL) vehicles.

Over the past several years, there has been a substantial increase in the accessibility
and use of small unmanned aircraft for commercial, military, and research applications.
Specific applications leveraging UAVs include package delivery, surveillance, imagery, and
atmospheric sensing, among many others [1]. Small UAVs can also serve as low-risk surrogate
research platforms to demonstrate technology intended to be used on larger aircraft. With
the increasing prevalence of small, low-cost UAV operations, there is an increasing need to
develop flight dynamics models characterizing their motion in flight to support tasks such
as control system design, flight simulation, and airworthiness certification.

The cost and risk associated with full-scale, manned aircraft justifies the investment of
significant time, resources, and experience to develop high-quality dynamic models using
computational fluid dynamics (CFD), wind-tunnel testing, and flight testing. Conversely,
small unmanned aircraft flight dynamics model development is often constrained by limited
time and resources, as well as inherent physical challenges. Expensive wind-tunnel tests
and/or CFD may not be practical for small aircraft, requiring that a model be developed only
from flight data; however, small aircraft still present multiple challenges which complicate
identification of an adequate model. Small, inexpensive UAVs are typically equipped with
lower-quality instrumentation, which incorporates fewer, less capable sensors and therefore
provides less accurate measurements. Neglecting budgetary considerations, small UAVs also
have payload weight and volume constraints that prohibit the use of high-quality sensing
and data acquisition systems for system identification. In any case, a costly instrumentation
system defeats the purpose of a low-cost UAV. Furthermore, small UAVs are more susceptible
to atmospheric disturbances, especially within the planetary boundary layer where these
aircraft are often used. Additionally, compared to full-scale aircraft, small UAVs exhibit high
maneuverability, large power-to-weight ratios, and lower Reynolds number aerodynamics.
These attributes reduce the quality of experimental data, which in turn degrades the quality
of the model that is obtained through flight-test system identification. Despite the increased
challenges of model identification for small UAVs, system identification using flight data
has proven to be a useful method for model development [2–10], but still required further
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2 Chapter 1. Introduction

research to improve small UAV system identification strategies.

In parallel to small UAV advancements and integration into the national airspace, many
complex distributed hybrid and electric propulsion aircraft concepts have emerged to en-
able future Advanced Air Mobility (AAM) transportation missions [11–16]. There are many
design concepts with a variety of Urban Air Mobility (UAM) and Regional Air Mobility
(RAM) mission profiles, which include vertical takeoff and landing (VTOL), short takeoff
and landing (STOL), and conventional takeoff and landing (CTOL) configurations. Com-
mon characteristics of these modern aircraft include the use of many control surfaces and
propulsors, as well as significant propulsion-airframe interactions.

Vehicles supporting UAM operations require precise hover and efficient cruise capabilities
as well as the ability to safely transition between flight regimes. Hybrid and electric VTOL
aircraft are a clear fit for this new transportation model. In general, eVTOL aircraft are a
combination of traditional fixed-wing and rotary-wing aircraft leveraging certain attributes
from each type of vehicle. Rotary-wing aircraft features provide the ability to takeoff and
land vertically, hover, and precisely maneuver in confined areas. Longer endurance, bet-
ter efficiency, and the ability to operate at high speeds is derived from fixed-wing aircraft
attributes. Distributed hybrid and electric propulsion technology used in many eVTOL air-
craft concepts has further broadened the traditional aeronautical vehicle design space and
resulted in many unique vehicle designs. As of April 2023, Reference [16] lists 810 known
eVTOL aircraft concepts.

Although the operational utility of eVTOL aircraft has great potential [17], there are
several research areas to be addressed prior to introduction into a UAM environment [18].
eVTOL vehicle technical challenges include airworthiness certification, air traffic manage-
ment, pilot-operator interface, handling qualities, simplified vehicle operations, contingency
management, vehicle autonomy, and flight control strategies. One essential research area
is accurate eVTOL vehicle aero-propulsive modeling enabling flight dynamics simulation
development to support flight control system design and certification, research on practi-
cal flight operations, and many other areas, as reflected in Figure 1.1. Efficient and ac-
curate eVTOL vehicle aero-propulsive model development, however, is largely unexplored
and is challenged by several vehicle attributes, including: many control surfaces and propul-
sors, propulsion-airframe interactions, propulsor-propulsor interactions, high-incidence angle
propulsor aerodynamics, vehicle instability, rapidly changing aerodynamics through transi-
tion, and a wide range of operational flight conditions to characterize. Compared to many
conventional aircraft, eVTOL aircraft designs exhibit greater aero-propulsive complexity
and many interacting factors requiring development of new testing and model development
strategies. For conventional fixed-wing aircraft, the propulsion aerodynamics and airframe
aerodynamics can generally be studied separately because the interaction effects are rela-
tively small. In contrast, integrated aero-propulsive modeling is performed for eVTOL air-
craft because the propulsion aerodynamics, airframe aerodynamics, and propulsion-airframe
interactional aerodynamics are generally highly coupled. Thus, development of high-fidelity
aero-propulsive models for eVTOL configurations is a new, critical area of research where
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Figure 1.1: Research applications supported by accurate aero-propulsive model development.

novel modeling strategies are needed to appropriately represent pertinent aerodynamic phe-
nomena specific to these unique vehicles.

This dissertation presents several novel flight dynamics modeling advancements for small,
low-cost, remotely-piloted, fixed-wing aircraft and transitioning eVTOL aircraft using flight-
test and wind-tunnel data. Consequently, the fundamental theme of the dissertation is
methods used to develop aircraft mathematical models from experimental data, termed air-
craft system identification [19–21]. The dissertation is organized into two parts to provide
a thorough development and assessment of new system identification approaches for small
fixed-wing aircraft and eVTOL aircraft. Part I focuses on advances in flight-test system iden-
tification methods developed using small, unmanned, fixed-wing aircraft. Chapter 2 presents
generic flight-test system identification methods for small, fixed-wing UAVs. Chapter 3 de-
scribes aero-propulsive model development strategies for propeller aircraft. Chapter 4 de-
velops a method for nonlinear dynamic modeling without mass properties information. The
overall conclusions for Part I are summarized in Chapter 5.

Building on the material presented in Part I and established fixed-wing and rotary-wing
aircraft system identification techniques, Part II concentrates on advances in eVTOL aircraft
system identification. Chapter 6 develops an empirical aero-propulsive model development
strategy for eVTOL aircraft using static eVTOL aircraft wind-tunnel testing conducted
using design of experiments (DOE) and response surface methodology (RSM) techniques.
Development of an improved response surface experiment design approach for distributed
propulsion aircraft is then presented in Chapter 7. Next, Chapter 8 describes a more efficient
wind-tunnel testing and novel model identification strategy leveraging dynamic programmed
test input (PTI) excitations. The assortment of techniques discussed in this dissertation are
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synthesized in Chapter 9 to propose a method for flight-test system identification for eVTOL
aircraft, which is then demonstrated using a high-fidelity flight dynamics simulation. The
overall conclusions for Part II are summarized in Chapter 10.

Research Contributions

The primary novel research contributions presented in this dissertation include:

1. Development of a generalized approach for small, fixed-wing, unmanned aircraft system
identification [22] (Chapter 2).

2. Development of two aero-propulsive modeling approaches for fixed-wing aircraft with
propellers using flight data [23, 24] (Chapter 3).

3. Development of a nonlinear dynamic modeling approach for aircraft without known
mass properties using flight data [25, 26] (Chapter 4).

4. Development of empirical aero-propulsive modeling approaches for eVTOL aircraft
using wind-tunnel data [27, 28] (Chapter 6).

5. Development, evaluation, and justification for the nested I-optimal response surface
experiment design for distributed propulsion aircraft aero-propulsive modeling [29]
(Chapter 7).

6. Development of a hybrid DOE/RSM–PTI wind-tunnel testing and two-step modeling
approach enabling rapid wind-tunnel testing for eVTOL aircraft [30] (Chapter 8).

7. Development of a flight-test system identification strategy for transitioning eVTOL
aircraft, which is demonstrated using a high-fidelity flight dynamics simulation [31, 32]
(Chapter 9).

Additional novel research contributions by the author that are briefly mentioned in the
dissertation include:

8. Development and assessment of a method for small aircraft system identification using
a combination of flight testing and computational aerodynamic predictions [33, 34].

9. Development of an approach for modeling eVTOL aircraft propellers operating at high
incidence angles [35–37].

10. Development of an efficient wind-tunnel response surface experiment design strategy
for characterizing variable-pitch eVTOL aircraft propellers [38].

Furthermore, collaborative research contributions where the author has substantially con-
tributed to the methodology development, writing, and technical-depth include:

11. Development of reduced-order model identification strategies using computational ex-
periments for multiple applications: transitioning eVTOL aircraft aero-propulsive mod-
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eling [39], propeller aerodynamic and aeroacoustic modeling [40], and bare airframe
aerodynamic modeling [41].

12. Development and assessment of a remote uncorrelated pilot input (UPI) technique for
unmanned fixed-wing aircraft aerodynamic modeling [42, 43].

13. Development of an approach for spin aerodynamic model identification for fixed-wing
aircraft using flight data [44, 45].

14. Development of advanced wind-tunnel test techniques for eVTOL aircraft applica-
tions [30, 46].

15. Development and refinement of an automated algorithm employing DOE/RSM theory
and a unique sequential modeling algorithm to identify aerodynamic models meeting
specific prediction error requirements [47, 48].



Part I

System Identification for Small
Fixed-Wing Aircraft

6



Chapter 2

Flight-Test System Identification
Approach for Small, Low-Cost,
Fixed-Wing Aircraft

This chapter provides an overview of a general flight-test system identification approach
tailored to small, inexpensive, remote-controlled, fixed-wing aircraft that has been recently
developed and refined within the Nonlinear Systems Laboratory (NSL) at Virginia Tech.
The general aircraft system identification methods are outlined with details provided on
the experiment design methods, instrumentation systems, flight-test operations, data pro-
cessing techniques, and model identification methods enabling development of nonlinear
flight dynamics models for small aircraft. Custom flight research and data processing soft-
ware leveraging Pixhawk flight computers running the PX4 firmware [49] and the System
IDentification Programs for AirCraft (SIDPAC) software toolbox [19, 50] are employed for
system identification. Flight-test experiments are conducted using both piloted inputs and
computer-generated inputs with various waveforms. The model structure and parameter es-
timates are determined offline using both equation-error and output-error methods support-
ing nonlinear model development. Specific small aircraft system identification challenges are
overcome, including low-cost control surface servo-actuators and instrumentation systems,
as well as a greater sensitivity to atmospheric disturbances and limited piloting cues. Four
recent system identification research advancements using the general system identification
process are featured in this chapter and subsequent chapters, including:

1. application of uncorrelated pilot inputs to remotely piloted aircraft [42, 43],

2. aerodynamic modeling in a spin [44, 45],

3. aero-propulsive model development for propeller aircraft [23, 24] (Chapter 3), and

4. nonlinear dynamic modeling without mass properties information [25, 26] (Chapter 4).

A significant portion of the content in this chapter will also appear in a to-be-published,
invited journal article [22]. Although these methods are described in the context of fixed-wing
aircraft, certain material in this chapter also applies to eVTOL aircraft model identification,
as will be discussed in Part II.

The chapter is organized as follows: Section 2.1 gives an overview of the flight-test
research facility, research aircraft, and flight-test operations. Section 2.2 summarizes the

7
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general small aircraft flight-test system identification approach, followed by detailed de-
scriptions of the techniques used for experiment design (Section 2.3), flight data collection
(Section 2.4), data processing (Section 2.5), and model identification (Section 2.6). Specific
flight-test system identification research advancements are featured in Section 2.7, as well as
Chapter 3 and Chapter 4.

2.1 Flight-Test Research Facility, Aircraft, and Oper-

ations

This section provides an overview of the NSL flight research facilities, aircraft, and oper-
ational procedures. This infrastructure fosters an environment for rapid flight-test research
advancements, including the system identification studies described throughout Part I of this
dissertation.

2.1.1 Kentland Experimental Aerial Systems (KEAS) Laboratory

Flight-test research in the NSL is primarily conducted at the Kentland Experimental
Aerial Systems (KEAS) Laboratory at Virginia Tech [51]. The facility hosts numerous un-
manned aircraft researchers, including those affiliated with the Mid-Atlantic Aviation Part-
nership, the Virginia Tech steward of a Federal Aviation Administration (FAA) designated
unmanned aircraft systems (UAS) test site. The KEAS Laboratory is used for a variety of
flight research in areas such as system identification, flight controls, atmospheric sensing,
and agricultural monitoring. The focal point of the facility is a 300 x 70 ft paved runway
and a flight-test environment above an 1800-acre agricultural research facility that provides
ample maneuvering airspace to perform flight testing for experimental aircraft. The KEAS
Laboratory also provides hangar space that facilitates storage, flight preparation, post-flight
data handling, repair work, and rapid modification for research aircraft. Internet connec-
tivity throughout the hangar and runway area enables field updates for firmware, research
code, and map data for the ground station and flight computers. Weather monitoring is
available from a WeatherSTEM device [52] and a wind sock located adjacent to the run-
way. Furthermore, the KEAS Laboratory airspace is approximately a 20-minute drive from
Virginia Tech’s primary Blacksburg campus allowing research flight testing to be a part of
students’ and faculty members’ daily schedule. Ground and aerial photographs of the KEAS
Laboratory are shown in Figure 2.1.
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(a) KEAS Laboratory runway and airspace (b) KEAS Laboratory runway and hangar
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(d) Overhead view of KEAS Laboratory facilities

Figure 2.1: Photographs of KEAS Laboratory facilities and airspace.

2.1.2 Research Aircraft

The NSL aircraft used for the system identification research described in this disserta-
tion include the off-the-shelf My Twin Dream (MTD) and Carbon-Z Cessna 150 (CZ-150),
pictured in Figures 2.2-2.3. The aircraft are small, fixed-wing, remote controlled (RC) un-
manned aircraft with traditional control surfaces: an elevator, ailerons, and a rudder (with
deflection angles respectively denoted δe, δa, and δr). The MTD is powered by two elec-
tric motors that drive APC sport 10-inch diameter, 6-inch pitch, counter-rotating propellers
mounted to the front of the wing. The CZ-150 has a single electric motor mounted on the
front of the fuselage that drives an Aero-Naut CAM carbon folding, two-bladed, 16-inch
diameter, 8-inch pitch propeller. Recent work has also been conducted in parallel to mod-
ernize Virginia Tech’s custom-built electric Small Platform for Autonomous Aerial Research
Operations (eSPAARO) aircraft initially developed and characterized as described in Refer-
ences [53–55]. The current eSPAARO aircraft, shown in Figure 2.4, has an inverted V-tail
with ruddervator and aileron control surfaces. The aircraft is powered by a single electric
motor mounted on the rear of the fuselage which drives an APC 22-inch diameter, 12-inch
pitch pusher propeller. Compared to other NSL aircraft, the eSPAARO vehicle provides
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Figure 2.2: MTD aircraft. Figure 2.3: CZ-150 aircraft.

Figure 2.4: eSPAARO aircraft.

a larger scale research platform with a greater payload capacity for future research efforts.
Geometric and inertial properties for the described NSL research aircraft, as configured for
model identification, are given in Table 2.1. For each aircraft, the mass was determined
using a commercial scale and the moments of inertia were determined using a compound
pendulum [56].

Table 2.1: Research aircraft inertial and geometric properties

Property MTD CZ-150 eSPAARO Units
m 0.211 0.336 1.40 slug
Ix 0.216 0.403 5.47 slug·ft2
Iy 0.182 0.317 6.27 slug·ft2
Iz 0.340 0.591 9.39 slug·ft2
Ixz 0.036 0.049 0.131 slug·ft2
c̄ 0.833 1.05 1.83 ft
b 5.91 6.97 12.0 ft
S 4.92 7.32 22.0 ft2

The NSL research aircraft are equipped with an onboard Pixhawk flight computer used
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for data acquisition and an onboard companion computer connected via Universal Serial Bus
(USB) used for automated injection of control inputs for system identification and custom
control law implementation [57]. The Pixhawk flight computer is a CubePilot Cube Orange
flight controller [58] running PX4 firmware (version 1.11.3) [49]. The companion computer
is a Raspberry Pi 4 running the Ubuntu Linux distribution which communicates with the
Pixhawk using the MAVLink communication protocol [59]. The documentation and code
used to implement automated system identification inputs and enable custom control law
integration using the companion computer are publicly-available in an NSL GitHub reposi-
tory [60]. It is worth noting that an alternative approach allowing a Simulink® model to be
deployed directly onto the Pixhawk flight computer using the MathWorks® UAV Toolbox
and its Support Package for PX4 Autopilots is currently being explored for system identifi-
cation input injection and custom control law integration [61]; however, the implementation
and utility of this alternate approach is not described further in this dissertation.

The research aircraft instrumentation package includes an attitude and heading refer-
ence system (AHRS), a pitot-static probe, and a Here+ Real-Time Kinematic (RTK) GPS
receiver. Notably, the aircraft instrumentation suite lacks an air-data sensor to measure the
aerodynamic angles α and β. The PX4 software includes an extended Kalman filter (EKF)
used to estimate vehicle state variables, including attitude angles and Earth-relative veloc-
ity [62]. Using the EKF states to calculate signals traditionally derived from air-data sensors
has been successfully applied in multiple NSL system identification efforts and is a typical ap-
proach used for NSL flight-test system identification because of its practical utility for small,
low-cost aircraft system identification. The use of inertial, EKF-derived air-data signals
assumes that there is no wind and, accordingly, flight testing used for model identification
is only conducted in negligible wind conditions. Pulse width modulation (PWM) control
signals applied to the control surface actuators are recorded and mapped to control surface
deflection angles using a servo-actuator model, as will be discussed further in Section 2.5.3.
The propeller rotational speed is measured by sampling a signal from the electronic speed
controller (ESC) proportional to the brushless motor rotational frequency. The sample rate
for the translational acceleration and angular velocity measurements is 200 Hz. The sample
rate for the EKF-derived data is 100 Hz. The control effector PWM commands and the
propeller rotational speed are sampled at approximately 50 Hz. Minor modifications to a
Pixhawk startup file and PX4 parameters are required prior to flight testing to ensure that
the desired flight data are recorded at sufficient sample rates for system identification [60].
The data processing techniques used to condition the flight data for model identification will
be described later in this chapter (Section 2.5).

2.1.3 Flight-Test Operations

Flight-test operations at the NSL are conducted with meticulous pre-flight, in-flight, and
post-flight procedures to ensure safe, efficient, and productive small aircraft operations for
a variety of research applications. Concurrently, the low-risk operation of small unmanned
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aircraft at low altitudes over university-owned farmland, along with the relatively permissive
university research environment, enables rapid development and testing of new control laws
and investigation of off-nominal flight conditions, such as spins. Irreparable aircraft damage,
although not a desirable outcome, is accepted as a possible outcome for most NSL flight
testing; injuries to people or damage to property outside of the research aircraft, however,
are carefully avoided through a scrupulous safety management process. The streamlined
and flexible flight-test environment stimulates rapid flight dynamics and controls research
advancement.

Prior to each flight-test effort, a test plan and test matrix are developed to safely and
efficiently achieve the flight-test research objectives. The National Weather Service hourly
forecast [63] is used to predict wind speeds, precipitation, and visibility for test scheduling.
Negligible wind, considered at or below one knot, is desired for system identification flight
tests. Early morning flight testing typically provides the most benign atmospheric conditions.
Prior to each day of flight testing, a detailed pre-flight briefing and aircraft inspection are
conducted with an established checklist to ensure consistent thoroughness. The briefing
guide, pre-flight checklist, and emergency procedures are documented in the appendix of
Reference [56].

During flight testing, real-time airspace and telemetry monitoring with persistent com-
munication between flight-test personnel are emphasized for successful testing and safe oper-
ations. The Pixhawk and RFD900+ telemetry module provide aircraft state information to
a ground station laptop which is displayed with QGroundControl, a commercially available
ground station software [64]. At least three flight-test personnel are desired for flight op-
erations including a test pilot, a ground station operator, and an observer; although, flight
testing can still be safely and effectively conducted with only two people present. The pilot
is responsible for safely operating the aircraft, as well as activating and augmenting flight
research algorithms. The ground station operator is responsible for monitoring altitude,
airspeed, battery power remaining, and geographic location within the airspace, while also
communicating pertinent information to the pilot via wireless headsets. Warnings and PX4
mode changes are also announced by the ground station software for the pilot and flight crew
awareness. The observer is responsible for monitoring for air traffic and runway obstructions,
as well as performing any extra tasks that would otherwise distract the pilot. To further re-
duce the risk of a UAV collision with a manned aircraft, the ground station operator monitors
a display of local air traffic. The geographic display includes a local FlightAware PiAware
system [65] which processes data from Automatic Dependent Surveillance-Broadcast (ADS-
B) and Mode-S transponder broadcast signals. The pilot uses an aviation transceiver radio to
monitor local Very High Frequency (VHF) aviation communications and communicate with
airborne pilots, if required. The increased situational awareness and ability to communicate
with airborne pilots are essential capabilities to reduce risk during research flights operating
under an FAA UAS altitude limit waiver.

After flight testing, data logs are downloaded from the Pixhawk flight computer and
uploaded to an NSL flight-test data repository for archiving and team accessibility. A corre-
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sponding flight report is prepared on the same day as testing to provide an archival document
of the personnel, weather, flight-test objectives and outcomes, pertinent details of each flight,
and next steps. The flight report is archived alongside the data and emailed to all laboratory
personnel for awareness and bookkeeping. Although the NSL flight-test operations are con-
ducted in a university environment, the flight testing is conducted with a level of diligence
and professionalism reflective of industry and government flight-test centers. Collectively,
these capabilities greatly enhance flight-test safety, productivity, and data quality.

2.2 General System Identification Approach

System identification is the process of developing a useful mathematical model of a system
using input and output data measured from the system [66, 67]. More specifically, aircraft
system identification is the process for developing a dynamic model of an aircraft using
measured input and output data collected using informative experiments [19–21]. In this
portion of the dissertation, the focus is placed on the flight-test system identification process
for small, fixed-wing aircraft.

2.2.1 Aircraft Equations of Motion

A standard aircraft motion model is adopted, which incorporates several simplifying
assumptions [19, 68]. The aircraft is considered to be a six degree-of-freedom rigid body
subject to external forces and moments due to gravity, aerodynamics, and thrust. The Earth
is assumed to be flat and fixed in inertial space, where there is assumed to be no atmospheric
wind and constant acceleration due to gravity. The aircraft mass m is constant, and the
x–z plane is a plane of symmetry so that the Ixy and Iyz products of inertia are negligible.
Thrust T is assumed to be aligned with the aircraft longitudinal axis, and rotational effects
from the aircraft propulsion system are neglected (although, they are accounted for in the
aero-propulsive modeling approach discussed in Chapter 3 and in Reference [24]). The
translational kinematics equations are:

ẋE = u cos θ cosψ + v(sin θ cosψ sinϕ− sinψ cosϕ) + w(sin θ cosψ cosϕ+ sinψ sinϕ) (2.1)

ẏE = u cos θ sinψ + v(sin θ sinψ sinϕ+ cosψ cosϕ) + w(sin θ sinψ cosϕ− cosψ sinϕ) (2.2)

żE = −u sin θ + v cos θ sinϕ+ w cos θ cosϕ (2.3)

The rotational kinematics equations are:

ϕ̇ = p+ (q sinϕ+ r cosϕ) tan θ (2.4)

θ̇ = q cosϕ− r sinϕ (2.5)

ψ̇ = (q sinϕ+ r cosϕ) sec θ (2.6)
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The translational dynamics equations are:

u̇ = rv − qw − g sin θ +X/m+ T/m (2.7)

v̇ = pw − ru+ g cos θ sinϕ+ Y/m (2.8)

ẇ = qu− pv + g cos θ cosϕ+ Z/m (2.9)

The rotational dynamics equations are:

Ixṗ− Ixz ṙ = L+ (Iy − Iz)qr + Ixzpq (2.10)

Iy q̇ =M + (Iz − Ix)pr + Ixz(r
2 − p2) (2.11)

Iz ṙ − Ixzṗ = N + (Ix − Iy)pq − Ixzqr (2.12)

2.2.2 Aerodynamic Forces and Moments

For fixed-wing aircraft, the aerodynamic forces and moments are generally expressed in
nondimensional form to remove the dependence on dynamic pressure (q̄ = 1

2
ρV 2) and aircraft

scale:

CX =
X

q̄S
, CY =

Y

q̄S
, CZ =

Z

q̄S
, Cl =

L

q̄Sb
, Cm =

M

q̄Sc̄
, Cn =

N

q̄Sb
(2.13)

When performing modeling from flight data, it is generally better to formulate the structure
of the aerodynamic model in terms of CX and CZ as opposed to the lift coefficient

CL = CX sinα− CZ cosα (2.14)

and drag coefficient
CD = −CX cosα− CZ sinα (2.15)

because the measured angle of attack α is also required to calculate CL and CD, which in-
creases measurement error [19]. Because the structure of the dynamic equations is known
from physical principles, aircraft system identification involves determining explicit expres-
sions for the nondimensional aerodynamic force and moment coefficients in terms of the state
and input variables. Although the force and moment coefficients are defined as the response
variables, these quantities cannot be measured directly in flight and must be inferred from
other measurements and known aircraft properties [19]. The body-axis force coefficients are
calculated as:

CX =
max − T

q̄S
, CY =

may
q̄S

, CZ =
maz
q̄S

(2.16)

Translational accelerometer measurements must be recorded at the aircraft center of gravity
location or corrected to the aircraft center of gravity location [19, 69] to be used in Equa-
tion (2.16). The body-axis moment coefficients are calculated using the aircraft rotational
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dynamics equations:

Cl =
1

q̄Sb
[Ixṗ− Ixz ṙ + (Iz − Iy)qr − Ixzpq] (2.17)

Cm =
1

q̄Sc̄

[
Iy q̇ + (Ix − Iz)pr + Ixz(p

2 − r2)
]

(2.18)

Cn =
1

q̄Sb
[Iz ṙ − Ixzṗ+ (Iy − Ix)pq + Ixzqr] (2.19)

The body-axis angular accelerations (ṗ, q̇, ṙ) within Equations (2.17)-(2.19) are calculated
using smoothed numerical differentiation of the body-axis angular rates because angular
accelerations are typically not measured directly, or if they are measured, the measurements
are generally low quality [19, 70].

The explanatory variables used to develop a functional representation of the body-axis
force and moment coefficients typically include angle of attack α in radians, angle of sideslip
β in radians, dimensionless angular rates

p̂ =
pb

2V
, q̂ =

qc̄

2V
, r̂ =

rb

2V
(2.20)

and control surface deflection angles (e.g., δe, δa, δr) in radians. The dimensionless angle of
attack rate

ˆ̇α =
α̇c̄

2V
(2.21)

and angle of sideslip rate

ˆ̇β =
β̇b

2V
(2.22)

can also be included as explanatory variables to aid in modeling unsteady aerodynamic
phenomena. Furthermore, the dimensionless airspeed (V̂ = V/Vo, where Vo is a reference
airspeed) can be included as an explanatory variable to model airspeed effects that are not
captured by the dynamic pressure scaling used to compute the force and moment coeffi-
cients. The air-data variables V , α, and β are related to the body-axis translational velocity
components u, v, and w by

V =
√
u2 + v2 + w2 (2.23)

α = tan−1(w/u) (2.24)

β = sin−1(v/V ) (2.25)

and:

u = V cosα cos β (2.26)

v = V sin β (2.27)

w = V sinα cos β (2.28)
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For the aircraft system identification work described in this dissertation, the models for
each response variable are expressed as nonlinear polynomial equations, reminiscent of a mul-
tivariate Taylor series expansion, in which the estimated parameters represent sensitivities
of the response variables to changes in the explanatory variables or combinations of them.
The selection of model terms typically reflects an assumed separation of longitudinal and
lateral-directional effects, which is motivated by considerations of symmetry and empirical
observations [71]. As will be seen in a later example, this assumption is relaxed in certain
flight regimes that exhibit significant coupling.

2.2.3 Equations of Motion for Flight Simulation

Solutions to the nonlinear aircraft equations of motion shown in Equations (2.1)-(2.12)
cannot be determined analytically and, thus, require using numerical integration algorithms.
A set of first-order ordinary differential equations in state-space form

ẋ = f(x,u) (2.29)

are needed to apply numerical integration techniques such as Runge-Kutta schemes [19, 20,
72]. Here, x is the state vector

x = [xE yE zE ϕ θ ψ u v w p q r]T

and u is the input vector pertaining to the particular aircraft configuration. Equations (2.1)-
(2.6) are already in the correct form with a single state derivative on the left side of each
equation. Assuming that the aerodynamic forces are not a function of state derivatives,
Equations (2.7)-(2.9) are also in the correct form. However, Equations (2.10)-(2.12) need to
be rearranged using algebraic manipulation to isolate ṗ, q̇, and ṙ. Assuming that the aero-
dynamic moments are not a function of state derivatives, the rotational dynamics equations
become:

ṗ =
IzL+ IxzN + (IyIz − I2z − I2xz)qr + Ixz(Ix − Iy + Iz)pq

IxIz − I2xz
(2.30)

q̇ =
M + (Iz − Ix)pr + Ixz(r

2 − p2)

Iy
(2.31)

ṙ =
IxN + IxzL+ (I2x − IxIy + I2xz)pq − Ixz(Ix − Iy + Iz)qr

IxIz − I2xz
(2.32)

In summary, assuming that the aerodynamic forces and moments are not a function of
state derivatives, Equations (2.1)-(2.9) and (2.30)-(2.32) are in the form of Equation (2.29)
and are suitable for computing solutions to the initial value problem via numerical inte-
gration. This is important for performing flight simulations and applying parameter esti-
mation methods that required numerical integration, such as the time-domain output-error
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method (see Section 2.6.1.3). Note that there is a singularity in Equations (2.4) and (2.6)
at θ = ±90 deg, which is called gimbal lock [73]. This singularity is not generally encoun-
tered in normal flight maneuvers or maneuvers used for system identification; however, if the
θ = ±90 deg condition is expected, then a formulation of the rotational kinematics equations
that uses quaternions can be implemented to avoid the problem.

If the aerodynamic forces and moments within the translational dynamics and rotational
dynamics equations are a function of state derivatives, then additional algebraic manipulation
is needed to construct equations in the form of Equation (2.29) (i.e., writing the equations
in a form where a single state derivative appears on the left side of each equation). This
is, for example, necessary when the aerodynamic forces and/or moments are a function of
α̇ and/or β̇ to model unsteady effects. To demonstrate how this is done, assume that the
model structures for CX , CZ , and Cm each include a linear ˆ̇α model term. The steady and
unsteady terms can be separated as

CX = CXS
+ CXU

= CXS
+ CXα̇

ˆ̇α (2.33)

CZ = CZS
+ CZU

= CZS
+ CZα̇

ˆ̇α (2.34)

Cm = CmS
+ CmU

= CmS
+ Cmα̇

ˆ̇α (2.35)

with the “S” and “U” subscripts representing the steady and unsteady contributions, re-
spectively. The steady components (CXS

, CZS
, and CmS

) are general nonlinear functions of
state and control variables; the unsteady terms are:

CXU
= CXα̇

ˆ̇α, CZU
= CZα̇

ˆ̇α, CmU
= Cmα̇

ˆ̇α

Using Equations (2.13) and (2.21), the dimensional aerodynamic forces and moment in Equa-
tions (2.7), (2.9), and (2.11) can be expressed as

X = q̄SCX = q̄S
(
CXS

+ CXα̇
ˆ̇α
)
= XS + q̄SCXα̇

α̇c̄

2V
= XS +XUα̇ (2.36)

Z = q̄SCZ = q̄S
(
CZS

+ CZα̇
ˆ̇α
)
= ZS + q̄SCZα̇

α̇c̄

2V
= ZS + ZUα̇ (2.37)

M = q̄Sc̄Cm = q̄Sc̄
(
CmS

+ Cmα̇
ˆ̇α
)
=MS + q̄Sc̄Cmα̇

α̇c̄

2V
=MS +MUα̇ (2.38)

where:

XS = q̄SCXS
, ZS = q̄SCZS

, MS = q̄Sc̄CmS

XU =
q̄Sc̄

2V
CXα̇

, ZU =
q̄Sc̄

2V
CZα̇

, MU =
q̄Sc̄2

2V
Cmα̇

To rearrange Equations (2.7), (2.9), and (2.11) into the form of Equation (2.29), it is
necessary to express α̇ in terms of the body-axis velocity states and state derivatives

α̇ =
uẇ − wu̇

u2 + w2
(2.39)
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which is obtained by taking the time derivative of Equation (2.24). Inserting Equations (2.36)-
(2.39) into Equations (2.7), (2.9), and (2.11) and solving for u̇, ẇ, and q̇ yields a form of the
equations suitable for numerical integration:

u̇ =
[(
ru2v − qu2w − qw3 + rvw2 − u2g sin θ − w2g sin θ

)
m2

+
(
Tu2 + Tw2 +XSu

2 +XSw
2 +XUqu

2 −XUpuv + ZUquw − ZUruv

+ ZUug sin θ +XUug cos θ cosϕ
)
m

+XUZSu−XSZUu− TZUu
]/[(

u2 + w2
)
m2 +

(
XUw − ZUu

)
m
]

(2.40)

ẇ =
[(
qu3 − pu2v − pvw2 + quw2 + u2g cos θ cosϕ+ w2g cos θ cosϕ

)
m2

+
(
ZSu

2 + ZSw
2 + ZUqw

2 −XUpvw +XUquw − ZUrvw

+ ZUwg sin θ +XUwg cos θ cosϕ
)
m

+XUZSw −XSZUw − TZUw
]/[(

u2 + w2
)
m2 +

(
XUw − ZUu

)
m
]

(2.41)

q̇ =
[(
MSu

2 +MSw
2 − Ixzp

2u2 − Ixzp
2w2 + Ixzr

2u2 + Ixzr
2w2 +MUqu

2

+MUqw
2 −MUpuv −MUrvw − Ixpru

2 + Izpru
2 − Ixprw

2 + Izprw
2

+MUwg sin θ +MUug cos θ cosϕ
)
m

+MSXUw −MUTw −MSZUu−MUXSw +MUZSu− IxzXUp
2w

+ IxzZUp
2u+ IxzXUr

2w − IxzZUr
2u− IxXUprw + IxZUpru

+ IzXUprw − IzZUpru
]/[

Iy

((
u2 + w2

)
m+XUw − ZUu

)]
(2.42)

A similar process could be followed to derive forms of Equations (2.8), (2.10), and (2.12)
suitable for numerical integration if Y , L, and/or N are a function of β̇.

2.2.4 Aircraft System Identification Process

The general process for the small aircraft system identification research described in Part I
of this dissertation follows the set of steps outlined in Figure 2.5. System identification
efforts are often motivated by an application that requires an accurate dynamic model,
such as model-based wind estimation [74–77] or control law design [57, 78–81]. The desired
model accuracy and range of applicability for the intended application set objectives for the
aircraft system identification effort and can inform the specific aircraft configuration. The
next step is to install any required hardware modifications and the flight-test instrumentation
discussed in Section 2.1.2. Ground testing is then conducted to determine the aircraft mass
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properties, geometry, and servo-actuator models. Next, a flight-test experiment is designed
and conducted to excite the aircraft dynamics over the range of desired model applicability.
After collecting the flight data, a series of data processing steps are used to assess the data
quality and condition the measured flight data for model identification. The model structure
is then determined from the measured data and model parameters within the model structure
are estimated. The identified model is subsequently validated to assess its accuracy and
prediction capability, as well as the adequacy of the model for its intended application. If
the model is inadequate, then remedial plans are developed for additional testing that can
provide the data required to identify an adequate model. If the model is deemed sufficient,
then it may be used for an intended application. The following sections provide additional
information on the flight-test experimentation, data processing, and model identification
methods applied for NSL aircraft system identification.

Aircraft Preparation 

and Instrumentation

Ground Testing

Flight-Test 

Experiment Design

Flight Data Collection

Data ProcessingModel Identification

Adequate 

Model

yes

no

Modeling Objectives

Application

Model Validation

Motivation

Figure 2.5: Flight-test system identification process for small unmanned aircraft.

2.3 Flight-Test Experiment Design

Specific maneuvers are used for aircraft system identification to excite the natural dy-
namic motion of an aircraft and facilitate collection of informative flight data for model
identification [19–21]. NSL flight-test experiments have involved using several different pi-
loted and automated input types, including multistep, multisine, and frequency sweep inputs.
Sample automated system identification inputs are shown in Figure 2.6. Automated exci-
tations are designed using the input design tools available in SIDPAC [19, 50]. For initial
flight testing of a new aircraft, piloted doublet maneuvers are flown to develop preliminary
estimates of the aircraft dynamic modes. The amplitude and frequency of the doublet in-
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puts are adjusted in flight based on the aircraft response observed by the test pilot. The
preliminary estimates of the aircraft dynamics inform the design of more complex system
identification inputs discussed in the following paragraphs.

(a) Multistep inputs (b) Multisine input (c) Frequency sweep input

Figure 2.6: Sample aircraft system identification inputs.

2.3.1 Multistep Inputs

Multistep inputs are the simplest maneuver type used to collect modeling data, which
include doublet (1-1), 1-2-1, and 3-2-1-1 inputs [19, 20]; the integers in these multistep input
labels describe the relative time length of alternating-sign step changes in the input signal.
Sample square wave multistep inputs are shown in Figure 2.6a. The elevator and rudder
input step lengths are designed to excite the natural frequencies of the short period and
dutch roll modes. The aileron step lengths are designed to induce a bank excitation from
level flight to approximately 30 to 60 deg and back to level flight. The main advantage
of multistep inputs is their implementation simplicity. A skilled pilot can implement these
inputs directly and can vary the pulse widths and amplitude of the input in real-time. A
computer can be programmed for repeatable automated maneuvers with a priori knowledge
of the aircraft dynamics, and the excitation pulse widths and amplitude can be adjusted in
real-time from the observed aircraft response. However, some engineering development effort
is necessary to implement computer-generated inputs for a new aircraft. The quickest and
easiest experiment design to gather data for modeling a new aircraft, while still providing
adequate modeling results, is to execute piloted multistep inputs. Using several repeated
multistep input maneuvers, preferably with different polarity and amplitude, is a good ap-
proach for obtaining adequate modeling results for small unmanned aircraft. In addition to
aircraft dynamic model identification, the use of automated multistep inputs has proven to
be a useful technique to develop control surface servo-actuator models in flight, which will
be discussed further in Section 2.5.3.

2.3.2 Multisine Inputs

The orthogonal phase-optimized multisine input [19, 82–85] is another input type com-
monly used in NSL system identification flight testing. A sample multisine input is shown
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in Figure 2.6b. A multisine input is defined as a sum of multiple sinusoidal functions with
different amplitudes, frequencies, and phase angles, where the frequencies are chosen to en-
compass the frequency range corresponding to the system dynamics of interest. To make all
inputs orthogonal in both the time domain and frequency domain, the multisine signal for
the jth control effector is assigned sinusoids with a unique subset Kj of discrete harmonic
frequency indices selected from the complete set of K available frequency indices. The avail-
able frequencies in Hz are fk = k/T, k = 1, 2, ..., K, where T is the fundamental period and
K/T is the highest excitation frequency. For m total control effectors, the jth input signal
uj is defined as

uj =
∑
k∈Kj

Aj

√
Pk sin

(
2πkt

T
+ ϕk

)
, j = 1, 2, ...,m (2.43)

where Aj is the signal amplitude, Pk is the kth power fraction (with
∑

k∈Kj
Pk = 1), ϕk is

the kth phase angle defined on the interval (−π,+π], and t is the time vector containing N
discrete points. The relative peak factor (RPF), defined as

RPF (uj) =
1√
2

[max (uj)−min (uj)] / 2√
uT

j uj/N
(2.44)

is the range of input amplitude divided by the root-mean-square of the signal, referenced to
the peak factor for a single frequency sinusoidal signal. An RPF value near one is preferred for
system identification to prevent perturbing the system far from the reference flight condition.
Minimizing RPF also approximately minimizes the peak-to-peak amplitude of the multisine
signals, which keeps the rate of change low. This is beneficial for repeated dynamic use of
the control surface actuators and electric motors during testing. The relative peak factor for
a multisine signal is minimized by optimizing the phase angles using the simplex algorithm
because the optimization problem is not convex [82]. A phase-optimized multisine signal
retains the same high input energy as a signal composed of the same amplitude and frequency
sinusoidal functions without optimized phase angles, while also helping to keep the system
close to its nominal flight trajectory. Mutual orthogonality of different input signals is
preserved regardless of the phase angles selected [19, 83]. After phase angle optimization,
phase shifts are added so the periodic multisine signal starts and ends at a value of zero [85].

Because multiple inputs and all aircraft dynamics of interest are simultaneously excited,
the use of multisine inputs allows execution of highly efficient and informative flight test-
ing. A single flight maneuver can be used to develop a comprehensive aircraft dynamic
model around a nominal flight condition including nonlinear aerodynamic phenomena and
control interaction effects. The use of multisine inputs does, however, require an automated
input injection capability, which requires initial development time and expertise to design
the signals and integrate the signals into a flight computer. Another technique that main-
tains many of the advantages of programmed multisine inputs, but does not require the
engineering development effort to integrate automated control inputs, is known as uncorre-
lated pilot inputs (UPI) [86–88]. This technique, adapted for application to small aircraft
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system identification, will be summarized later in this chapter (Section 2.7.1). In general,
computer-generated multisine inputs are the preferred input type for small aircraft system
identification because of their efficiency, repeatability, rich information content, and utility
for identifying nonlinear aerodynamic models.

2.3.3 Frequency Sweep Inputs

Frequency sweeps are another input type that has been used to collect data for system
identification [19, 21]. A sample frequency sweep input is shown in Figure 2.6c. An au-
tomated logarithmic frequency sweep input signal covering the frequency range [ωmin, ωmax]
rad/s is

u = A sin

[
ωmint+ C2 (ωmax − ωmin)

(
T

C1

eC1t/T − t

)
+ ϕ0

]
(2.45)

where C1 = 4 and C2 = 0.0187 are constant rule-of-thumb parameters [21]. The parameter ϕ0

is a phase shift to make the input have a starting value of zero and the end time of the signal
is adjusted to have an ending value of zero. Similar to multisine inputs, frequency sweeps
excite a broad range of frequencies. In contrast to multisine inputs, frequency sweeps can
only be conducted using a single control input at a time. Concurrent to the work described
in this dissertation, frequency sweeps have been used for actuator characterization in ground
tests, preliminary investigation of aircraft dynamics, frequency response estimation, and
investigation of structural modes. However, the initial low frequency excitations coupled
with the relatively high excitation amplitude needed to obtain a good signal-to-noise ratio
for small aircraft, tend to perturb the aircraft away from the initial trimmed flight condition.
Also, the long duration maneuvers must be executed for each axis separately, resulting
in large flight-test times. Furthermore, the single-axis excitation prevents identification of
control interaction effects and is not well-suited for nonlinear model identification. For these
reasons, in general, using multistep or multisine inputs are preferred for small aircraft system
identification.

2.4 Flight Data Collection

The NSL system identification flight testing described in this dissertation was conducted
with a ground-based pilot using a Spektrum DX20 20-channel RC transmitter. The trans-
mitter switch layout is depicted in Figure 2.7 and described further in Table 2.2. Piloted
system identification excitation inputs are flown in the PX4 Manual Flight Mode, which dis-
ables feedback stabilization. Artificial stabilization is undesirable for system identification
because it suppresses the natural aircraft response that the system identification maneuvers
are designed to excite, distorts optimally designed control inputs, and leads to correlation
between explanatory variables [19]. For automated system identification maneuvers using
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programmed test input (PTI) excitations, the PX4 Offboard Flight Mode is used to allow
the companion computer to inject control inputs. The input excitation signals are summed
with the pilot commands so that the inputs are symmetric about the trim settings, while
also allowing the pilot to make corrections if the aircraft starts to significantly deviate from
the original trimmed flight condition. This method also permits the pilot to center the ex-
citation around an unusual flight condition such as a stall or a spin, as will be discussed in
Section 2.7.2.

↑ PTI Submode 1

– PTI Submode 2

↓ PTI Submode 3

↑ PTI Mode 1

– PTI Mode 2

↓ PTI Mode 3

↑ Offboard

– Manual

↓ Stabilize

↑Arm

↓ Disarm

↑ Throttle ±20%

– Throttle ±10%

↓ Throttle ± 0%

↑ PTI Off

↓ PTI On

↻ PTI Amplitude

↕ Pilot 𝜼𝒆
↔ Pilot 𝜼𝒂

↕ Pilot 𝜼𝒕
↔ Pilot 𝜼𝒓

Figure 2.7: RC transmitter programmed for system identification flight testing.

Table 2.2: RC transmitter channel descriptions for system identification flight testing

Channel Functionality Selection Switch Type

1 Pilot Input Aileron Command Right Stick (↔)
2 Pilot Input Elevator Command Right Stick (↕)
3 Pilot Input Throttle Command Left Stick (↕)
4 Pilot Input Rudder Command Left Stick (↔)
5 PX4 Flight Mode Stabilized, Manual, Offboard 3-Position Switch
6 PTI Activation Off or On 2-Position Switch
7 PTI Mode Input Type (See Figure 2.8) 3-Position Switch
8 PTI Submode Input Type (See Figure 2.8) 3-Position Switch
9 Control Surface PTI Amplitude 0% to 100% Rotary Knob
10 Propulsion PTI Amplitude 0%, 10%, or 20% 3-Position Switch

Following the development and verification of automated PTI injection capabilities, most
NSL system identification flight testing has been conducted using automated inputs. As
shown in Figure 2.7 and Table 2.2, multiple channels on the RC transmitter are used to
conduct system identification flight testing. Figure 2.8 depicts the hierarchy of system iden-
tification flight modes. The automated system identification inputs are initiated when the
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Channel 7:

Channel 8:

PTI Submode 3

PTI Submode 2

PTI Submode 1

Channel 5: PX4 Flight Mode

Channel 6: PTI Activation

𝜂𝑒 Doublet

𝜂𝑟 Doublet →
𝜂𝑎 1-2-1

𝜂𝑒 3-2-1-1 →
𝜂𝑟 3-2-1-1 →
𝜂𝑎 3-2-1-1 →
𝜂𝑡 3-2-1-1

𝜂𝑒

𝜂𝑟

𝜂𝑎

3-Input 

Multisine

(𝜂𝑒 , 𝜂𝑎 , 𝜂𝑟)

4-Input 

Multisine

(𝜂𝑡 , 𝜂𝑒 , 𝜂𝑎 , 𝜂𝑟)
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PTI Mode 1 Multistep
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Offboard

PTI Mode 2 PTI Mode 3Freq. Sweep Multisine

Channel 9: Channel 10:𝜂𝑒 , 𝜂𝑎 , 𝜂𝑟 PTI Amplitude (0-100%) 𝜂𝑡 PTI Amplitude (0%, 10%, 20%)

Figure 2.8: System identification PTI mode hierarchy.

PTI activation switch is engaged in the PX4 Offboard Flight Mode. The type of PTI in-
jection is determined by the PTI mode and PTI submode, which are controlled using two
different 3-position switches on the RC transmitter. There are three PTI mode options
available: multistep mode, frequency sweep mode, and multisine mode. Each PTI mode
then has three available submodes. For the multistep PTI mode, the submode options are
(1) an elevator doublet, (2) a rudder doublet followed by an aileron 1-2-1 input, and (3)
a sequence of elevator, rudder, aileron, and throttle 3-2-1-1 inputs. To provide additional
input variety, the polarity of the inputs is reversed for each successive multistep input se-
quence. The frequency sweep submodes include elevator, aileron, and rudder sweeps. The
multisine submodes include a 3-input control surface multisine design for bare airframe aero-
dynamic modeling and a 4-input propulsion and control surface multisine for aero-propulsive
modeling. For each mode and submode, a rotary knob on the transmitter sets the control
surface PTI amplitude between 0% to 100%. For a given rotary knob setting, the amplitude
command for each control surface can be the same value or scaled based on the relative
effectiveness and range of each control surface. An additional three-position switch is used
to set the propulsion input amplitude between three discrete settings of 0%, 10%, and 20%.
The PWM signal value for each channel shown in Figure 2.8 is used to implement this hier-
archy in the companion computer automation code. Discrete mode settings are determined
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by the channel signal being within certain PWM threshold values, and continuous amplitude
settings are commanded by converting the PWM signal to normalized signals that scale the
control effector commands. For parallel research efforts, the RC transmitter has also been
programmed to conduct control law testing using a similar hierarchical framework.

2.5 Data Processing

Post-flight data processing is a critical step in the system identification process to con-
dition measured flight data for model identification. The steps include smoothing data,
correcting time delays, calculating unmeasured signals, and data compatibility analysis and
corrections. Although tedious and often overlooked, proper signal conditioning is necessary
to obtain good modeling results. A data processing methodology for system identification of
aircraft equipped with the Pixhawk flight computer has been developed and refined by the
author in the recent NSL system identification efforts described in this dissertation. The cur-
rent version of the data processing methodology is presented in this section, which expands
on the foundational methodology presented in References [33, 57].

The overall data processing objective is to convert the raw PX4 “ULog” message logging
format [89] to a MATLAB® data format suitable for use with the employed system identi-
fication tools. Several other intermediate signal processing steps must be taken because the
raw PX4 output measurement signals are not adequate for model development for several
reasons, including: (1) message topics have different sample rates, (2) message topic sample
intervals are not constant, (3) raw signals are not expressed as the state and control vari-
ables needed for modeling, (4) raw signals contain bias errors and relative time skews, and
(5) the data include measurement noise. Several data processing steps are needed to provide
sufficient data quality for system identification and the steps are different depending on the
particular signal. The general steps are summarized in the flowchart shown in Figure 2.9.
The result is processed flight data stored in an fdata matrix, which is the standard data
format used in SIDPAC [19, 50]. Each step in the flowchart is described in the remainder of
this section. A MATLAB® code, developed using MATLAB® release R2021a, implement-
ing the steps shown in Figure 2.9 has been used for data processing for multiple NSL system
identification efforts. Note that it is important to include an extra second of time at the
start and end of the data being processed to be able to remove initial filter transients and
numerical differentiation startup inaccuracies, as well as to shift time series. After applying
the data processing steps, the extra second of time included at the beginning and end of the
data is removed before performing further analysis.
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Figure 2.9: Flight data processing flowchart.

2.5.1 Data Importing, Resampling, and Formatting

The data are first imported into the MATLAB® workspace from the “ULog” format us-
ing the ulogreader function available in the MathWorks® UAV Toolbox [90]. The output
is a “ulogreader object” which is then passed to the readTopicMsgs function to extract
the data. When the Pixhawk flight computer with PX4 firmware was first flight tested
in the NSL, all variants of available signals needed for flight dynamics analyses were com-
pared to determine the best measurements and state estimates to use for post-flight system
identification and real-time control applications. The signals selected for post-flight system
identification are shown in Table 2.3, with modifications needed for real-time applications
included in the table footer.

After the data have been imported into the MATLAB® workspace, the raw signals
are converted to have a constant sample rate of fs = 50 Hz. Control surface actuator
command signals are converted to a 50 Hz sample rate using shape-preserving piecewise cubic
interpolation [92, 93] with the pchip function in MATLAB® [90]. Shape-preserving piecewise
cubic interpolation is preferred over cubic spline interpolation for actuator commands (which
can be sharp inputs or square waves) because shape-preserving piecewise cubic interpolation
tends to avoid overshoot and oscillatory behavior. Anti-alias protection is not needed for
resampling the actuator commands because the PWM signals are recorded digital data that
do not have wideband measurement noise. For all other measured or estimated signals, the
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Table 2.3: Sources of key system identification measurements from PX4 flight data logs

Default Sample
Measurement Name Source/Type Data Field Symbol Units Rate

Body-Axis Accelerations Accelerometers sensor combined ax, ay, az m/s2 200 Hz
Body-Axis Angular Velocities Rate Gyros sensor combined p, q, r rad/s 200 Hz
Earth-Fixed Velocities EKF∗ estimator status∗ VN , VE , VD m/s 100 Hz
Orientation (Quaternions) EKF∗ estimator status∗ q0, qx, qy, qz — 100 Hz
Control Signals PWM Signals actuator outputs ηe, ηa, ηr, ηt µs 50 Hz
Motor Rotational Speed ESC rpm n rpm 50 Hz
Air Density Air Data vehicle air data ρ kg/m3 20 Hz
∗For real-time applications, the “vehicle local position” and “vehicle attitude” data fields (PX4 output pre-
dictor states) sampled at 50 Hz are used in place of “estimator status” to reduce time delay. Further
information about the PX4 EKF and output predictor algorithm can be found in References [62, 91].

data are resampled using cubic spline interpolation. If the median sample rate of the original
signal is less than 50 Hz, the signal is upsampled using cubic spline interpolation directly. If
the median sample rate of the original signal is greater than 50 Hz, the data are resampled
to have a constant sample interval at the raw signal median sample interval, smoothed, and
then downsampled to 50 Hz. This process removes higher frequency content that would
cause aliasing when downsampling the data. The data are smoothed using a zero phase-shift
digital filtering technique with a digital sixth-order low-pass Butterworth filter applied both
forward and backward in time [94] using the filtfilt MATLAB® function available in the
MathWorks® Signal Processing Toolbox [90]. The resampling filter cutoff frequency was
selected as fc = 20 Hz to provide at least −20 dB of attenuation at the Nyquist frequency
of 25 Hz for the final sampling frequency of fs = 50 Hz. Figure 2.10 shows the frequency
response gain on a decibel and linear scale for four different initial sampling frequencies with
fc = 20 Hz, where it is observed that at least −23 dB of attenuation is achieved at 25 Hz
for sample rates up to 1000 Hz.

Within these initial processing steps, the quaternion states are converted to Euler orien-
tation angles, the body-axis translational velocity components are computed asuv

w

 =

 cos θ cosψ cos θ sinψ − sin θ
cosψ sin θ sinϕ− cosϕ sinψ cosϕ cosψ + sin θ sinϕ sinψ cos θ sinϕ
cosψ sin θ cosϕ+ sinϕ sinψ sin θ cosϕ sinψ − sinϕ cosψ cos θ cosϕ

VNVE
VD


(2.46)

and the air-data signals (V , α, β) are computed using Equations (2.23)-(2.25). These equa-
tions assume that there is no wind, which is a reasonable assumption because the modeling
data are deliberately collected in negligible wind conditions.

For small, low-cost aircraft, it is hypothesized that using EKF-derived air data is just
as accurate, if not more accurate, than using an air-data vane or probe of reasonable cost
relative to the inexpensive aircraft on a day with negligible wind. However, the use of inertial,
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(a) Frequency response gain (dB scale) (b) Frequency response gain (linear scale)

Figure 2.10: Comparison of the zero phase-shift digital sixth-order low-pass Butterworth
filters with fc = 20 Hz applied for resampling data collected with different sample rates.

EKF-derived air-data signals, as opposed to measured signals, could raise the question if
these reconstructed data have sufficient accuracy for model development. As will be shown
in the next subsection, the reconstructed air data derived from the EKF agree very well
kinematically with the IMU measurements (as would be expected when using inertial air-
data estimates on a day with negligible wind). Flight data from an MTD aircraft equipped
with a developmental, low-cost air-data vane1 used for other related research efforts was used
to compare measured and reconstructed air-data signals. Figure 2.11 shows a comparison of
measured and estimated angle of sideslip signals for a rudder doublet maneuver executed on
a low-wind day. The signals shown on the plot are:

1. the EKF-derived angle of sideslip that would be used for system identification,

2. reconstructed angle of sideslip computed using integrated accelerometer and rate gyro
measurements used to check kinematic consistency (see Section 2.5.2), and

3. airflow angle vane measurements corrected to the CG position [95].

The match between the EKF-derived and reconstructed sideslip angle are visually identical,
as would be expected. The sideslip angle measured by the air-data vane is close to the
EKF-derived and reconstructed signals, providing confidence that each signal is a good
representation of the true sideslip angle.

After all signals are resampled and computed, the data are stored in an initial fdata
matrix. The data at this point are examined using a strip chart viewer to determine the
start and end times of each maneuver and assess maneuver quality, but further steps are
needed before using the data for model development.

1Credit: Jeremy W. Hopwood
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Figure 2.11: Comparison of angle of sideslip signals for an MTD rudder doublet maneuver.

2.5.2 Data Compatibility Analysis and Corrections

Data compatibility analysis is the process of validating that kinematic signals are consis-
tent using the aircraft equations of motion. Performing model identification from kinemat-
ically inconsistent data precludes estimation of model parameters that accurately represent
aircraft dynamics. Thus, ensuring that flight data are kinematically consistent is essential to
obtaining useful system identification results. Kinematic consistency analysis is performed
using the rotational kinematics equations [Equations (2.4)-(2.6)] and translational dynamics
equations [Equations (2.7)-(2.9)] with ax, ay, and az used in place of X/m+T/m, Y/m, and
Z/m, respectively.

Data compatibility analysis is performed using a numerical integration and/or differen-
tiation procedure. The numerical integration method is performed by integrating Equa-
tions (2.4)-(2.9) using the body-axis translational accelerations and angular rates as inputs.
Reconstructed air-data signals are subsequently calculated from the reconstructed body-axis
velocity components using Equations (2.23)-(2.25). The reconstructed Euler attitude an-
gles and air-data signals are then compared to the corresponding measured signals to assess
kinematic consistency. An alternative procedure is to substitute measured Euler angles,
body-axis angular rates, and body-axis velocity, as well as computed time derivatives of Eu-
ler angles and body-axis velocity, into a rearranged form of the translational dynamics and
rotational kinematics equations

ax = u̇+ qw − rv + g sin θ (2.47)

ay = v̇ + ru− pw − g cos θ sinϕ (2.48)
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az = ẇ + pv − qu− g cos θ cosϕ (2.49)

p = ϕ̇− ψ̇ sin θ (2.50)

q = θ̇ cosϕ+ ψ̇ sinϕ cos θ (2.51)

r = ψ̇ cosϕ cos θ − θ̇ sinϕ (2.52)

to obtain the reconstructed translational accelerations and angular rates. If the reconstructed
and measured signals match, then the data are kinematically consistent. If data are found
to be kinematically inconsistent from this analysis, corrective measures must be taken be-
fore proceeding in system identification analysis. Potential errors may include bias errors in
translational acceleration and angular rate measurements, bias errors and scale factor errors
in Euler attitude angles and air-data signals, and errors in acceleration and air-data signals
from not correcting for sensor locations relative to the aircraft center of gravity (CG) [19].
Additionally, time skews between measurements corrupt the system identification analy-
sis [96], because parameter estimation methods assume that all signals are sampled at the
same time [97].

The necessary data compatibility corrections made for data recorded by the Pixhawk
flight computer include correction of bias in the translational accelerations and angular rates
measurements, correction for time delays in Euler angles and air-data signals, and correction
for time delays in control signals as a part of servo-actuator models (see Section 2.5.3). Scale
factors and biases in Euler angles and air-data signals are also usually considered in data
compatibility corrections [19]; however, these states obtained from the PX4 EKF do not have
this deficiency. The acceleration and angular rate biases are corrected by subtracting the
median difference between the measured and reconstructed signals. Time lags for aircraft
states are estimated visually by comparing measured signals and reconstructed signals used
for data compatibility analysis, but they could also be determined by finding the peak of
the cross-correlation function between signals or modeling the time delay parameter using
the frequency-domain approach described in Reference [97]. Translational acceleration and
angular rate signals are generally acquired from the same data stream, making their time
stamps a good grounding value [97]. For NSL aircraft, the instrumentation system inertial
measurement unit (IMU) is secured at the aircraft CG, so position corrections are not nec-
essary. Placing the IMU at the aircraft CG is generally straightforward for electric aircraft
that have constant mass properties (as is the case for the NSL aircraft).

Figure 2.12 shows example CZ-150 data compatibility analysis plots for multistep maneu-
vers and a spin maneuver with multisine excitations active. The plots display corrected flight
data used for system identification analysis, raw data obtained from the instrumentation sys-
tem, and reconstructed signals computed from other measurements as described previously,
to confirm validity of the kinematic consistency corrections. The corrected measured sig-
nals and reconstructed signals agree well, indicating that the data have been sufficiently
conditioned for model identification.
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(a) Elevator 3-2-1-1 (b) Rudder 1-1, Aileron
1-2-1

(c) Spin maneuver with multisine inputs

Figure 2.12: Comparison of measured CZ-150 flight data to reconstructed signals for data
compatibility assessment.

2.5.3 Control Surface Servo-Actuator Model

Small, low-cost aircraft are generally not instrumented to measure control surface de-
flection angles directly. Consequently, control surface servo-actuator characterization from
ground and flight testing is performed to develop static and dynamic servo-actuator models.
The static actuator model relates the PWM command, η, to the control surface deflection
angle after all transients have ended, which is referred to as the commanded deflection angle,
ξ. The dynamic actuator model describes the actuator dynamic response to changes in the
commanded deflection angle to compute the control surface deflection angle, δ. A block
diagram for the actuator model is shown in Figure 2.13. Development of an accurate model
to predict control surface deflections is important because parameter estimation methods
commonly used for aircraft system identification assume that the control inputs are known
without error.

The ground testing used to develop the static and dynamic actuator models consists of
cascaded square wave pulses of 10 different amplitudes applied to each control surface, as
shown in Figure 2.14. Frequency sweep and multisine inputs are also useful for establish-
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Figure 2.13: Control surface servo-actuator model block diagram.

ing a baseline understanding of actuator characteristics (although, the reader is cautioned
against applying multisine inputs with frequency components well above the actuator break
frequency because persistent high-frequency excitation can damage the actuator). Actua-
tor ground testing is performed using the same Pixhawk flight computer used in flight as
the measurement device. The Pixhawk is affixed to each individual control surface using
double-sided foam adhesive tape, as shown in Figure 2.15. This approach has been proven
on multiple aircraft to be both resourceful and accurate. The strategy requires no additional
sensors than are used in flight testing, which is useful for characterizing low-cost aircraft
systems; the strategy is also more accurate than using a protractor. Additionally, because
the Pixhawk flight computer is used as the measurement device, the method allows for ac-
curate characterization of time delays relative to other signals measured by the Pixhawk.
Note that, visually, the presence of the Pixhawk on the control surface appears to have a
negligible effect on the actuator dynamics (especially relative to the change in the actuator
dynamic response expected under aerodynamic loading in flight).

Figure 2.14: Cascaded square wave control surface servo-actuator input for ground testing.

The angular velocity signal about the axis of control surface rotation is integrated to
reconstruct the deflection angle. The EKF orientation angle estimate about the axis of
rotation is also available from the Pixhawk data log, however, these signals appeared to
be flawed due to the abnormal use of the measurement hardware out of its intended ap-
plication and were discarded for analysis. The measured angular velocity signal generally
contains a small bias error, which results in the integrated deflection angle signal drifting
over time. Because all control surface inputs start and end at zero deflection, the trend
of the numerically integrated signal is removed, so that the starting and ending deflection
angles are both zero. The detrended signal is considered the measured output used for a
sequential optimization procedure leveraging the output-error parameter estimation method
(see Section 2.6.1.3) to correct the angular velocity bias since there is no measured position
signal available. This procedure yields an accurate deflection angle solution. The process
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Figure 2.15: Pixhawk affixed to the MTD elevator for servo-actuator characterization ground
testing.

is reflected in Figure 2.16 for an MTD rudder square wave input. The bias in the rudder
deflection rate δ̇r measurement (i.e., the Pixhawk angular velocity measurement along the
axis of rotation) appears small, but clearly affects the reconstructed deflection angle δr. This
procedure was performed independently for each doublet square wave input to estimate a
deflection angle signal used to identify both the static and dynamic actuator models.

Figure 2.16: MTD rudder response to a square wave input in ground testing.
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2.5.3.1 Static Actuator Model

The static actuator model is developed as a polynomial mapping between the PWM
command sent to the actuator, η, and the commanded control surface deflection angle,
ξ. Deflection angle data are taken as an averaged value from the static portions of each
square wave pulse, as shown in Figure 2.16. A polynomial model is then fit to the data to
characterize the relationship between PWM command and deflection angle. The polynomial
model order is determined using the data taken from a particular control surface actuator
using statistical metrics and analyst judgment. The data used to develop the deflection
angle mapping and the polynomial model for an MTD rudder and eSPAARO aileron control
surface are shown in Figure 2.17, where close model fits are observed. This process is repeated
for each individual control surface on each aircraft.

(a) MTD rudder (b) eSPAARO left aileron

Figure 2.17: Sample static control surface servo-actuator data and model fit.

2.5.3.2 Dynamic Actuator Model

Two dynamic model forms were investigated to characterize the dynamic response of
control surface servo-actuators. The first model is a linear first-order dynamic model with a
pure time delay. The transfer functions is

δ(s) =
e−τ0s

τ1s+ 1
ξ(s) (2.53)

where τ0 is the time delay and τ1 is the first-order time constant. The second model consists
of a rate limit and a pure time delay, which is a nonlinear model.
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The parameters in the dynamic servo-actuators models were identified using both ground
testing and flight testing. For ground testing, the commanded deflection angle, ξ, is the input
and the reconstructed deflection angle, δ, is the output. The model parameters are opti-
mized to determine the values that minimize the mean squared error between the deflection
angle data and the modeled deflection angle. The parameter values for each control surface
dynamic model are taken to be the averaged values computed across the range of amplitudes
tested.

Example dynamic modeling results for an MTD control surface are shown for the first-
order dynamics model in Figure 2.18a and for the rate limit model in Figure 2.18b. The
model fit for both model forms are good; however, the rate limit model is observed to have a
superior visual model fit demonstrated by the modeling residuals shown on the lower subplot
and the closer model fit in the transient regions seen in the magnified portion of the plot. It
has also been noted that the estimated first-order model time constant parameter increases
with increasing input amplitude, whereas the estimated rate limit parameter is generally
constant across the range of input amplitudes tested. Furthermore, it has been observed that
the estimate of the time constant parameter and the time delay parameter are somewhat
confounded, whereas the rate limit parameter and time delay parameter are decoupled.
These results suggest that the rate limit model is a more accurate representation of the
physical electric servo-actuator behavior which typically exhibits a trapezoidal response to
step commands. Although a linear dynamics model is more convenient for controller design
and tuning, the rate limit model appears to be a better representation when the objective
is to most accurately estimate control surface deflection angles, and thus, is the preferred
model for system identification. For this reason, the rate limit model is used as the dynamic
control surface servo-actuator model henceforth in Part I.

Another example of dynamic modeling results from ground testing is shown for an eS-
PAARO aileron control surface in Figure 2.19, where the rate limit model is seen to accurately
predict the deflection angle. The lower subplot in Figure 2.19 also shows that use of only the
commanded deflection angle results in significant error compared to the measured deflection
angle near step changes, highlighting the importance of using the dynamic model.

Although the dynamic actuator characterization ground experiments yield good initial
models, the actuator dynamics typically change under aerodynamic loading in flight. Con-
sequently, characterization of control surface actuator dynamic behavior using flight data
leads to improved actuator models. To characterize the actuator dynamic response in flight,
the rate limit model parameters are estimated alongside an aerodynamic model identified
using single-axis multistep maneuvers. The actuator dynamics for each control surface are
identified separately using a model for the response variable where the control surface in-
fluence is most prominent. For example, the aileron actuator model is identified with the
nondimensional aerodynamic rolling moment (Cl) response. Actuator model parameters
are optimized to obtain minimum mean squared error between the measured and modeled
response variable. The aerodynamic model structure can be fixed, or updated using an
automated model structure selection procedure for each set of actuator model parameter
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Modeled actuator response compared to the measured 
deflection angle (1st order model).

Modeled actuator response compared to the measured 
deflection angle (rate limit model).

(a) First-order dynamics model

Dynamic Actuator Characterization Lab Test Results

Modeled actuator response compared to the measured 
deflection angle (1st order model).

Modeled actuator response compared to the measured 
deflection angle (rate limit model).

(b) Rate limit model

Figure 2.18: MTD actuator command and modeled actuator response compared to the
measured deflection angle.

Figure 2.19: Modeled eSPAARO left aileron actuator response compared to the measured
deflection angle.

values (see Section 2.6.2). Figure 2.20 shows example results for dynamic actuator modeling
for the eSPAARO aileron using flight data. The Cl flight data are compared to a linear
Cl aerodynamic model estimated with a dynamic actuator model identified from flight data
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and using the uncorrected commanded aileron deflection. The Cl modeling residuals and δa
deflection angles for each model are also shown. Clearly, the Cl model fit is much better
when the dynamic actuator model is included, demonstrating the importance of identifying
an accurate dynamic actuator model.

Figure 2.20: Modeled eSPAARO Cl response with and without an aileron dynamic servo-
actuator model.

The ground-test and flight-test dynamic actuator modeling results using the rate limit
model for the eSPAARO aileron are compared in Table 2.4, including the mean parameter
value θ̂ and the standard deviation s estimated from several repeated dynamic actuator
characterization experiments. The flight derived model has a slower rate limit and a shorter
time delay. These general trends have been observed for multiple small aircraft and are
attributed to the control surfaces being under persistent aerodynamic loading in flight. The
dynamic actuator model identified using flight data serves as the final dynamic model for
each actuator.

Table 2.4: Comparison of dynamic aileron servo-actuator model parameters for the eS-
PAARO aircraft

Time Delay [s] Rate Limit [deg/s]

Method θ̂ ± s θ̂ ± s
Ground Testing 0.0683± 0.0051 235± 19
Flight Testing 0.0462± 0.0030 178± 21
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2.5.4 Data Smoothing

After all above steps are completed, the flight data, excluding the control surface signals,
are smoothed by applying a third-order Butterworth filter both forward and backward in
time [94] using the filtfilt function in MATLAB® [90]. Measured flight data contain
noise, which can compromise the accuracy of system identification. Smoothing helps satisfy
the assumed noise characteristics of data used for time-domain parameter estimation [19, 20].
Additionally, it is best to smooth data before performing numerical differentiation, which
is required to compute analysis signals such as the body-axis angular accelerations [19].
A cutoff frequency of fc = 6 Hz is used to preserve lower frequency information needed
for modeling, but also to reject most higher frequency noise. The zero phase-shift nature of
digital smoothing allows a lower cutoff frequency, and thus further noise attenuation, without
distorting the deterministic information content used for modeling.

A comparison of the zero phase-shift digital third-order low-pass Butterworth filter and
a global optimal Fourier smoothing technique [19, 98] with a cutoff frequency of fc = 6 Hz
applied gradually using a Wiener filter is shown in Figure 2.21. Figures 2.21a-2.21b compare
the frequency response gain on a decibel and linear scale, where it is observed that the gain
variation with frequency and roll-off characteristics are very similar. Phase is not shown
because there is no phase lag across the frequency range for both the zero phase-shift digital
filter and the global optimal Fourier smoother. The absence of phase lag distinguishes
the digital smoothing techniques from a digital filter that is applied only forward in time.
Figure 2.21c shows the frequency response gain on a linear scale zoomed in near the passband,
where it observed that both smoothers have a flat passband with no ripple. Figure 2.21d
shows that the step response for each smoother is visually identical.

The intent of Figure 2.21 is to show that the selected zero phase-shift digital low-pass
Butterworth filter has very similar smoothing character compared to the global optimal
Fourier smoother [19, 98] with a specified cutoff frequency of fc = 6 Hz applied gradually
using a Wiener filter.2 This analysis helps to justify using the selected digital smoother design
based on its similarity in performance to the global optimal Fourier smoother, which has
been successfully applied in many previous aircraft system identification efforts. The main
reason the Butterworth smoother approach was used for this work was for computational
speed when batch processing full flights. This approach is faster because it used the built-in
MATLAB® filtfilt function. Both techniques are excellent smoothers and the use of
either smoothing approach will result in practically the same modeling results.

After completing all data processing steps, the data are stored in an updated fdata

matrix and then used to perform model identification.

2Note that smoo, the function in SIDPAC [19, 50] that implements the global optimal Fourier smoother,
also has options to automatically determine the cutoff frequency based on the data and apply an ideal (sharp)
filter cutoff, which are features that are not available in filtfilt.
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(a) Frequency response gain (dB scale) (b) Frequency response gain (linear scale)

(c) Passband frequency response gain (linear) (d) Step response

Figure 2.21: Comparison of the zero phase-shift digital third-order low-pass Butterworth
filter and the global optimal Fourier smoother [19, 98].

2.6 Model Identification

The model identification process commences after flight data have been acquired and
conditioned, and involves developing an adequate model structure for each response vari-
able, estimating model parameters, and validating the identified model. Model identification
methods that support nonlinear model development are employed for NSL aircraft because
of the desire to characterize a broad range of aerodynamic conditions. Also, as a result of
the challenges discussed in Chapter 1, small aircraft require large control inputs to obtain
sufficient signal-to-noise ratios for model identification, which generally perturbs the aircraft
to the extent that nonlinear aerodynamic phenomena are exhibited. The model structure
identification and parameter estimation methods used in this work were adapted from the
SIDPAC software toolbox [19, 50]. A comprehensive description of these techniques, among
other system identification methods, is given in Reference [19].
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2.6.1 Parameter Estimation

The parameter estimation methods used for this dissertation include the equation-error
method formulated in the time domain and frequency domain, as well as the output-error
method in the time domain [19]. Each of these parameter estimation methods supports iden-
tification of nonlinear models and has unique utility for different modeling problems. These
methods provide a parameter estimation solution, but an adequate model structure must be
assumed or determined to obtain a good model. The following subsection (Section 2.6.2) dis-
cusses model structure determination methods built on the equation-error methods discussed
in this section.

2.6.1.1 Time-Domain Equation-Error Method

The time-domain equation-error method can be applied using ordinary least-squares
regression to estimate a vector θ of np unknown model parameters for a given model
y = Xθ [19]. Here y is the length N model response vector and X is a N × np ma-
trix consisting of column vectors of regressors assumed to be measured without error. The
regression equation, including a measurement of the response variable z, corrupted by con-
stant variance, zero-mean, and uncorrelated measurement error ν, is:

z = Xθ + ν (2.54)

For least-squares parameter estimation, the optimal estimate of the unknown parameters θ
is determined by minimizing the cost function:

J(θ) =
1

2
(z −Xθ)T (z −Xθ) (2.55)

For fixed-wing aircraft system identification, the method generally minimizes the difference
between the aerodynamic force and moment coefficients computed from flight-test data and
those predicted by the mathematical model. The optimal estimate of the unknown parame-
ters is:

θ̂ =
(
XTX

)−1
XTz (2.56)

Assuming uncorrelated measurement errors and that an adequate model structure is used
to compute a modeled response ŷ = Xθ̂, a length np vector of standard errors s(θ̂) corre-

sponding to the estimated parameters θ̂ is:

s(θ̂) =

√√√√((z − ŷ)T (z − ŷ)

N − np

)
diag

[(
XTX

)−1
]

(2.57)

where “diag( )” indicates the column vector of diagonal elements of a square matrix. Because
modeling residuals are typically colored when using flight data, a modified form of Equa-
tion (2.57) is needed to compute a more accurate estimate of parameter uncertainty [19, 99].
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As an example of the setup of an equation-error estimation problem, consider the follow-
ing pitching moment coefficient model structure:

Cm = Cmαα + Cmq q̂ + Cmδe
δe + Cmα2α

2 + Cmαδe
αδe + Cmo

To apply least-squares regression with N total data points collected from an informative
experiment, the measured response vector is

z =
[
Cm(1) Cm(2) . . . Cm(N)

]T
the regressor matrix is

X =


α(1) q̂(1) δe(1) α2(1) α(1)δe(1) 1

α(2) q̂(2) δe(2) α2(2) α(2)δe(2) 1

...
...

...
...

...
...

α(N) q̂(N) δe(N) α2(N) α(N)δe(N) 1


and the vector of np = 6 unknown model parameters is:

θ =
[
Cmα Cmq Cmδe

Cmα2 Cmαδe
Cmo

]T
The parameter estimates and corresponding standard errors can then be determined using
Equation (2.56) and Equation (2.57), respectively.

The equation-error method applied in the time domain is advantageous for its simplicity
and computational efficiency for processing longer-duration, high-amplitude flight maneu-
vers, enabling rapid investigation of model structures. The equation-error method is also
a maximum likelihood estimator if the regressors are error-free and the response variable
is corrupted by white, Gaussian, constant variance measurement noise [19]. However, one
principal disadvantage of the equation-error method is the assumption that the regressors are
known perfectly, which is always violated when using experimental flight data and results in
biased parameter estimates [19, 70]. Fortunately, parameter estimation biases encountered
using least-squares regression can be mitigated by smoothing the explanatory variables be-
fore performing model identification. This strategy results in equation-error parameter esti-
mates that are similar in accuracy to parameter estimates obtained using the output-error
method [70]. As discussed in Section 2.5.4, the flight data used for model identification
are smoothed using a zero phase-shift digital filtering technique [90, 94]. This approach
effectively smooths the modeling data and results in unbiased parameter estimates.

2.6.1.2 Frequency-Domain Equation-Error Method

The equation-error method can also be formulated in the frequency domain using ordi-
nary least-squares regression with the complex regressor and response data [19, 70, 100]. To
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apply the frequency-domain modeling technique, the regressor and response variable data
are first detrended; subsequently, the data are transformed into the frequency domain using
a Fourier transform technique leveraging time-domain cubic interpolation and the chirp-z
transform to produce a high-accuracy transform with an arbitrary frequency range and
resolution [19, 101]. The transform frequencies are selected to encompass the aircraft dy-
namics of interest. The use of a restricted frequency range for modeling effectively smooths
the data and allows estimation of nearly unbiased parameter estimates when the regres-
sors contain noise [19, 70, 100]. Additional benefits of model identification in the frequency
domain include accurate parameter uncertainty estimation, increased computational speed,
and least-squares weighting based on frequency components as opposed to individual data
points.

Parameter estimation using ordinary least-squares regression with the complex regressor
and response data is similar to application of ordinary least-squares regression using real-
valued data in the time domain. For complex least-squares regression, p unknown model
parameters in a parameter vector θ are estimated for a given model ỹ = X̃θ, where ỹ is
the length M complex model response vector and X̃ is a M × p matrix consisting of column
vectors of the complex regressors assumed to be error-free [19]. The regression equation is

z̃ = X̃θ + ν̃ (2.58)

where z̃ is the complex measured response variable corrupted by constant variance, zero-
mean, and uncorrelated complex error ν̃. For complex least-squares parameter estimation,
the optimal estimate of the unknown parameters θ is determined by minimizing the cost
function:

J(θ) =
1

2

(
z̃ − X̃θ

)† (
z̃ − X̃θ

)
(2.59)

It follows that the solution to compute an optimal estimate of the unknown real-valued
parameters is

θ̂ =
[
Re
(
X̃

†
X̃
)]−1

Re
(
X̃

†
z̃
)

(2.60)

where θ̂ is a vector of p estimated parameters [19]. The modeled response variable vector is:

ˆ̃y = X̃θ̂ (2.61)

A length p vector of standard errors s(θ̂) corresponding to the estimated parameters θ̂ is
given as:

s(θ̂) =

√(
1

2T (fmax − fmin)
Re

[(
z̃ − ˆ̃y

)† (
z̃ − ˆ̃y

)])
diag

([
Re
(
X̃

†
X̃
)]−1

)
(2.62)

This form of s(θ̂) accounts for the fact that an arbitrary frequency range is used for analy-
sis [100].
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After complex least-squares parameter estimation is completed, an additional step is
needed to identify the bias term in a model equation because the detrended data used to
estimate the model parameters contain only dynamic information [19, 100]. The scalar bias
parameter estimate θ̂o is found as the mean value of (z − Xθ̂), where z is the measured
response variable in the time domain, X is a matrix consisting of column vectors of the
regressors in the time domain, and θ̂ is the model parameter vector estimated previously
in Equation (2.60) using complex least-squares regression. The bias parameter standard
errors are best estimated by accounting for colored residuals using the method described in
References [19, 99] to compute a more realistic estimate of parameter uncertainty.

2.6.1.3 Time-Domain Output-Error Method

The output-error method is a maximum likelihood estimator that minimizes the weighted
sum of squared differences between measured aircraft outputs and modeled outputs computed
through numerical integration of the proposed dynamic model [19, 20]. This method is a
more computationally intensive, iterative, nonlinear optimization problem. Consequently,
the output-error method is not well suited for model structure selection and requires using
an assumed model structure or a model structure developed using equation-error methods.
The output-error method accounts for zero-mean, white, Gaussian measurement noise, but
assumes that there is no process noise (i.e., no disturbances such as atmospheric turbulence).
Because the output-error is the minimization criterion, the models produced using output-
error parameter estimation generally result in more accurate prediction of aircraft outputs,
and thus, more accurate flight simulations. The following overview of the output-error
method is presented considering the deterministic nonlinear dynamic system:

ẋ = f (x(t),u(t),θ) , x(0) = x0 (2.63)

y = g (x(t),u(t),θ) (2.64)

where the state equations f and output equations g can be nonlinear functions of states
x(t), inputs u(t), and unknown parameters θ, subject to initial states x0. The N discrete
measurements of the dynamic system are

z(k) = y(k) + ν(k), k = 1, 2, ..., N (2.65)

where the system output y is corrupted by zero-mean, Gaussian, white measurement noise
ν with measurement noise covariance R.

To minimize the output-error between the measured output z and modeled output y,
the output-error cost function J(θ) is formulated as

J(θ) =
1

2

N∑
k=1

[z(k)− y(k)]T R̂
−1

[z(k)− y(k)] (2.66)
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for a given estimate of the measurement noise covariance R̂ [19]. The R̂ matrix, which
essentially weights each output based on noise level and signal units, is estimated as:

R̂ =
1

N

N∑
k=1

[z(k)− y(k)] [z(k)− y(k)]T (2.67)

Minimization of J(θ) constitutes a nonlinear optimization problem that can be approached
using the modified Newton-Raphson (Gauss-Newton) method. Optimization proceeds by
computing the cost function gradient and Hessian estimate:

∂J

∂θ
= −

N∑
k=1

[
∂y(k)

∂θ

]T
R̂

−1
[z(k)− y(k)] (2.68)

∂2J

∂θ2 ≈
N∑
k=1

[
∂y(k)

∂θ

]T
R̂

−1
[
∂y(k)

∂θ

]
(2.69)

The estimated parameters θ̂ at each jth iteration are then updated by

∆θ̂ = −

[(
∂2J

∂θ2

)
j

]−1(
∂J

∂θ

)
j

(2.70)

where the new parameter estimates are θ̂j+1 = θ̂j +∆θ̂. A more detailed description of this
output-error method algorithm is presented in Reference [19].

The theoretical best accuracy of output-error parameter estimates is given by the Cramér-
Rao lower bounds for the parameter standard errors:

s(θ̂) =

√√√√diag

([
∂2J

∂θ2

]−1

θ=θ̂

)
(2.71)

The standard Cramér-Rao bounds are generally too optimistic because the output residuals
are typically colored when using flight data. A method to correct for the presence of colored
residuals and compute a more realistic estimate of parameter uncertainty is described in
References [19, 99].

As an example of the setup of an output-error estimation problem, consider the following
lateral-direction aerodynamic model structure from Reference [71] including bias parameters:

CY = CYβ
β + CYp p̂+ CYr r̂ + CYδa

δa + CYδr
δr + CYo

Cl = Clββ + Clp p̂+ Clr r̂ + Clδa
δa + Clδr

δr + Clo

Cn = Cnβ
β + Cnp p̂+ Cnr r̂ + Cnδa

δa + Cnδr
δr + Cnβ2

β2 + Cnβ3
β3 + Cno
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When applying the output-error method, typically the parameters within multiple dynamics
equations are estimated simultaneously, which differs from the equation-error method where
the set of parameters for each force or moment coefficient are usually estimated separately. In
this example, the unknown parameters in the CY , Cl, and Cn model structures are estimated
together and, accordingly, the unknown model parameter vector is:

θ =
[
CYβ

CYp CYr CYδa
CYδr

CYo Clβ Clp Clr Clδa
Clδr

Clo

Cnβ
Cnp Cnr Cnδa

Cnδr
Cnβ2

Cnβ3
Cno

]T
The lateral-directional outputs, for which the error will be minimized, can be selected as
β, p, r, ϕ and ay. The lateral-directional control inputs are δa and δr, both of which should
be varied in an informative flight maneuver that excites the lateral-directional dynamics.
Initial model parameter values obtained using the equation-error method or prior informa-
tion and initial conditions from the flight maneuver also need to be specified. The modified
Newton-Raphson method can then be applied to estimate the unknown model parame-
ters by minimizing the weighted sum of squared differences between measured outputs and
predicted outputs, which involves integration of the rotational kinematics equations [Equa-
tions (2.4)-(2.6)], translational dynamics equation [Equations (2.7)-(2.9)], and rotational
dynamics equations [Equations (2.30)-(2.32)]. Because only the lateral-directional dynamics
are being modeled in this example, the longitudinal states (V , α, q, θ), as well as the lon-
gitudinal force and moment coefficients (CX , CZ , Cm), from the collected flight data can be
substituted into the dynamics equations during the integration process.

2.6.2 Model Structure Determination

Two common methods for model structure determination are multivariate orthogonal
function (MOF) modeling [19, 102] and stepwise regression [19, 103]. First, a set of candi-
date model terms is postulated. The candidate model terms are often defined as polynomial
expansions of pertinent explanatory variables for the particular response, including nonlinear
and cross terms; although, the model structure determination algorithms support using any
arbitrary nonlinear functions of the explanatory variables specified by the user as candidate
model terms. For MOF modeling, the predefined set of candidate regressors is orthogonal-
ized which allows independent assessment of the potential of each orthogonalized candidate
regressor to model the response variable. The orthogonal regressors are then ranked based
on their ability to improve the model, and the model terms that significantly contribute to
model effectiveness are retained in the model. For stepwise regression, the candidate terms
are added or removed from the model one-by-one to assess the significance of including each
model term. Linear terms in the polynomial model structure are generally incorporated
first, followed by nonlinear terms, which is referred to as modified stepwise regression. An
effective strategy used to efficiently and effectively develop model structures is a combina-
tion of MOF modeling and stepwise regression. First, MOF modeling is executed for several
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separate flight maneuvers. The model structures developed from each flight maneuver are
compared, and the model terms appearing in a majority of the maneuvers are retained in
the model. As a final step, the MOF results are reviewed by an analyst using stepwise re-
gression to assess whether to include or exclude fringe model terms. This combined strategy
was applied to the aircraft system identification efforts described in Part I. The remainder
of this subsection provides a more in-depth description of the MOF and stepwise regression
modeling techniques.

2.6.2.1 Multivariate Orthogonal Function (MOF) Modeling

The MOF modeling approach [19, 102] starts by orthogonalizing a predefined set of can-
didate regressors using an algorithm such as Gram-Schmidt orthogonalization or QR decom-
position. Orthogonal regressors are convenient for model structure development because of
the ability to independently assess the candidate regressors potential to model the response
variable—this facilitates only including model terms that significantly contribute to model
effectiveness. Upon orthogonalization of candidate regressors, the least-squares regression
equation can be reformulated as

z = Pa+ ν (2.72)

where P is a N × np matrix consisting of column vectors holding orthogonal regressors pi

from i = 1, 2, ..., np, and a is a vector of np unknown parameters. The least-squares cost
function becomes

J (a) =
1

2
(z − Pa)T (z − Pa) (2.73)

following Equation (2.55). Similarly, the least-squares solution and uncertainty estimates
emulate the form of Equation (2.56) and Equation (2.57) by substituting in the orthogonal
regressor matrix P , the parameter estimates â, and the modeled response variable vector
ŷ = P â. Because the matrix P TP is diagonal due to the mutual orthogonality of the
regressors, the least-squares estimate for the ith parameter decouples and takes the form

âi =
pT
i z

pT
i pi

(2.74)

to obtain a vector of estimated parameters, â =
[
â1, â2, ..., ânp

]T
. It follows that the least-

squares cost function can be rewritten as

J (â) =
1

2

(
zTz −

np∑
i=1

(
pT
i z
)2

pT
i pi

)
(2.75)

which highlights the fact that the contribution of each orthogonal regressor to improve
the least-squares model fit can be assessed independently from other orthogonal regressors
in a particular model structure. This allows a model structure to be identified without
iteration [19].
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Using the above developments, the regressors are ranked from highest to lowest decrease
in the mean squared fit error (MSFE):

MSFE =
1

N
(z − ŷ)T (z − ŷ) (2.76)

This is reflected by the
(
pT
i z
)2
/pT

i pi term for each regressor in Equation (2.75). In other
words, the regressors are ranked from highest to lowest ability to improve the model. Can-
didate regressors are brought into the model structure in this rank order.

Deciding which terms to include in the final model can then be done using one or more
statistical metrics. A common threshold for MOF modeling is to minimize the predicted
squared error (PSE) [19, 104]. The PSE is the sum of the MSFE [Equation (2.76)] and a
model complexity penalty related to the number of terms included in the model

PSE = MSFE + σ2
max

p

N
(2.77)

where p is the number of terms in the current model structure and σ2
max is an estimate of the

upper-bound of the mean squared error for the model prediction of data that were not used
to develop the model. The quantity σ2

max can be estimated using the variance of measured
responses between repeated data points in wind-tunnel experiments or from the variance
between the measured response z and mean measured response z̄:

σ2
max =

1

N − 1

N∑
i=1

[z(i)− z̄]2 (2.78)

When the orthogonalized regressors are ranked as stated above, the PSE metric is guaranteed
to have a single global minimum [19].

Another statistical metric that has been used as a stopping criterion for MOF modeling
is the coefficient of determination R2 [105, 106]. The R2 metric quantifies the model fit
by characterizing the fraction of variation of the response variable about its mean that is
described by the model. The R2 metric, which is generally expressed as a percentage, is
calculated as:

R2 =
ŷTz −Nz̄2

zTz −Nz̄2
(2.79)

The R2 metric will typically increase with addition of new orthogonal model terms. Conse-
quently, it is important that each model term added on the basis of the R2 metric significantly
improves modeling performance. A common threshold to justify addition of a given model
term is an R2 increase of 0.5% [19]. This means that the model term describes at least 0.5%
of the total variation about the mean response.

For this dissertation, both PSE and R2 were used as a cutoff threshold for candidate
model terms to include in the final model structure. After determining the model terms to
include in the model structure, the final parameter values were estimated using least-squares
regression with ordinary regressors. The MOF modeling process used for model structure
determination is summarized in Figure 2.22.
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Orthogonalize candidate regressors.
↓

Sort orthogonalized regressors by greatest to least
reduction in MSFE.

↓
Select model terms with large MSFE reduction

based on the PSE and R2 criteria.
↓

Estimate model parameters in ordinary regressor space.

Figure 2.22: Summary of the MOF modeling process used for model structure determination.

2.6.2.2 Stepwise Regression

The stepwise regression algorithm used here for model structure development is based
on the algorithm described in Reference [103]. This algorithm is a combination of forward
selection and backwards elimination of candidate regressors where a single regressor is either
added to or removed from the model at each iteration. The procedure is started with only
a bias parameter included in the model structure. The first step is adding the candidate
regressor with the highest correlation to the unmodeled portion of the response variable into
the model. The process is continued by adding excluded candidate model terms with the
highest partial correlation ri into the model. For the ith model term excluded from the
model structure, ri is calculated using the equation for the correlation coefficient. For two
arbitrary vectors ξi and ξj, the correlation coefficient rij is defined as:

rij =
(ξi − ξ̄i)

T (ξj − ξ̄j)√
(ξi − ξ̄i)T (ξi − ξ̄i)

√
(ξj − ξ̄j)T (ξj − ξ̄j)

(2.80)

For stepwise regression, ξi represents the ith model term residual vector resulting from being
regressed on the terms included in the current model, with mean denoted ξ̄i; ξj represents
the difference between the measured response variable and the response modeled by the
current regressors in the model, with mean denoted ξ̄j.

At each stepwise regression iteration, terms included in the model are considered to
be removed from the model if their partial F -statistic, F0i , falls below a cutoff threshold
Fout = F (αp, 1, N − np) prescribed by a partial F -test for significance at an αp significance
level with np included model regressors. For the ith model term included in the current
iteration of the model structure, F0i is calculated as

F0i =
θ̂2i

s2(θ̂i)
(2.81)

where θ̂i is the respective parameter estimate and s2(θ̂i) is the respective parameter variance.
In the statistics literature, the significance level αp is commonly chosen as αp = 0.05, or
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95% confidence that a model term is significant; however, this threshold has been noted to
admit a large number of model terms that lack physical justification for aircraft modeling
problems (which often have a large number of data points relative to the number of estimated
model parameters). Over-parameterizing a model is undesirable because the model can
yield unrealistic response predictions and unnecessary curvature. To mitigate this problem,
the SIDPAC [19, 50] stepwise regression algorithm includes a conservative constant partial
F -statistic cutoff value of Fout = 20 which, for a large value of N − np, corresponds to
αp = 0.000008 or 99.9992% confidence that a model term is significant. This can also be
interpreted as requiring the parameter estimate magnitude to be at least

√
20 ≈ 4.5 times

greater than the estimated standard error for a candidate regressor to remain in the model,
meaning that the parameter estimate has a very high probability of being nonzero. The
best significance level to use is somewhat subjective and depends on the particular modeling
problem.

The stepwise regression algorithm can be run automatically or manually. Automatic
execution is more efficient and is generally effective in predicting dominant terms, but can
have more difficulty determining which borderline terms are worthy of inclusion in the model
structure (a task that would be more obvious to a subject matter expert based on physical
insight). Manual execution of the stepwise regression algorithm allows a subject matter
expert to be given the ability to add insight into the modeling process by adding or removing
model terms based on physical vehicle insight and statistical metrics introduced previously.

2.6.2.3 Model Structure Determination in the Frequency Domain

The MOF modeling and stepwise regression model structure identification algorithms
that use real-valued data in the time domain can also be formulated in the frequency
domain, while still allowing nonlinear model terms to be considered for the model struc-
ture [100, 107, 108]. The key modifications, developed in References [107, 108] for MOF
modeling, are applied to the candidate regressor and response variable data used in each
model structure selection algorithm. The nonlinear candidate regressors are assembled in
the time domain using detrended explanatory variables and are subsequently detrended
again before transforming the candidate regressor data into the frequency domain. After
the Fourier transform is applied to the candidate regressor data, the real and imaginary
components of the complex candidate regressor matrix X̃ are concatenated to form a real
vector:

X ′ =

[
Re(X̃)

Im(X̃)

]
(2.82)

Similarly, the detrended response variable vector is transformed to the frequency domain
and then the real and imaginary components of the complex response variable vector z̃ are
concatenated to form a real vector:

z′ =

[
Re(z̃)
Im(z̃)

]
(2.83)
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The real candidate regressor matrix X ′ and response variable vector z′ assembled from com-
plex data are then used in the standard model structure identification algorithms described
earlier. This approach also applies for parameter estimation in the frequency domain with
nonlinear model terms.

2.6.2.4 Data Collinearity

Within the model structure determination step, it is important to avoid including terms
in the model structure that are highly correlated. Inclusion of highly-correlated terms in
a model can result in data collinearity, or correlation between model terms high enough to
cause corrupted model identification [19]. Data collinearity causes parameter estimation de-
ficiencies because the effects of certain highly-correlated model terms on the output response
cannot be distinguished, resulting in inaccurate parameter estimates and high uncertainties
from the poorly conditioned estimation problem. The identified model structure should be
examined for evidence of data collinearity using correlation metrics (e.g., see Section 7.2.2
and References [19, 20, 109]) before proceeding to estimate the final model parameter val-
ues. If data collinearity is detected, the model structure should be adjusted or the flight-test
experiment should be redesigned; alternatively, a priori information can be used to resolve
data collinearity problems. The topic of data collinearity is discussed further in Sections 6.4.2
and 7.2.2.

Note that the MOF modeling approach automatically protects against data collinearity
when selecting a model structure. If there is high correlation between candidate regressors,
after the first candidate regressor is orthogonalized, any other highly-correlated candidate
regressors will be close to zero after passing through the orthogonalization process, which
will prevent the latter model terms from being included in the model structure [19]. In
other words, this prevents highly-correlated model terms from being included in the model
together.

2.6.3 Model Validation

After estimating model parameters, model validation procedures are used to determine
whether the identified model will be satisfactory for its intended use. This includes assessing
the ability of the model to predict aircraft motion and inspecting identified model parameters.

Validation flight data withheld from model identification are used to assess model pre-
diction accuracy. This is best accomplished using flight data with input waveforms differing
from the modeling data that also excites the aircraft dynamics and perturbs the aircraft
through a substantial portion of the explanatory variable space characterized by the model
to provide a rigorous prediction test. The model should provide a close match to the vali-
dation flight data, with a similar level of accuracy as the data used for model identification.
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The prediction quality of the model can be further assessed by analyzing the residual char-
acteristics graphically and using metrics such as the root-mean-square error (RMSE):

RMSE =

√
(z − ŷ)T (z − ŷ)

N
(2.84)

The RMSE metric can be given further interpretability by normalization. The normalized
root-mean-square error (NRMSE), expressed as a percentage and normalized by the range
of response variable measurements used to identify the model

range(zm) = max(zm)−min(zm) (2.85)

is calculated as:

NRMSE = 100× 1

range(zm)

√
(z − ŷ)T (z − ŷ)

N
(2.86)

The range-normalized NRMSE is a good metric for model validation because it

1. permits quantitative assessment and comparison of the model fit and prediction per-
formance,

2. allows a fair comparison of longitudinal and lateral-directional model response quality
(because longitudinal responses are generally biased above or below zero, whereas
lateral-directional responses are generally centered around zero), and

3. is straightforward to interpret as a percent error quantity.

The range-normalized NRMSE is used to quantify the prediction capability of the identified
models for much of the work described in this dissertation. Although an NRMSE threshold
value to determine if a model is adequate depends on the aircraft and application, a general
rule of thumb to strive for is obtaining NRMSE values of less than 5% to 10% for most
model outputs, which could, respectively, be used as desired and adequate model performance
thresholds. It is also important to ensure that the corresponding modeling and validation
NRMSE values for each output response are similar to provide confidence that the model
has good prediction capability.

The individual model parameters are also assessed to ensure that their values agree
with physical intuition and that the parameter uncertainty values are within a reasonable
bound. Because the models are identified for small, low-cost aircraft with inexpensive in-
strumentation, the model parameters are expected to have a higher uncertainty compared to
larger aircraft with more expensive, higher-quality instrumentation systems. The increased
uncertainty in the parameter estimates can be partially mitigated by performing several re-
peated maneuvers for model identification, which is typically inexpensive and easy to justify
for small, low-cost aircraft. Despite the higher uncertainty, the flight-derived models are
generally more accurate than models developed using other computational or experimental
techniques and are usually fit for the purpose of the intended model-based application.
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2.7 Small Fixed-Wing Aircraft Modeling Applications

Multiple fixed-wing aircraft system identification advancements have been enabled by the
core set of techniques and tools described above. These applications include: remote uncorre-
lated piloted inputs [43], aerodynamic modeling in a spin [44], aero-propulsive modeling [24],
and nonlinear dynamic modeling without mass properties [26]. The first two applications
were collaborative efforts primarily executed by James Gresham, and are summarized in
this section (with many additional details provided in References [43, 44] and Gresham’s
dissertation [56]). The latter two applications were efforts primarily executed by the author
and are presented in Chapter 3 and Chapter 4, respectively.

2.7.1 Remote Uncorrelated Piloted Inputs

During flight-test experiments, it is sometimes advantageous for a human pilot to per-
form system identification maneuvers, as opposed to injecting computer-generated inputs.
For example, piloted input excitations are appealing when cost or programmatic speed is
important because they circumvent the engineering effort needed to design and integrate
an automated excitation input injection capability for a new aircraft. Multistep inputs,
which were discussed in Section 2.3, are easy for a pilot to execute but the information con-
tent in the data is deficient compared to using orthogonal phase-optimized multisine inputs.
Reference [43] investigated a remote uncorrelated pilot input (UPI) technique that facili-
tates efficient collection of high-quality flight data for dynamic model identification with a
ground-based test pilot. Multi-axis UPI excitations, which were first developed and applied
for manned aircraft in References [86–88], are composed of pseudo-random piloted excitation
of the aircraft dynamics in all axes simultaneously. In essence, the UPI is an approximation
of computer-generated orthogonal phased-optimized multisine inputs executed by the pilot
with the objective to decorrelate the inputs and excite the aircraft over a broad range of fre-
quencies consistent with the aircraft dynamics. The UPI maintains many of the advantages
of multisine inputs, but does not require the engineering development effort to integrate au-
tomated control inputs. Although the UPI is an effective technique, pilot training is required
to properly execute the inputs and the inputs are generally not mutually orthogonal, as is
the case for a computer-generated multisine.

The advancements presented in Reference [43] included the development of procedures
and best practices for application of the remote UPI technique to small, unmanned, fixed-
wing aircraft. The remote UPI technique was demonstrated and refined with a novice and an
expert ground-based pilot. The novice pilot had limited prior experience flying RC aircraft
and had no formal flight-test training; the expert pilot had significant experience flying RC
aircraft and was a trained flight-test professional. Simulator-based pilot training with the RC
transmitter used for flight testing was found to be essential for pilots to build muscle memory
for generating remote UPI excitations with proper input character in flight experiments.
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Figure 2.23 shows the near real-time pilot display used for the pilot training simulations,
which included plots of the normalized pilot input signals as well as the input signal frequency
spectra and pairwise cross plots with the correlation coefficient. The simulator training
objectives included creating diverse frequency content for each control effector within the
frequency band of common aircraft rigid-body dynamics (e.g., below 2 Hz), achieving low
absolute values of the pairwise correlation coefficient r (e.g., |r| < 0.3), and distributing
control signal data throughout the cross plots. The most successful training technique was
to perform a three-axis maneuver, while focusing on improvement of one control input at
a time. Using this training philosophy and the near real-time visual feedback shown in
Figure 2.23, both pilots’ abilities to successfully perform the remote UPI maneuver rapidly
improved; each pilot achieved consistent inputs meeting the training objectives in less than
10 simulated UPI excitations.

Figure 2.23: Remote UPI simulator training display [43].
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Following the simulator-based training campaign, both pilots successfully executed the
remote UPI maneuvers in flight. The added challenge during flight experiments included
keeping the aircraft near its original trimmed flight condition with the limited physiological,
auditory, and visual cues available to a ground-based pilot. This challenge was overcome by
occasionally referencing the attitude display on the ground station telemetry data, and could
be further aided by a future first person view (FPV) video feed. With practice, the pilots
produced uncorrelated inputs with broad frequency content while remaining in the desired
operational envelope. The models obtained using the remote UPI maneuver were found to
have similar predictive performance to models developed using computer-generated multisine
inputs, as well as piloted and automated multistep inputs (which are less time-efficient and
less information-rich), providing confidence that the remote UPI flight data were well-suited
for system identification. The remote UPI technique was validated as an efficient excitation
technique that can be applied in nonlinear aerodynamic regions without the complications
of incorporating computer-generated inputs.

2.7.2 Spin Aerodynamic Model Identification

Aerodynamic model development for spinning motion is typically accomplished from
data collected in wind-tunnel testing or using CFD. Reference [44] presented an alternative
method for identifying a nonlinear, quasi-steady, coupled, aerodynamic model for a fixed-
wing aircraft in a spinning descent using flight-test data. Identification of a model for the
aircraft dynamics and control authority in the neighborhood of a stable, oscillatory spin is
helpful to accurately describe and simulate the motion of an aircraft for spin path control law
development. One related application was development of a robust, model-based spin path
control law for use in a flight termination system for an unmanned fixed-wing aircraft [80].
Although the novel control scheme proposed in Reference [80] was effective in controlling a
descending spiral trajectory toward a designated impact area using a model developed for
nominal wings-level flight, it was also helpful to have a dedicated spin flight dynamics model
to compare to the nominal flight dynamics model. In Reference [44], a flight experiment
was designed and conducted using automated orthogonal phase-optimized multisine inputs
active on the elevator, aileron, and rudder control surfaces while in a stable spin to excite
all rigid-body dynamics concurrently. The efficient excitation capability of multisine inputs
is well suited for the short duration stall-spin maneuvers as well as the need to characterize
numerous interaction effects. For each spin maneuver, the pilot progressed through a series
of scripted test inputs as follows:

1. Initiate benign, wings-level, power-off stall by gradually applying 70% elevator deflec-
tion trailing-edge up and applying aileron and rudder inputs as required to level the
wings.

2. At the stall break, initiate prescribed spin inputs of 70% left rudder, 70% trailing-edge
up elevator, and 50% left aileron.
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3. After two spin rotations, initiate multisine excitations.

4. At a predetermined safe recovery altitude, terminate the multisine excitations and
recover to resume normal flight.

The precise control surface deflections were obtained during test maneuvers by modifying
the pilot commanded input limits to allow the pilot to maintain a precise spin by holding
the maximum control inputs on the RC transmitter. These input settings were selected to
ensure the controls were not saturated with the multisine inputs active and that the aircraft
remained in a spin during multisine excitations. The flight path from a nominal CZ-150 spin
flight maneuver is shown in Figure 2.24 with the aircraft orientation depicted at 1-second
intervals.

Figure 2.24: Flight data from a nominal CZ-150 spin maneuver [44].

The spin model was developed using the flight data from several repeated spin maneuvers
with multisine excitations active on each control surface. The short maneuver length and
aerodynamic complexity of the spinning flight regime necessitated the use of data from
several flight maneuvers for adequate spin modeling. Stall-spins are aggressive out-of-plane
flight maneuvers best described by a nonlinear flight dynamics model where the equations of
motion are fully coupled due to complex aerodynamics and rotating reference frame effects.
Initially, the typical explanatory variables used to develop an aerodynamic model for a fixed-
wing aircraft (i.e., α, β, p, q, r, δa, δe, δr) were considered for spin modeling; however, the
resulting model was inadequate for describing the aircraft dynamics in a spin. Inspired
by previous spin aerodynamic modeling work leveraging wind-tunnel testing [110–112], one
essential modification to adequately characterize the spin aerodynamics was to transform
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Figure 2.25: Decomposition of body-axis rotation rates in a perturbed spin [44].

the body-axis angular velocity to states better suited to describe the spinning motion. As
depicted in Figure 2.25, the body-axis angular velocity vector ωb was decomposed into
components along (ωnom) and orthogonal to (ωosc) the instantaneous wind vector. The
figure shows an aircraft perturbed from a nominal spin to visualize the angular velocity
vector components, which is important because the modeling approach excites the aircraft
dynamics around the nominal spin states. This results in four new explanatory variables: the
wind-axis angular rate Ω and the complementary body-axis oscillatory components posc, qosc,
and rosc, which replace the body-axis angular velocity components for model identification.
This transformation, based on aerodynamic spin theory, resulted in significantly improved
modeling results. Furthermore, based on demonstrated spin model improvement by including
unsteady effects [113], α̇ and β̇ terms were considered, which significantly improved the
predictive performance of the dynamic model. Using these additional explanatory variables,
as well as α, β, δa, δe, and δr, to represent the aerodynamic force and moment coefficients
in a nonlinear polynomial expansion resulted in an accurate aerodynamic spin model valid
around a perturbation range from the nominal spin. The model captures longitudinal and
lateral-directional coupling, post-stall effects, and spin dynamics.

After identification of the spin aerodynamic model, the model prediction performance
was assessed using spin flight data withheld from model identification and was compared
to the model performance of a nonlinear aerodynamic model of the aircraft developed for
nominal trimmed, steady, level flight. The spin aerodynamic model adequately matched
validation spin flight data and substantially outperformed the nominal model which predicted
an exaggerated aircraft response in a spin. This illustrated the utility and necessity of the
proposed spin aerodynamic modeling approach to accurately characterize the spin dynamics.
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Gahan, Wade Foster, Patrick Corrigan, and Taylor Ransford. The research in this chapter
was advised by Craig Woolsey who offered many helpful suggestions throughout the research
process and manuscript preparation. The author gratefully acknowledges and appreciates
these efforts which made the research described in this chapter possible.



Chapter 3

Aero-Propulsive Modeling for
Propeller Aircraft

This chapter describes methods to identify an integrated propulsion-airframe aerody-
namic model and a decoupled propulsion model for fixed-wing aircraft with propellers using
flight data. Propulsion aerodynamics and airframe aerodynamics for propeller aircraft are
usually modeled separately, which fails to describe unavoidable interaction effects and pro-
peller performance deviations when integrated on an aircraft. Two novel flight-test system
identification approaches are presented to develop flight dynamics models with improved
characterization of propeller aerodynamics compared to conventional methods. Orthogonal
phase-optimized multisine inputs are applied to both the control surfaces and propulsion sys-
tem to generate data with high-quality information content for model identification. Propul-
sion explanatory variables derived from propeller aerodynamics theory combined with tradi-
tional aircraft modeling variables yield accurate aero-propulsive modeling results and provide
propeller performance estimates which are compared to isolated propeller wind-tunnel data.
An assessment of model adequacy using flight maneuvers withheld from model identification
indicates that the models have good prediction capability. The chapter describes application
of these methods to a small unmanned aircraft, but the methods are generalizable to many
propeller-driven aircraft. This work has been published as a conference paper [23] and a
journal article [24].

The chapter is organized as follows: Section 3.1 presents the motivation for this re-
search. Propeller aerodynamics background information informing the modeling approach
is described in Section 3.2. Section 3.3 describes the flight-test experiment design. The inte-
grated and decoupled aero-propulsive modeling methodologies are developed in Section 3.4.
Sections 3.5-3.6 provide sample modeling results for each respective modeling method.

3.1 Research Motivation

Fixed-wing aircraft flight dynamics simulations generally consist of a bare airframe aero-
dynamic model and a separate propulsion model. Bare airframe aerodynamic models are
commonly developed using CFD, wind-tunnel testing, and/or flight testing either without
propulsors or with propulsors operating at a constant throttle setting. The propulsive forces
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and moments are generally characterized using analytical techniques, CFD, or ground test-
ing. The separate airframe aerodynamic model and propulsion model are then combined
to predict the applied forces and moments exerted on the aircraft. This assumes that the
airframe and propulsion system do not interact or have any influence on one another. For
many jet transport aircraft in a cruise configuration, the engine intake and exhaust have lim-
ited interactions with the airframe; however, assuming that there are no propulsion-airframe
interactions present for propeller-driven aircraft lacks physical justification. Tractor pro-
pellers, mounted on the front of the aircraft, will produce slipstreams that flow directly
over the airframe; pusher propellers, mounted on the rear of the aircraft, operate in the
airframe wake. In many cases, the propeller-induced flowfield also interacts with control
surfaces compounding aero-propulsive interactions. This means that there are uncharacter-
ized propulsion-airframe interaction effects, as well as unaccounted for propeller performance
deviations due to the presence of the airframe, in classical model build-up strategies using a
separate propulsion and airframe aerodynamic model.

Although propeller aerodynamics are often experimentally characterized using ground
testing (e.g., see References [114–116]), several previous works have proposed methods for
deriving propeller models using flight data. Flight-test thrust estimation techniques used for
aircraft performance analysis are described in Reference [117]. Force sensors were used in
References [118–125] to measure thrust directly in flight. References [126, 127] used state es-
timation filters to identify thrust model parameters in simulated flight. Reference [10] used
a system identification approach to identify dimensional throttle control derivatives using
flight data for an aircraft with distributed electric fans. A flight-based system identification
approach for eVTOL aircraft proposed in Reference [32] uses individual propeller rotational
speeds as explanatory variables to identify models for all dimensional body-axis force and
moment components (see Chapter 9). Previous research for multirotor aircraft has also char-
acterized propeller-driven vehicles through both time-domain and frequency-domain system
identification methods using flight data [7, 9, 75, 128–136].

Developing a combined propulsion and airframe aerodynamic model is a preferable ap-
proach when simulation accuracy is given more importance than bare-airframe aerodynamic
characterization [19]. Wind-tunnel studies have developed combined propulsion and airframe
aerodynamic, or aero-propulsive, models for distributed propulsion eVTOL aircraft with sig-
nificant propulsion-airframe interactions [28, 30, 137] (see Chapter 6 and Chapter 8). Other
wind-tunnel research has studied aero-propulsive interaction effects for fixed-wing aircraft
with distributed electric fans mounted on the wing [138, 139]. Reference [88] proposed
methods for modeling the combined effects of propulsion and airframe aerodynamics for a
jet fighter aircraft in flight; the engine rotational speed was included as an explanatory vari-
able in a dimensional x-axis force model and throttle setting was varied using step inputs
commanded by the pilot. Reference [106] described a method for modeling combined propul-
sion and airframe aerodynamics for a propeller-driven aircraft in a dimensional x-axis force
model using advance ratio as an explanatory variable. Reference [140] used throttle step
inputs to decorrelate propulsion effects from other modeling variables and proposed defin-
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ing the propeller advance ratio as a flight condition variable when identifying local linear
aerodynamic models.

This work combines aircraft system identification methods and propeller aerodynamics
principles to develop methods for aero-propulsive modeling of fixed-wing aircraft with pro-
pellers using flight data. The modeling objectives are to characterize aero-propulsive interac-
tion effects, investigate installed propeller performance differences, and develop an accurate
flight dynamics simulation for the studied aircraft. Two novel aero-propulsive modeling ap-
proaches are presented, each with different advantages and scenarios where one approach
may be preferred. The first approach develops an integrated propulsion and airframe aero-
dynamic model. The second approach develops a decoupled propulsion model characterizing
installed propeller performance to accompany a previously identified airframe aerodynamic
model. Both methods develop mathematical models from experimental flight data using
aircraft system identification techniques [19, 20].

3.2 Propeller Aerodynamics Background

This section provides a theoretical background on axial propeller aerodynamics and pro-
peller aerodynamics at nonzero incidence angles. Understanding of this background infor-
mation is essential for postulating the aero-propulsive modeling strategies developed in this
chapter, as well as interpreting the presented results.

3.2.1 Axial Propeller Aerodynamics

Well-established methods exist for predicting propeller performance analytically and em-
pirically. Theoretical techniques include momentum theory, blade element methods, and
vortex theories [141]. Experimental techniques typically consist of developing data tables or
functional representations from wind-tunnel or thrust stand data. For propellers operating
in airflow normal to the propeller disk, the propeller produces a net thrust force and a net
aerodynamic torque acting along the axis of rotation [142]. The individual propeller blades
can be thought of as rotating wings which each produce a lift force perpendicular to the rel-
ative flow direction and a drag force parallel to the relative flow direction [73]. The summed
lift forces produced by the propeller blades is the propeller thrust T . The summed drag
forces result in a net moment about the propeller shaft opposite to the direction of rotation,
which is the propeller aerodynamic torque Q.

Propeller performance data are generally presented in the form of the thrust coefficient,

CT =
T

ρn2D4
(3.1)
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and torque coefficient,

CQ =
Q

ρn2D5
(3.2)

(or equivalently by power coefficient CP = 2πCQ). The thrust and torque coefficients
can be shown through dimensional analysis to be a function of advance ratio, propeller
blade Reynolds number, and propeller tip Mach number for a given fixed-pitch propeller
design [142, 143]. For propellers with variable-pitch hubs, thrust and torque also vary with
blade pitch angle. Because propeller similitude relations to scale propeller aerodynamics are
limited [144], due to differences in boundary layer characteristics [145], propeller character-
istics must be tested at full-scale to properly capture all pertinent aerodynamic effects. This
provides additional motivation for the flight-test-based propeller characterization techniques
presented in this work to be used for large aircraft because full-scale propeller wind-tunnel
testing is cost prohibitive.

Advance ratio, which relates to the linear distance traveled by the propeller in one revo-
lution, is defined as:

J =
V

nD
(3.3)

Advance ratio generally has the largest effect on fixed-pitch propeller aerodynamics, and
accordingly, thrust and torque coefficient representations are commonly expressed as only
a function of advance ratio. Representing propeller aerodynamics only as a function of
advance ratio for a fixed blade pitch angle requires that airflow is parallel to the propeller
axis of rotation, as well as the assumptions that viscous and compressibility effects are
negligible [142].

Reynolds number is a dimensionless quantity which corresponds to the ratio of iner-
tial to viscous forces acting on a body. For large aircraft propellers, the propeller blade
Reynolds number effects are minimal and can generally be neglected. For small propellers,
the Reynolds number is lower, indicating that the viscous forces become important. This
effect is manifested as a thicker boundary layer, which is more likely to result in flow sepa-
rated from the propeller surface [145] and results in propeller performance degrading at lower
Reynolds number [114, 115]. Following the definition given in Reference [115], the propeller
blade Reynolds number Re is

Re =
ρVpc

µ
(3.4)

where c is the propeller chord at 75% blade length, µ is the dynamic viscosity, and Vp =
0.75πnD is the propeller blade linear speed at 75% blade length. Mach number is the ratio
of flow speed to the speed of sound a, which physically represents the ratio of inertial forces
to forces related to compressibility of the fluid [145]. The propeller tip Mach number, which
quantifies the averaged compressibility effects, is defined as [146]:

Mtip =
πnD

a
(3.5)
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For the normal operating range of the propellers used in this chapter, the propeller blade
Reynolds number is high enough and the tip Mach number is low enough such that their
effects are negligible.

3.2.2 Propeller Aerodynamics at Nonzero Incidence Angle

When the airflow relative to a propeller is not parallel to the axis of rotation, the propeller
will produce auxiliary forces and moments other than the axial thrust and torque [142]. In
this condition, periodic variation in propeller blade local angle of attack results in a non-
uniform load distribution on the propeller disk. Thus, in a general case of arbitrary flow
direction relative to the propeller disk, propeller forces and moments will also be dependent
on the orientation of the propeller axis of rotation relative to the freestream velocity, in
addition to advance ratio, propeller blade pitch angle, propeller blade Reynolds number,
tip Mach number, and the propeller design. This angle between the freestream airflow and
propeller rotation axis is referred to in this work as the propeller incidence angle, ip, shown
in Figure 3.1. The value of ip is zero when airflow is normal to the propeller disk, opposing
the direction of axial thrust.

𝑉

𝑧𝑝

𝑖𝑝

𝑥𝑝

Figure 3.1: Propeller incidence angle definition and coordinate system.

One additional auxiliary force and one additional auxiliary moment are predicted theoret-
ically from the periodic lift and drag imbalance on the individual propeller blades [73, 142].
For example, consider a front mounted propeller on a fixed-wing aircraft in level, forward
flight at positive angle of attack, where it is assumed that the propeller axis of rotation
coincides with the body x-axis of the aircraft. The propeller blades moving downward will
produce more lift than the propeller blades moving upward because the downward moving
blade is experiencing a higher angle of attack and relative airspeed. Consequently, the net
center of thrust force is offset from the propeller axis of rotation, favoring the side of down-
ward blade movement. When the net thrust force is transferred to the center of the propeller,
a net yawing moment is observed acting to rotate the downward moving propeller blades
into the oncoming airflow. This effect is often referred to as the P-factor. The individual
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propeller blade drag forces are also larger on the side of downward movement, again due to
the greater relative angle of attack and airspeed, resulting in a net normal force directed
upward for the current example. Thus, a propeller on an airplane at positive angle of attack
will produce a normal force and a yawing moment in addition to the conventional axial
thrust and torque. Following similar reasoning, the example propeller in sideslip will instead
produce a side force and a pitching moment as the auxiliary force and moment.

An analytical treatment of airplane propeller aerodynamics at low angle of attack pre-
sented in Reference [73] agrees with the qualitative conclusions obtained from the preceding
example. For a propeller operating at a small nonzero angle of attack and zero sideslip,
the normal force and yawing moment are shown to be linearly proportional to the propeller
incidence angle; pitching moment and side force coefficients are theoretically zero. It is also
shown that for low incidence angle conditions, small perturbations in incidence angle have
no effect on axial thrust and torque.

The propeller side force Ty, normal force Tz, pitching moment Qy, and yawing moment
Qz can be nondimensionalized in a manner similar to the thrust Tx and torque Qx [73]. The
propeller normal force coefficient CTz , side force coefficient CTy , pitching moment coefficient
CQy , and yawing moment coefficients CQz , are defined as:

CTy =
Ty

ρn2D4
, CTz =

Tz
ρn2D4

, CQy =
Qy

ρn2D5
, CQz =

Qz

ρn2D5
(3.6)

The propeller force and moment sign convention follows the right-handed propeller coordi-
nate system shown in Figure 3.1, where the y-axis is pointed into the page.

Several works have employed methods for theoretically and computationally capturing
propeller aerodynamics at incidence [73, 147–155], however, experimental techniques provide
the most accuracy in revealing the highly complex and nonlinear behavior of high incidence
angle propeller aerodynamics. Early experiments described in References [156, 157] were
conducted for propellers with varying incidence angle as well as flow speed, blade angle, and
rotational speed. These works showed similar trends in propeller force and moment variation
with incidence angle and demonstrated the effectiveness of using the normal component of
advance ratio, J cos ip, for describing propeller aerodynamics at incidence. Reference [158]
extended this work by studying the high incidence angle aerodynamics of isolated propellers
as well as propeller-wing interactions, noting aerodynamic differences due to the presence of
the wing.

The increased interest in efficient jet propulsion subsequent to the above work resulted
in propeller aerodynamics research becoming dormant for several decades, until recently
when increased interest in electrically-powered UAVs, distributed electric propulsion, and
eVTOL designs arose in the aerospace community. In Reference [159], wind-tunnel testing
of a subscale propeller at incidence angles ranging from 0 to 180 deg with flow speeds
up to 29.5 ft/s was conducted. Normal force magnitude was found to be smaller than
axial thrust but still significant at nonzero incidence angles; side force was found to be
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negligible for all incidence angles. Off-axis pitching and yawing moments were found to
be comparable in magnitude to the aerodynamic torque along the axis of rotation at high
incidence angles. Notably, this pitching moment result is not predicted by the propeller
theory described in Reference [73] showing the limitations of the analytical treatment of
propellers at incidence. The significant pitching moment at high incidence angles can be
attributed to non-uniform airflow through the front and rear portions of the propeller relative
to the airflow, which leads to a tendency for the propeller to pitch upward at near 90 deg
incidence angles [159]. Reference [160] followed this work by testing the same propeller
and performed additional testing on multiple 3D printed propeller blades. The measured
propeller force and moment coefficients showed reasonable agreement between the two testing
efforts. Related research efforts conducted by the author that focus on characterization
of high incidence angle propeller aerodynamics using wind-tunnel data are described in
References [36–38] and will be discussed further in Chapter 6.

3.2.3 Research Propeller

The primary research platform used for this research was the CZ-150 aircraft introduced
in Section 2.1.2 and displayed in Figure 2.3. As mentioned previously, the CZ-150 has a
single electric motor mounted on the front of the fuselage which drives an Aero-Naut CAM
carbon folding, fixed-pitch, two-bladed, 16-inch diameter, 8-inch pitch (16x8-inch) clockwise
rotating propeller, as viewed from behind. The assembled propeller is shown in Figure 3.2.
References [116, 161] provide performance data for this propeller configuration acquired in
wind-tunnel testing. The wind-tunnel data collected at a propeller rotational speed of 5000
rpm are displayed in Figure 3.3 and provide a basis of comparison for the results obtained
in this work. A quadratic polynomial fit to the wind-tunnel data is also shown in each plot,
which provides an excellent approximation of CT and CQ as a function of J .

Figure 3.2: CZ-150 Aero-Naut CAM carbon two-bladed 16x8-inch propeller.

3.3 Experiment Design

Orthogonal phase-optimized multisine inputs [19, 82–85], described in Section 2.3.2, are
the excitation input type used for this work. For this study, individual multisine signals were
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Figure 3.3: Aero-Naut CAM carbon two-bladed 16x8-inch propeller wind-tunnel data [116,
161] and polynomial fit.

generated for the throttle, elevator, aileron, and rudder commands (ηt, ηe, ηa, and ηr, respec-
tively). Several harmonic components were assigned to each control surface and propulsor
multisine signal, where the frequency range was set in accordance with frequencies where
the rigid-body dynamic response was expected to manifest. Preliminary estimates of the
dynamic modes for the CZ-150 aircraft were available from initial exploratory flight testing
and informed the experiment design. A maneuver with a 40 second fundamental period T
was designed using a frequency range of 0.05 Hz to 1.825 Hz. Each control surface command
was assigned 19 harmonic components spread throughout the full excitation frequency range.
The throttle harmonic components were focused into lower frequencies to adhere to the lower
bandwidth of the propulsion system. Preliminary ground testing indicated that the propul-
sor rotational speed dynamic response for the CZ-150 aircraft reflected the character of a
first-order dynamic system with a break frequency of approximately 0.7 Hz. Accordingly, the
15 harmonic components assigned to the throttle signal were designed to be 0.675 Hz and
below. Although higher frequency components would need to be included to characterize the
motor dynamics, this effort concentrated on aero-propulsive model identification. Focusing
the propulsion frequencies below the break frequency of the motor dynamics improved the
aero-propulsive modeling results compared to an alternative input design with a larger range
of propulsion frequency components. The input spectra of the multisine signal designed for
each control effector are shown in Figure 3.4a.

The optimized multisine input signals used for system identification are shown in Fig-
ure 3.4b. The displayed signals are shown in a normalized form with a maximum absolute
value of one. This reflects how the signals were injected into the flight controller, where a
gain was subsequently applied to each input signal to obtain a good signal-to-noise ratio for
model identification. System identification flight testing was conducted using the approach
described in Section 2.4. The airplane was flown manually by the pilot without the feedback
control system operating. After trimming the aircraft, the pilot enabled system identifica-
tion inputs using a switch on the RC transmitter. The pilot had the ability to adjust the
amplitude of the control surface excitation inputs between 0% to 100% of the maximum
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(a) Input spectra for each control effector (b) Multisine signals for each control effector

Figure 3.4: Orthogonal phase-optimized multisine excitation input design.

values in real-time. The pilot also had the ability to adjust the amplitude of the throttle
excitation inputs at discrete values of 0%, ±10%, or ±20%, which keeps excitation inputs
near the trim thrust setting and avoids throttle command saturation. Data gathered using
these experimental techniques around the nominal trimmed, steady, level flight condition
for the aircraft provide rich information content for model identification using the methods
described in the following section.

3.4 Aero-Propulsive Modeling Approaches

Two novel approaches for aero-propulsive model development for propeller-driven, fixed-
wing aircraft were investigated. Both approaches involve developing models from flight-test
data gathered using the multisine maneuver described in Section 3.3. The first approach
develops an integrated aero-propulsive model. The second approach identifies a decoupled
propulsion model to accompany a bare airframe aerodynamic model. Each method is devel-
oped in the following subsections.

For each aero-propulsive model development approach, the primary model structure de-
termination methods was the MOF modeling algorithm [19, 102] described in Section 2.6.2.1.
Both PSE and R2 were used as a cutoff threshold for candidate model terms to include in
the final model structure. After the orthogonal regressors were ranked by their ability to
reduce the MSFE, the cutoff for model term addition was chosen to be either the candidate
model term that minimized the PSE or the last term to increase R2 by 0.5%, whichever
resulted in fewer model terms. As a final step, the MOF results were manually assessed
using stepwise regression procedures [19, 103], described in Section 2.6.2.2, to assess whether
to include or exclude fringe model terms. After determining the model terms to include in
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the model structure, the final parameter values were estimated using least-squares regression
with ordinary time-domain regressors (see Section 2.6.1.1).

3.4.1 Approach I: Integrated Aero-Propulsive Modeling

The first approach applied in this work, referred to as “Approach I,” is to identify a
model describing a combined representation of propulsion aerodynamics and airframe aero-
dynamics, as well as their interactions. Identification of an integrated aero-propulsive model
requires gathering flight data with simultaneous excitation of all control surfaces and the
propulsion system in a single maneuver in order to characterize all possible interactions.
Accordingly, the multiple-input multisine maneuver described in Section 3.3 and shown in
Figure 3.4 was executed to acquire modeling data. The CZ-150 flight data used for model
identification are shown in Figure 3.5, where it can be seen that the multi-axis input strat-
egy efficiently excites all aircraft dynamics in a single maneuver around the reference flight
condition of V = 70 ft/s, α = 1 deg, and J = 0.5. Although the input command for the
propulsion system is the throttle signal ηt, the advance ratio J is the more important quan-
tity to describe propeller aerodynamics. The throttle input is more closely related to the
propulsor rotational speed n, but as can be seen in Figure 3.5c, the signals n and ηt are
not in perfect proportion because propulsor rotational speed also depends on airspeed V .
The multi-axis maneuver results in decorrelated velocity and propulsor rotational speed with
good coverage throughout the variable space, which also leads to good coverage of advance
ratio.

The response variables, or dependent variables, are defined as the aircraft nondimensional
force and moment coefficients in the body axes [see Equation (2.13)]. The body-axis force
coefficients are calculated from flight data as shown in Equation (2.16), except without the
thrust T being specified separately (i.e., CX = max

q̄S
). The body-axis moment coefficients

are calculated using the aircraft rotational dynamics equations [Equations (2.10)-(2.12)]
accounting for the transient torque and gyroscopic effects from the propulsion system rotation
aligned with the body x-axis:

Cl =
1

q̄Sb

[
Ixṗ− Ixz ṙ + (Iz − Iy)qr − Ixzpq + ḣx

]
(3.7)

Cm =
1

q̄Sc̄

[
Iy q̇ + (Ix − Iz)pr + Ixz(p

2 − r2) + rhx
]

(3.8)

Cn =
1

q̄Sb
[Iz ṙ − Ixzṗ+ (Iy − Ix)pq + Ixzqr − qhx] (3.9)

The angular momentum of a single propulsor with its axis of rotation along the body x-axis
is

hx = IpΩ (3.10)
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(a) Longitudinal data (b) Lateral-directional data

(c) Propulsion data

Figure 3.5: Multiple-input multisine flight maneuver used for model identification.

where Ip is the moment of inertia of the rotating portion of the propulsor and Ω = 2πn
is the rotation rate in radians per second, with clockwise rotation being positive as viewed
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from behind. It is important to include the propulsor transient torque effects as shown in
Equation (3.7) if the propulsion system is dynamically excited while maneuvering. Similarly,
when using a single propeller while maneuvering, gyroscopic effects should be included as
shown in Equations (3.8)-(3.9). The CZ-150 aircraft studied in this work has a single pro-
peller that is dynamically excited during the system identification maneuver, requiring use
of these equations.

The explanatory variables used to develop a functional representation of the body-axis
force and moment coefficients include angle of attack α in radians; angle of sideslip β in
radians; dimensionless angular rates, p̂, q̂, r̂ [Equation (2.20)]; dimensionless angle of attack
rate ˆ̇α [Equation (2.21)]; and control surface deflection angles, δe, δa, δr, in radians. Although
q̂ and ˆ̇α can be highly correlated in standard flight maneuvers, the frequency range included in
the multisine input signals excited both the phugoid and short period mode, which sufficiently
decorrelates the signals for modeling [162]. A cross plot of q and α̇, as well as q̂ and ˆ̇α, for the
maneuver used for modeling (Figure 3.5) is shown in Figure 3.6. The corresponding pairwise
correlation coefficient r between q̂ and ˆ̇α is 0.571. This correlation coefficient value is well
below the typical 0.9 correlation coefficient guideline to avoid data collinearity problems [19,
20], demonstrating that the q̂ and ˆ̇α signals are sufficiently decorrelated for accurate model
identification.

Figure 3.6: Cross plot of q and α̇ signals for the maneuver shown in Figure 3.5.

For this work, the longitudinal coefficients (CX , CZ , Cm) are expressed as functions of lon-
gitudinal state and control variables (α, ˆ̇α, q̂, δe) and lateral-directional coefficients (CY , Cl, Cn)
are expressed as functions of lateral-directional state and control variables (β, p̂, r̂, δa, δr).
This approach is consistent with past work in aircraft system identification [19, 71]. The one
exception is that β is also included as an explanatory variable in CX to model the drag due
to sideslip.

Additional explanatory variables are needed to characterize propulsion and propulsion-
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airframe interaction effects. The propeller rotational speed n could be used as an explanatory
variable, but the variable does not have a widely-used dimensionless form compatible with
using the body-axis force and moment coefficients as the response variables. As mentioned
previously, advance ratio J is commonly used to parameterize propeller aerodynamics using
the propeller thrust coefficient CT and torque coefficient CQ as the response variables; how-
ever, parameterizing propulsion effects with a polynomial expansion of advance ratio when
using the aircraft force and moment coefficients as response variables is not physically con-
sistent. The force and moment coefficients are normalized by freestream dynamic pressure
q̄, rather than ρn2 [cf. Equations (3.1)-(3.2)], which is proportional to the dynamic pressure
experienced by the individual propeller blades. Geometric constants used for normalization
of the airframe and propeller response variables are also different, but these are constant for
a particular aircraft, rather than dynamically changing quantities.

To derive a more physically-justified dimensionless variable to characterize the primary
propulsion effect on the aircraft force and moment coefficients, consider a model for the
propeller thrust coefficient that is quadratic in advance ratio:

CT = CTo + CTJ
J + CTJ2J

2 = CTo + CTJ

(
V

nD

)
+ CTJ2

(
V

nD

)2

(3.11)

A quadratic model is often a good approximation of CT as a function of J , as was shown
in Figure 3.3. Converting this model to dimensional thrust T using the definition of thrust
coefficient [Equation (3.1)] yields:

T = ρn2D4

[
CTo + CTJ

(
V

nD

)
+ CTJ2

(
V

nD

)2
]

= ρD2
(
CToD

2n2 + CTJ
DnV + CTJ2V

2
) (3.12)

For the thrust force oriented along the body x-axis, the propulsion component of the body
x-axis force coefficient CXP

[cf. Equation (2.13)] can be written as:

CXP
=

T
1
2
ρV 2S

=
2D2

S

[
CTo

(
nD

V

)2

+ CTJ

(
nD

V

)
+ CTJ2

]
(3.13)

The quantity nD/V is the inverse of advance ratio. For notational convenience, this quantity
is defined as:

J =
nD

V
(3.14)

Absorbing the constant terms into the model parameters, the propulsion component of the
x-axis force coefficient can be written as:

CXP
= CXPJ 2

J 2 + CXPJ
J + CXPo

(3.15)

A similar derivation can be performed for torque coefficient parameters.
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Following the results of this analysis, J is defined to be the primary explanatory variable
for the propulsion system. This variable is defined as an explanatory variable for all force
and moment coefficients for generality, although, the MOF modeling process will omit the
variable if it does not contribute to improving the model. The variable aids in describing
the thrust and torque influences, as well as propulsion-airframe interaction effects which are
related to the dynamic pressure within the propeller slipstream. For example, a control
surface behind a propeller would have interaction effects that theoretically scale with the
slipstream dynamic pressure,

q̄ss =
1

2
ρV 2 +

T

A
(3.16)

which is the theoretical dynamic pressure located behind a propeller derived from momentum
theory [158, 163]. The slipstream dynamic pressure consists of the sum of freestream dynamic
pressure q̄ = 1

2
ρV 2 and propeller disk loading T/A, where A = π

4
D2 is the propeller disk

area. It follows that including J in a multivariate polynomial expansion with the other
explanatory variables defined above enables characterization of thrust-related interaction
effects. Note that since J is always biased above zero for an aircraft operating in forward
flight, the variable must be centered on a reference value for this approach to decorrelate
nonlinear regressors and align with the assumptions of a multivariate Taylor series expansion
taken from a single reference point [19]. Centered J is defined as,

Jc = J − Jo (3.17)

where Jo = 2 is the centering reference value for the CZ-150 aircraft corresponding to a
nominal value for steady, level flight.

As discussed in Section 3.2.2, propellers will produce an off-axis force and moment com-
ponent when operating at incidence relative to the oncoming airflow. Assuming that the
propeller axis of rotation is parallel to the body x-axis, the propeller incidence angle ip,
shown in Figure 3.7, is computed from the body-axis velocity components:

ip = cos−1

(
u√

u2 + v2 + w2

)
(3.18)

The incidence angle can be conceptualized as a combination of the local angle of attack and
local angle of sideslip, or the total angle of attack, for the propeller, which determines the
propeller aerodynamic forces and moments due to assumed axial symmetry. An additional
flow angle must be defined to determine the acting direction for the auxiliary force and
moment component. This quantity, defined here as ξp, is the angle specifying the local
velocity projection onto the propeller disk plane, or the y–z plane. Figure 3.8 shows a
schematic of the definition of ξp, which is calculated as:

ξp = tan−1
( v
w

)
(3.19)

This airflow angle description has been used to model propellers at incidence in previous
work [37]; a similar representation is used for axially symmetric atmospheric re-entry vehi-
cles [164].
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Figure 3.7: Definition of incidence angle, ip,
for a propeller aligned with the body x-axis.

Figure 3.8: Definition of ξp on a propeller
disk schematic.

As mentioned in Section 3.2.2, Reference [73] shows that the off-axis force and moment
component are linearly proportional to the propeller incidence angle ip. Also, recall that
for low incidence angle conditions, Reference [73] shows that incidence angle has no effect
on axial thrust and torque. These theoretical predictions of propeller behavior at incidence
are also supported by experimental data presented in References [36, 157]. Accordingly,
propeller incidence angle effects were only considered for y-axis and z-axis force and moment
components. Also, for a propeller aircraft operating at arbitrary angle of attack and angle of
sideslip (e.g., see Figure 3.5), the acting direction of the off-axis force and moment component
will be dependent on ξp. To characterize these effects in the body-axis forces and moment
coefficients, additional propulsion explanatory variables are defined as,

iz = ip cos ξp (3.20)

iy = ip sin ξp (3.21)

where iz is used as an explanatory variable for CZ and Cn, and iy is used as an explanatory
variable for CY and Cm.

Furthermore, for the aircraft used in this work, the moment of inertia of the rotating
portion of the propulsion system Ip was not known prior to flight testing. Therefore, Ip
had to be estimated in flight, as Reference [165] suggested could be accomplished using a
maneuver with significant propulsor rotational speed excitation. The parameter Ip occurs
in Cl, Cm, and Cn [c.f. Equations (3.7)-(3.10)] and Ip is the same value in each equation.
The most accurate Ip estimates were found to be obtained from the Cn equation so Ip was
estimated with the Cn model using qΩ

q̄Sb
as an additional regressor [c.f. Equation (3.9)]. The

Ip parameter was then fixed to compute Cl and Cm using Equations (3.7)-(3.8). Note that
estimating Ip in the Cn equation only works well if both the propulsor speed and pitch rate
are well-excited, as is the case when using the multiple-input excitation strategy explained
in Section 3.3.

In summary, the propulsion specific explanatory variables are Jc for all body-axis force
and moment coefficients, iz for CZ and Cn, and iy for CY and Cm, with the parameter Ip
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estimated with Cn. A nonlinear multivariate polynomial model is identified for each force
and moment coefficient as a function of the conventional system identification explanatory
variables defined above and the derived propulsion modeling variables.

Using Approach I for model development is advantageous because a model characteriz-
ing an integrated representation of propulsion and airframe aerodynamics provides the best
model formulation for accurate flight simulations [19]. The model form avoids making as-
sumptions about the validity of superposition of propulsion and airframe aerodynamics, and
allows characterization of the propeller performance as integrated on the flight vehicle, as op-
posed to using information from isolated propeller ground testing or analytical calculations.
As discussed previously, the common assumption that propulsion and airframe aerodynam-
ics are decoupled for propeller aircraft is flawed and the proposed integrated aero-propulsive
modeling approach resolves this typical modeling deficiency for propeller-driven fixed-wing
aircraft. However, as a consequence of the integrated model formulation, the independent
aerodynamic contributions of the propulsion and airframe aerodynamics are not separable,
which means that an independent estimate of propeller thrust is not available. Also, the
model would no longer be valid in the event of a propulsion failure. An alternative method
allowing separate characterization of propeller performance is discussed next.

3.4.2 Approach II: Decoupled Propulsion Modeling

The second modeling approach, referred to as “Approach II,” seeks to develop a decou-
pled model for the propulsion system using flight data to accompany a separately identified
aerodynamic model for the airframe. This work focused on identification of the thrust pa-
rameters, but the methods could also be extended to model torque parameters. For the CZ-
150 aircraft, the propeller aerodynamic torque effects were determined to be much smaller
than the other Cl influences in the model structure identification process, so the propeller
aerodynamic torque effects could be safely neglected for this study.

The first step is to identify a bare airframe aerodynamic model. Here, the bare airframe
model is estimated using flight data collected in a glide (without the propulsion system
operating) using a multisine maneuver with the input signals shown in Figure 3.4 only
operating on the control surfaces. The throttle command is fixed to 0%, which results in
the propeller spinning in a minimum drag windmill state while modeling data for the bare
airframe are collected. A nonlinear multivariate polynomial model for the airframe is then
identified for each force and moment coefficient as a function of angle of attack, angle of
sideslip, dimensionless angle of attack rate, dimensionless angular rates, and control surface
deflection angles.

After developing a model for the bare airframe, a maneuver with the multisine inputs
shown in Figure 4.1 active on all control surfaces and the propulsion system is used to identify
a decoupled propulsion model. Despite the objective for this step being to only characterize
the propeller aerodynamics, it was found to be beneficial to also inject excitation inputs into
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the control surface commands during the maneuver, rather than just using an excitation
input on the propulsion system. As mentioned previously, this excitation strategy allows
gathering data with decorrelated coverage of airspeed and propulsor rotational speed result-
ing in good advance ratio coverage. For identifying the thrust model, the CX bare airframe
model structure is held fixed and used to predict the CX contributions from the airframe.
The thrust model is then estimated using CXP

= CX −CXA
as the response variable, where

CXA
is the bare airframe model prediction. In this framework, the installed thrust losses

are included in the propulsion model and are the only modeled aero-propulsive interaction
effect. Following the above developments [see Equations (3.15) and (3.17)], the regressors in
the thrust model are Jc and J 2

c as well as a vector of ones to estimate the propulsion bias
parameter CXPo

. The final aero-propulsive model then consists of the superimposed bare
airframe and propulsion CX aerodynamics,

CX = CXA
+ CXP

(3.22)

and the bare airframe aerodynamic model for the other force and moment coefficients.

Approach II is useful for developing a separate propulsion model to complement a pre-
existing bare airframe aerodynamic model developed using computational methods, wind-
tunnel testing, and/or flight testing. Defining a separate airframe and propulsion model is
also how many flight dynamics simulations are configured, so having a decoupled propulsion
model may allow more straightforward implementation into an existing simulation framework
compared to the integrated aero-propulsive modeling method (Approach I). Conventionally,
isolated testing or analysis is used to develop the propulsion model, but the performance is
generally different when the propulsion system is integrated on a flight vehicle. This method
provides a direct thrust estimate identified from flight data, which also characterizes the
performance differences due to the presence of the airframe. The method, however, requires
assuming that all propulsion-airframe interactions can be accounted for as thrust production
deviations.

3.5 Results for Approach I: Integrated Aero-Propulsive

Modeling

Following the integrated aero-propulsive modeling approach described in Section 3.4.1
(Approach I), the model for each force and moment coefficient was developed using the CZ-
150 flight data shown in Figure 3.5. The candidate regressors modeling a significant portion
of the variation in the response variable were included in the final integrated aero-propulsive
model structure, in accordance with the model structure determination strategy discussed
in Section 3.4. The model structure for each force and moment coefficient was determined
to be:

CX = CXαα + CXα̇
ˆ̇α + CXα2α

2 + CXβ2
β2 + CXJc

Jc + CXJ 2
c
J 2

c + CXo (3.23)
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CY = CYβ
β + CYp p̂+ CYδa

δa + CYδr
δr + CYJc

Jc + CYiy
iy + CY(Jcδr)

(Jcδr) + CYo (3.24)

CZ = CZαα + CZq q̂ + CZα̇
ˆ̇α + CZJc

Jc + CZo (3.25)

Cl = Clββ + Clp p̂+ Clr r̂ + Clδa
δa + Clδr

δr + Cl(Jcδa)
(Jcδa) + Clo (3.26)

Cm = Cmαα + Cmq q̂ + Cmδe
δe + Cmα̇

ˆ̇α + Cmα2α
2 + Cm(Jcδe)

(Jcδe) + Cmo (3.27)

Cn = Cnβ
β + Cnr r̂ + Cnδa

δa + Cnδr
δr + Cn(Jcδr)

(Jcδr) + Cno (3.28)

After identifying the model structure, least-squares regression was used to determine
the final estimates of the model parameters. The parameter estimates θ̂, parameter stan-
dard errors accounting for colored residuals s(θ̂) [19, 99], the percent error calculated as[
s(θ̂)/|θ̂|

]
× 100, and R2 value for each body-axis force and moment coefficient model equa-

tion are given in Tables 3.2-3.7 at the end of this chapter. The parameter estimates have
reasonably low standard error values and each model has a sufficiently high R2 value, given
the high susceptibility to atmospheric disturbances for small aircraft and low-cost instru-
mentation system used for this study. The model fit to the force and moment coefficient
data used for modeling is shown in Figure 3.9. The models shows good agreement with the
measured data for all responses. The best model fit is observed for CX , which has an R2

value of 99.6%, indicating that the primary propulsive influences are very well characterized.

Figure 3.9: Comparison of modeling data and model fit for Approach I.
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An alternative modeling approach could be postulated to include advance ratio J [Equa-
tion (3.3)] as the dimensionless explanatory variable for modeling aero-propulsive effects, as
opposed to J [Equation (3.14)]. However, as shown previously in Equations (3.11)-(3.15), J
is the more physically consistent variable to include in a multivariate polynomial expansion
model for the aircraft force and moment coefficients. This theoretical reasoning was em-
pirically investigated by comparing modeling results using J and J as modeling variables.
Figure 3.10 shows the CX modeling flight data compared to the model fit using Jc as an
explanatory variable and the model fit using centered J (Jc = J − Jo where Jo = 0.5) as an
explanatory variable. The figure also compares the absolute modeling residuals and shows
the respective R2 and NRMSE values [Equation (2.86)]. The structure for each model is
identical to Equation (3.23), with the exception that Jc replaces Jc for the model using Jc.
The model using Jc is observed to have a significantly better model fit, a higher R2 value,
and an NRMSE value 3.8 times lower compared to the model using Jc. This demonstrates
the benefit of using J as a propulsion modeling variable when using the aircraft force and
moment coefficients as response variables. This approach is effective because propulsion and
airframe aerodynamics scale differently and use different expressions for nondimensionaliza-
tion. The J variable is used to model propulsion effects in the standard aircraft force and
moment coefficients in a form consistent with the correct normalization for propeller aero-
dynamics. Using J directly in the aircraft force and moment coefficients is akin to using
the incorrect nondimensionalization of propulsion effects, which is why degraded modeling
performance is observed in Figure 3.10.

Figure 3.10: Comparison of CX models using Jc and Jc as explanatory variables.

Regression methods minimize the summation of squared differences between the modeled
and measured response, so assessment of the modeling fit alone does not provide information
about the model predictive capability. Assessment of model performance using validation
data not used for modeling provides a more reliable estimate of model prediction accuracy.
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As mentioned in Section 2.6.3, model validation is also best accomplished using flight data
with input waveforms differing from the modeling data. For this work, automated throttle,
elevator, aileron, and rudder 3-2-1-1 maneuvers were collected as validation data to assess
model performance. These concatenated flight maneuvers are shown in Figure 3.11 along
with the model predictions for each of the force and moment coefficients. Overall good
model predictive capability is observed, indicating that a quality model has been identified to
predict aero-propulsive characteristics driving the aircraft flight dynamic behavior around the
nominal reference flight condition. The modeling and validation NRMSE values computed
for the response data shown in Figure 3.9 and Figure 3.11, respectively, are compared in
Table 3.1. Observing that the modeling and validation NRMSE values are low and similar
in value for each response provides further confidence that model development was successful.

Figure 3.11: Comparison of 3-2-1-1 validation maneuver flight data and model prediction for
Approach I.

A few characteristics about the identified aero-propulsive model are highlighted. Exclud-
ing the terms with the propulsion variable Jc, the models are mostly linear; the nonlinear
model terms are α2 and β2 appearing for CX , which models quadratic drag variation, as well
as an α2 term for Cm. The ˆ̇α modeling variable is included to aid in modeling unsteady
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Table 3.1: Comparison of modeling and validation NRMSE values for Approach I

Metric CX CY CZ Cl Cm Cn

Modeling NRMSE [%] 1.08 4.09 5.85 5.88 5.85 5.73
Validation NRMSE [%] 0.84 5.11 3.59 4.56 4.22 3.29

aerodynamic phenomena, and was found to be significant in the CX , CZ , and Cm models.
The propulsion explanatory variable Jc is included in all longitudinal and lateral-directional
responses in the form of isolated effect terms and/or interaction terms (e.g., Jcδe). Also, a
propulsion explanatory variable modeling propeller incidence angle effects, iy, appears in the
CY model. The iy and iz influences for CZ , Cm, and Cn were found to be too small in the
model structure determination process to warrant inclusion in the CZ , Cm, and Cn models.
This is partially because the propeller axis of rotation on the CZ-150 aircraft is canted to help
counteract asymmetric effects related to the aircraft having only one propeller. However, iy
and iz effects should still be considered in the model structure determination process because
their influence may be significant for other aircraft and flight conditions. The propulsion
effects are expected to be dominant for CX , but the appearance of propulsion-related model
terms in all other responses indicates that the propulsion system has a significant effect on the
vehicle aerodynamics beyond generating thrust. Clearly, propulsion and propulsion-airframe
interactions are important to consider in the model equations.

The appearance of the J δe, J δa, and J δr model terms indicate that the propeller slip-
stream interacts with each control surface. Propulsion-elevator and propulsion-rudder inter-
actions are expected for the CZ-150 aircraft configuration with a nose-mounted propeller.
Momentum theory predicts that the slipstream of an isolated propeller will accelerate and
contract downstream of the propeller [163]. For the CZ-150, the theoretical propeller slip-
stream predicted by momentum theory interacts with the fuselage, tail, tail-mounted con-
trol surfaces, and inboard portion of the wing. A propulsion-aileron interaction is more
difficult to conceptualize in view of momentum theory predictions of propeller slipstream
behavior. However, considering the empirical slipstream diffusion and expansion for isolated
propellers [166], as well as the large fuselage blockage area behind the CZ-150 propeller (see
Figure 3.12), a slipstream expansion resulting in aileron interactions becomes more physically
plausible (see Figure 3.13).

3.6 Results for Approach II: Decoupled Propulsion Mod-

eling

As described in Section 3.4.2 (Approach II), the process to identify a decoupled propulsion
model from flight data starts with identifying a bare airframe aerodynamic model. Only the
CX model equation is considered here for thrust model identification. Following the model
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Figure 3.12: CZ-150 front view.

Right aileron Left aileron

𝑫

Figure 3.13: CZ-150 overhead view.

structure determination strategy discussed in Section 3.4, the bare airframe model structure
for CX was determined to be:

CXA
= CXαα + CXα̇

ˆ̇α + CXα2α
2 + CXβ2

β2 + CXAo
(3.29)

The CXA
model structure is identical to the CX model structure identified in Approach

I [Equation (3.23)] when the propulsion terms are removed. The model fit to flight data
collected using a control surface multisine maneuver with the throttle command held at 0%
is shown in Figure 3.14a. The model fit is reasonable considering that a bare airframe CX

model is generally more difficult to accurately estimate using flight data and has a smaller
influence on aircraft dynamics, compared to the other force and moment coefficients.

(a) Bare airframe modeling maneuver (step 1) (b) Propulsion modeling maneuver (step 2)

Figure 3.14: CX model fit for Approach II.

After estimation of the bare airframe model, the propulsion model was estimated with
the model structure of Equation (3.15) using centered regressors:

CXP
= CXPJ 2

c

J 2
c + CXPJc

Jc + CXPo
(3.30)

The data shown in Figure 3.5 were used for modeling, where the response variable was the
calculated CX with the bare airframe aerodynamic model prediction subtracted (CXP

=
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CX−CXA
). The model fit to the flight data used for modeling is shown in Figure 3.14b. The

visual model fit is very good and the R2 value of 99.4% is very high, indicating that most of
the variation of the response about its mean value is characterized by the CXP

model.

The final CX model structure is the sum of the identified bare airframe model and propul-
sion model:

CX = CXA
+ CXP

=
(
CXαα + CXα̇

ˆ̇α + CXα2α
2 + CXβ2

β2 + CXAo

)
+
(
CXPJ 2

c

J 2
c + CXPJc

Jc + CXPo

)
(3.31)

The model structure is identical to Equation (3.23), except that the bias terms CXAo
and

CXPo
are accounted for as separate model parameters. This is possible because the CXAo

term resulting from the bare airframe model is fixed for identifying the propulsion model,
which allows CXPo

to be independently estimated. Decoupling these bias parameters allows
the model to make a direct prediction of the thrust produced by the propeller. The CXA

and
CXP

model parameter estimates and parameter standard errors are shown in Table 3.8 at
the end of this chapter. The standard errors for the model parameters are small, indicating
that an accurate model has been identified. The uncertainty in the propulsion model pa-
rameters, accounting for colored residuals, is 2.5% or lower, indicating that the parameters
are estimated very accurately.

The combined, flight-derived CX model response compared to the powered-airframe CX

calculated from the flight data used for modeling is shown in Figure 3.15. A model composed
of the CXA

parameters identified from flight data combined with the quadratic thrust model
developed from available isolated propeller wind-tunnel data [116, 161] (see Figure 3.3) is also
shown for comparison. The combined, flight-derived CX model response shows an excellent
match to the CX flight data, indicating that the CX propulsion and airframe aerodynamics
have been well characterized. The model response using the thrust model derived from wind-
tunnel data is seen to overpredict CX , particularly at higher CX values, which corresponds
to lower advance ratio values (see Figure 3.5c). The NRMSE value for the model developed
using only flight data is 5.4 times lower than the model using the wind-tunnel data to predict
the propulsion aerodynamics.

Figure 3.16 shows the wind-tunnel data and quadratic model fit that were shown previ-
ously in Figure 3.3, as well as a curve showing the flight-derived propulsion model prediction
of CT variation with J . The flight-derived model shows reasonable agreement with the in-
dependently obtained wind-tunnel data set, assuming that the data and model are from the
same system; however, the wind-tunnel data are for the propeller in isolation, whereas the
flight-derived model includes performance losses attributed to the presence of the airframe.
The plot shows that the flight-derived model predicts a lower thrust value across most of the
advance ratio range tested, particularly at lower advance ratio, and suggests that the flight-
derived model is able to describe performance losses not accounted for in the wind-tunnel
data. The overall takeaway from Figures 3.15-3.16 is that the propulsion model identified
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Figure 3.15: Combined CX model fit for Approach II.

Figure 3.16: Comparison of the identified thrust model to isolated propeller wind-tunnel
data [116, 161].

from flight data provides a better overall prediction of the propulsion aerodynamics in flight.
The wind-tunnel-derived predictions generally overestimate thrust because there are signif-
icant propulsion performance losses when integrated onto the aircraft. These results show
that there are clear advantages to developing a propulsion model using flight data.

A throttle 3-2-1-1 maneuver not used for model identification, shown in Figure 3.17a,
was used to test and compare the predictive capability of all modeling approaches shown in
this chapter for CX , where the propulsion effects are most prominent. Figure 3.17b shows
CX flight data compared to model predictions and the absolute validation residuals using:

1. The integrated aero-propulsive model identified using flight data (Approach I)

2. The combined bare airframe model and propulsion model identified using flight data
(Approach II)

3. The combined bare airframe model identified using flight data and the propulsion
model consisting of a quadratic fit to isolated propeller wind-tunnel data [116, 161]

Approach I provides the best prediction of the validation flight data, the smallest residuals,
and the lowest NRMSE value. This result makes sense because Approach I models the
airframe and propulsion aerodynamics together, without the assumption that their effects
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(a) Validation data time history (b) Model prediction comparison

Figure 3.17: CX model validation for all approaches.

decouple. Approach II provides the next best prediction of the validation flight data. The
assumption that propulsion and airframe aerodynamics can be identified separately, and
then combined, is an explanation for the slightly degraded modeling performance compared
to Approach I. Although, overall, the prediction capability of Approach I and Approach
II is comparable. The worst model prediction capability is observed for the model using
the wind-tunnel-derived propulsion model, where the NRMSE value is 5.2 and 3.5 times
higher than the NRMSE value for Approach I and Approach II, respectively. The prediction
capability is the worst at high CX values or low J values, which is where the propeller thrust
is the highest. This plot shows the importance of characterizing propeller aerodynamics
using flight data to model installed performance deviations and, ultimately, develop better
predictions of the aircraft behavior in flight.

Additional Results for the MTD and eSPAARO Aircraft Propellers

Figure 3.18 shows flight-derived propulsion model predictions of thrust coefficient varia-
tion with advance ratio for the propellers used on the MTD and eSPAARO aircraft intro-
duced in Section 2.1.2, along with available wind-tunnel data [114, 167] and vortex theory
data [168]. Similar to the results obtained for the CZ-150 aircraft, the flight-derived model
shows reasonable agreement with the independently obtained isolated propeller data and the
performance differences are attributed to the presence of the airframe. The flight-derived
models include the integrated performance differences, which results in more accurate charac-
terization of the propulsion aerodynamics in flight. Figure 3.18a shows that the flight-derived
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MTD propeller model predicts a lower thrust value across most of the advance ratio range
tested, indicating that the flight-derived model is able to describe integrated performance
losses not accounted for in the wind-tunnel and vortex theory data. In contrast, Figure 3.18b
shows that the flight-derived eSPAARO propeller model predicts a slightly greater thrust
value across most of the advance ratio range tested, which could be attributed to a favor-
able fuselage boundary layer ingestion effect [169]. The assortment of results shown in this
chapter demonstrate that there are significant advantages to developing a propulsion model
using flight data for flight dynamics, controls, and performance analyses.

(a) MTD propeller (b) eSPAARO propeller

Figure 3.18: Comparison of MTD and eSPAARO flight-derived thrust models to isolated
propeller wind-tunnel data [114, 167] and vortex theory data [168].
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Parameter Estimate Tables

Table 3.2: Approach I CX parameter esti-
mates (R2 = 99.6%)

Parameter θ̂ s(θ̂) % Error

CXα +0.188 0.0144 7.7
CXα̇ −1.88 0.210 11.1
CXα2 +1.90 0.157 8.3

CXβ2
+0.282 0.0248 8.8

CXJc
+0.113 0.00207 1.8

CXJ 2
c

+0.0416 0.00100 2.4

CXo +0.00678 0.000833 12.3

Table 3.3: Approach I CY parameter esti-
mates (R2 = 95.4%)

Parameter θ̂ s(θ̂) % Error

CYβ
−0.654 0.0171 2.6

CYp −0.233 0.0809 34.8
CYδa

−0.182 0.0346 19.1
CYδr

+0.114 0.00867 7.6
CYJc

+0.00762 0.00251 33.0
CYiy

+0.110 0.0131 11.9

CY(Jcδr)
+0.0776 0.0113 14.6

CYo +0.0139 0.00378 27.3

Table 3.4: Approach I CZ parameter esti-
mates (R2 = 90.1%)

Parameter θ̂ s(θ̂) % Error

CZα −2.99 0.319 10.7
CZq −24.7 5.12 20.8
CZα̇ +31.1 4.60 14.8
CZJc

−0.0459 0.0171 37.3
CZo −0.290 0.0169 5.8

Table 3.5: Approach I Cl parameter esti-
mates (R2 = 80.6%)

Parameter θ̂ s(θ̂) % Error

Clβ −0.0446 0.00295 6.6

Clp −0.333 0.0202 6.1
Clr +0.118 0.00845 7.2
Clδa

−0.196 0.00997 5.1

Clδr
+0.00527 0.00202 38.2

Cl(Jcδa)
−0.0441 0.00627 14.2

Clo −0.000194 0.000342 176

Table 3.6: Approach I Cm parameter esti-
mates (R2 = 86.5%)

Parameter θ̂ s(θ̂) % Error

Cmα −0.277 0.0275 10.0
Cmq −7.10 0.461 6.5
Cmδe

−0.469 0.0295 6.3
Cmα̇ +2.70 0.731 27.0
Cmα2 −0.673 0.234 34.8

Cm(Jcδe)
−0.137 0.0172 12.6

Cmo +0.0112 0.00130 11.6

Table 3.7: Approach I Cn parameter esti-
mates (R2 = 91.9%)

Parameter θ̂ s(θ̂) % Error

Cnβ
+0.0452 0.00207 4.6

Cnr −0.0983 0.00919 9.3
Cnδa

+0.0341 0.00340 10.0
Cnδr

−0.0544 0.00253 4.7
Cn(Jcδr)

−0.0210 0.00277 13.2

Cno +0.00251 0.000316 12.6
Ip, slug·ft2 +0.000718 0.000127 17.6
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Table 3.8: Approach II CXA
and CXP

parameter estimates

Parameter θ̂ s(θ̂) % Error
CXα +0.193 0.0269 13.9
CXα̇

−1.52 0.274 18.0
CXα2 +1.24 0.140 11.3
CXβ2

+0.190 0.0328 17.3

CXAo
−0.0565 0.00281 5.0

CXPJ 2
c

+0.0427 0.00108 2.5

CXPJc
+0.114 0.00229 2.0

CXPo
+0.0664 0.000671 1.0



Chapter 4

Nonlinear Dynamic Model
Identification with Unknown Mass
Properties

Development of a nonlinear dynamic model for fixed-wing aircraft generally requires
accurate, labor-intensive mass properties estimation. This chapter describes a method to
identify a nonlinear dynamic model for fixed-wing aircraft using flight data without requir-
ing knowledge of the aircraft mass or moments of inertia. The standard nonlinear rigid-body
aircraft equations of motion are reformulated and the nondimensional force and moment co-
efficients are redefined to be agnostic to vehicle mass properties. Flight experiments for sys-
tem identification of a small, unmanned, fixed-wing aircraft are conducted using orthogonal
phase-optimized multisine inputs applied simultaneously to the aircraft control surfaces. A
nonlinear aerodynamic model is then identified for both the proposed mass-agnostic modeling
framework and a standard nonlinear modeling approach requiring mass properties informa-
tion. The identified mass-agnostic nonlinear dynamic model and the traditional nonlinear
dynamic model are shown to each provide a good fit to the modeling data and have good
prediction capability of flight data not used for model identification in comparative flight
simulations. The chapter describes application of the modeling method to a small unmanned
aircraft, but the method is generalizable to many aircraft configurations. The mass-agnostic
dynamic modeling method will be particularly useful for modern electric aircraft that have
limited mass properties changes over the course of a flight, where the identified model can be
used for numerous controls and flight simulation applications. This work has been published
as a conference paper [25] and a journal engineering note [26].

The chapter is organized as follows: Section 4.1 describes the motivation for this research.
Section 4.2 provides an overview of the flight-test experiment design. The dynamic modeling
approach is formulated in Section 4.3. Section 4.4 presents modeling results and provides a
direct comparison to standard modeling methods.

86
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4.1 Research Motivation

One standard approach for aircraft system identification is estimation of dimensional
aerodynamic parameters in transfer function or state space models [19–21]. This approach
does not require knowledge of aircraft mass properties, but the linear models are only valid
for a small region around the reference flight condition where the model was identified.
Also, for small, inexpensive aircraft, the excitation amplitudes needed to obtain a sufficient
signal-to-noise ratio for model identification may necessitate the use of nonlinear models. An
alternative approach is to develop a model by identifying parameters in a linear or nonlinear
aerodynamic model within the nonlinear rigid-body aircraft equations of motion [19, 20],
which was the approach discussed in Section 2.2. The resulting model accommodates char-
acterization of more complex, nonlinear aerodynamics over a larger range of flight conditions,
but the typical formulation used in previous work requires knowledge of aircraft mass prop-
erties, including the overall mass and inertia tensor elements.

Numerous approaches exist for determining the aircraft mass properties needed for air-
craft system identification. Vehicle mass properties can be determined from computerized
aircraft representations [170–174] or empirical ground tests [175–187]. Measuring the mass of
an aircraft in ground testing is generally straightforward; however, accurately estimating air-
craft inertia tensor elements is more difficult, time consuming, and expensive. Traditionally,
the inertia tensor for flight-test aircraft is determined during ground testing with a pendulum
or spinning apparatus. Ground-test methods generally require suspending the aircraft and
initiating dynamic swinging or spinning motion. This process can cause damage to the air-
craft, necessitates engineering analysis, and adds scheduling requirements for high-demand
flight-test assets. The mass properties must also be adjusted when making modifications to
the aircraft, either by performing new empirical ground testing or by carefully bookkeeping
the modified mass distribution. Mass properties bookkeeping becomes especially burdensome
for aircraft that collect flight-test data in many configurations. For example, unmanned air-
craft used for combat or package delivery applications may have numerous sensor, payload,
external store, and fuel loading combinations, each with different mass properties. Recent
flight-test research demonstrated an alternative approach for determining moments of iner-
tia using a specialized flight-test technique for fixed-wing aircraft [165]. Regardless of the
method used for estimation of mass properties, significant engineering effort and expertise are
needed to precisely estimate the aircraft moments of inertia, and inaccurate inertia estimates
corrupt estimation of nondimensional aerodynamic parameters [188, 189].

In this chapter, a method is proposed for nonlinear dynamic model identification for
aircraft using flight testing that does not require knowledge of the vehicle mass and inertia
tensor. The modeling framework assumes a constant unity mass, a constant identity inertia
tensor, and neglects the inertial coupling and gyroscopic precession terms in the rotational
dynamics equations, but still allows identification of a nonlinear aerodynamic model. The
approach is effectively a combination of the two standard modeling approaches discussed
above. The mass properties are subsumed into the model parameters similar to the first ap-
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proach using dimensional derivatives, and the nondimensionalization and ability to include
nonlinear regressors emulate the second approach, which allows characterization of nonlinear
aerodynamic phenomena without requiring knowledge of the aircraft mass properties. The
modeling results for the new, mass-agnostic approach are directly compared to and show ex-
cellent agreement with a standard nonlinear dynamic modeling approach using known mass
properties for large amplitude flight maneuvers. The proposed mass-agnostic modeling tech-
nique is useful for rapid, nonlinear dynamic model development for a variety of aircraft, and
can be used for applications such as flight simulation, flight control system design, handling
qualities assessment, model-based wind estimation, and fault tolerance. Model development
in this chapter is performed post-flight for a small, fixed-wing, unmanned aircraft using the
equation-error method in the frequency domain; the approach, however, can be readily imple-
mented in real-time applications and is expected to be applicable to numerous aircraft scales
and configurations. One downside to the proposed approach is that the identified nondimen-
sional aerodynamic parameters have less physical meaning compared to traditional stability
and control derivatives and, accordingly, are not comparable to wind-tunnel or computa-
tional aerodynamic predictions. Also, flight testing and model identification need to be
repeated when there are substantial changes in aircraft mass properties. However, for flight
dynamics models identified solely from flight data with negligible changes in mass proper-
ties, the method provides a rapid dynamic modeling capability for a variety of applications
and obviates the need to determine the aircraft mass properties. The method is particularly
useful for modern electric aircraft that have constant mass properties but can also be used
for aircraft that burn fuel or release payload by performing model identification at different
loading conditions.

The CZ-150 aircraft, described in Section 2.1.2 and pictured in Figure 2.3, was used
as the research platform for this research. The aircraft mass and moments of inertia were
determined in ground testing [56] and are listed in Table 2.1. Although the dynamic mod-
eling method demonstrated in this chapter does not require mass properties, these known
aircraft properties allowed comparison to the standard approach for nonlinear aircraft model
development.

4.2 Experiment Design

Flight-test experiments for model identification were conducted using orthogonal phase-
optimized multisine inputs [19, 82–85], described in Section 2.3.2, applied to the aircraft con-
trol surfaces. The modeling objective for this work was to identify a bare airframe dynamic
model for the CZ-150 aircraft. To meet this objective, flight data used for model identifica-
tion were collected in a glide without the propulsion system operating and, consequently, the
propeller operating in a minimum drag windmill state. As discussed in Chapter 3 and Refer-
ence [24], individual multisine signals were generated for the CZ-150 aircraft for the throttle,
elevator, aileron, and rudder commands for aero-propulsive model development. The same
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multisine design was used for model development for this work, but with the propulsion sys-
tem amplitude set to zero for bare airframe aerodynamic characterization. Figure 4.1a shows
the input spectra of the multisine signal designed for each control surface. The increased
separation between lower frequency components is a result of using the aero-propulsive mod-
eling multisine design (see Section 3.3) with the propulsion excitation disabled. Figure 4.1b
shows the optimized multisine input signals normalized to have a maximum absolute value of
one. The amplitude of each input signal was adjusted to obtain a good signal-to-noise ratio
for model identification using the flight data collection approach described in Section 2.4. To
conduct a system identification maneuver, the pilot disabled feedback stabilization, trimmed
the aircraft in a level glide, enabled the multisine input excitations using a switch on the RC
transmitter, and made minor corrections if the aircraft started to significantly deviate from
the original trimmed flight condition.

(a) Input spectra for each control effector (b) Multisine signals for each control effector

Figure 4.1: Orthogonal phase-optimized multisine excitation input design.

4.3 Modeling Approach

Two approaches for fixed-wing aircraft model development were investigated. The first
approach represents a standard flight-test approach for nonlinear flight dynamics model
development for aircraft with known mass properties (see Section 2.2). The second approach
is a new, alternative formulation for nonlinear flight dynamics model development which does
not require knowledge of the aircraft mass properties. Both approaches involve developing
models from flight-test data gathered using the multiple-axis multisine maneuver described
in Section 4.2. Figure 4.2 shows the CZ-150 flight data used for model identification, where it
can be seen that all aircraft dynamics are excited in a single maneuver around the reference
flight condition of V = 65 ft/s and α = 0 deg. The amplitude of the control surface
excitations and the consequent variation of state variables are large compared to values
that would be seen for larger aircraft in standard system identification experiments. Large
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amplitude excitations are needed to obtain a sufficient signal-to-noise ratio for modeling small
aircraft with low-cost instrumentation systems. A nonlinear model formulation is required
for identification because the magnitude of variation of the aircraft states violates the small
perturbation assumptions required for using a linearized flight dynamics model.

Figure 4.2: Multiple-input multisine flight maneuver used for model identification.

The equation-error method formulated in the frequency domain [19, 70, 100], described
in Section 2.6.1.2, was used for model identification in each approach. The Fourier transform
frequencies were set between fmin = 0.05 Hz and fmax = 1.85 Hz with a conservatively-fine fre-
quency resolution of ∆f = 0.001 Hz. Although the frequency-domain equation-error method
was selected to be applied in this chapter for its practical advantages noted in Section 2.6.1.2,
the modeling approach demonstrated in this chapter can also be readily implemented using
time-domain model identification techniques (e.g., see Sections 2.6.1.1 and 2.6.1.3). MOF
modeling [19, 102], described in Section 2.6.2.1, was the primary model structure determi-
nation method. The method was applied in its frequency-domain formulation discussed in
Section 2.6.2.3, which still allows nonlinear model terms to be considered for the model struc-
ture [100, 107, 108]. Both PSE and R2 were used as a cutoff threshold for candidate model
terms to include in the final model structure. After the orthogonal regressors were ranked by
their ability to reduce the MSFE, the cutoff for model term addition was chosen to be either
the candidate model term that minimized the PSE or the last term to increase R2 by 0.5%,
whichever resulted in fewer model terms. As a final step, the MOF results were manually
assessed using manual stepwise regression procedures [19, 103], described in Section 2.6.2.2,
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to determine whether to include or exclude model terms near the cutoff threshold. After
determining the model structure for each response, the final parameter values were estimated
using ordinary least-squares regression with the complex regressor and response data (see
Section 2.6.1.2).

4.3.1 Standard Modeling Approach

As described in Section 2.2, a standard approach for nonlinear flight dynamics model
development is to identify unknown aerodynamic parameters within the aircraft transla-
tional dynamics equations [Equations (2.7)-(2.9)] and rotational dynamics equations [Equa-
tions (2.10)-(2.12)]. Propulsion forces and moments were not included in the translational
and rotational dynamics equations for this study because the flight data used were collected
at idle power with a low propeller rotational speed. The effects from the propulsion system
could, however, be readily incorporated and identified alongside the aerodynamic parame-
ters, for example, by using techniques described in Chapter 3 (Reference [24]). The response
variables are the aircraft nondimensional body-axis force and moment coefficients [Equa-
tion (2.13)] which are calculated from flight data using Equation (2.16) with T = 0 and
Equations (2.17)-(2.19). The explanatory variables used to develop a functional representa-
tion of the body-axis force and moment coefficients include angle of attack α in radians; angle
of sideslip β in radians; dimensionless angular rates, p̂, q̂, r̂ [Equation (2.20)]; dimensionless
angle of attack rate ˆ̇α [Equation (2.21)]; and control surface deflection angles, δe, δa, δr, in
radians. As mentioned in Section 3.4.1, the multisine input signals were designed to excite
both the phugoid and short period mode, which sufficiently decorrelates the q̂ and ˆ̇α signals
for modeling [162]. For this study, the longitudinal coefficients (CX , CZ , Cm) were expressed
as functions of longitudinal state and control variables (α, ˆ̇α, q̂, δe) and lateral-directional
coefficients (CY , Cl, Cn) were expressed as functions of lateral-directional state and control
variables (β, p̂, r̂, δa, δr). One exception to this convention was that β is also included as an
explanatory variable in CX to model the drag due to sideslip.

4.3.2 Alternative Modeling Approach

The primary new contribution of this chapter is an investigation of modifications to the
standard modeling approach discussed in the previous section to enable nonlinear dynamic
model development without mass properties knowledge. The proposed modifications are in
the definition of the response variables and the equations of motion used for flight simulation.
The explanatory variable definitions remain the same as discussed in Section 4.3.1 and the
same model identification methods are applied with the redefined response variables.

The first set of modifications to the standard modeling approach is to assume a constant
unity mass (m = 1 mass unit), which affects equations used to calculate the body-axis
force coefficients and the translational dynamics equations. The body-axis force coefficients
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calculated from the measured flight data [Equation (2.16) with T = 0 because the propulsion
system was set to idle for this investigation] are redefined as:

KX =
ax
q̄S
, KY =

ay
q̄S
, KZ =

az
q̄S

(4.1)

The translational dynamics equations [Equations (2.7)-(2.9), including the definitions of X,
Y , and Z from Equation (2.13) and with T = 0] with the new mass-agnostic force coefficient
variables (KX , KY , KZ) become:

u̇ = rv − qw − g sin θ + q̄SKX (4.2)

v̇ = pw − ru+ g cos θ sinϕ+ q̄SKY (4.3)

ẇ = qu− pv + g cos θ cosϕ+ q̄SKZ (4.4)

Although the physical interpretation of the nondimensional aerodynamic force parameters
changes and the aircraft is assumed to have a constant mass, this set of modifications does not
result in any dynamic simplification of the nonlinear translational dynamics equations and
the framework supports identification of nonlinear aerodynamic model parameters. Because
the form of Equation (4.1) and Equations (4.2)-(4.4) emulates the form of Equation (2.16)
and Equations (2.7)-(2.9) [with T = 0 and using Equation (2.13)], respectively, the tradi-
tional and mass-agnostic force coefficients are directly related by aircraft mass:

KX =
CX

m
, KY =

CY

m
, KZ =

CZ

m
(4.5)

This highlights that the mass-agnostic force coefficients can be interpreted as translational
acceleration coefficients or traditional force coefficients per unit mass.

The second set of modifications to the standard modeling approach involves the rotational
dynamics equations [Equations (2.10)-(2.12)]. The simplifying assumptions are as follows:

1. The roll, pitch, and yaw moments of inertia are constant and have a value of unity
(Ix = Iy = Iz = 1 inertia unit).

2. The inertial coupling terms involving the product of inertia Ixz are negligible.

3. The gyroscopic precession terms (i.e., the remaining nonlinear angular rate terms) are
negligible.

Note that the constant multipliers for the neglected terms are either the product of inertia Ixz
or the difference between two body-axis moments of inertia (Ix, Iy, and Iz). Consequently,
for the ignored terms to have a negligible effect, either the inertia multipliers must be small,
or the squared and cross angular rates must be small. With these assumptions, the body-
axis moment coefficients calculated from the measured flight data [Equations (2.17)-(2.19)]
become:

Kl =
ṗ

q̄Sb
, Km =

q̇

q̄Sc̄
, Kn =

ṙ

q̄Sb
(4.6)
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Accordingly, the rotational dynamics equations [Equations (2.10)-(2.12) with the definitions
of L, M , and N from Equation (2.13)] including the inertia-agnostic moment coefficient
variables become:

ṗ = q̄SbKl, q̇ = q̄Sc̄Km, ṙ = q̄SbKn (4.7)

Although the physical interpretation of the nondimensional aerodynamic moment parameters
changes and the aircraft is assumed to have a constant inertia tensor, this set of modifications
does not require knowledge of the aircraft moments of inertia and the framework supports
identification of nonlinear aerodynamic model parameters. One consequence, however, is the
simplification of the rotational dynamics equations, where the gyroscopic precession terms
and inertial coupling terms [190] are neglected. Because the form of Equation (4.6) and
Equation (4.7) is simplified compared to Equation (2.17)-(2.19) and Equation (2.10)-(2.12)
[with Equation (2.13)], respectively, the traditional and inertia-agnostic moment coefficients
are not directly related, but can be approximately compared by:

Kl ∼
Cl

Ix
, Km ∼ Cm

Iy
, Kn ∼ Cn

Iz
(4.8)

This shows that the inertia-agnostic moment coefficients can be interpreted as rotational
acceleration coefficients or an approximation of the traditional moment coefficients per unit
inertia.

The redefined mass-agnostic force coefficients (KX , KY , KZ) and inertia-agnostic mo-
ment coefficients (Kl, Km, Kn) are the response variables used for the proposed alternative
dynamic modeling approach. Note that the terminology of “mass-agnostic” and “inertia-
agnostic” pertains to the fact that the calculation of the redefined force and moment coeffi-
cients does not require the mass properties to be specified; however, the mass properties are
consequently absorbed into the redefined force and moment coefficients, meaning that the
values of estimated parameters will change if the mass properties change.

To investigate the impact of the dynamic simplifications made to form the inertia-agnostic
moment coefficient calculations [Equation (4.6)], the contributions of each term in the stan-
dard moment coefficient equations [Equations (2.17)-(2.19)] were assessed for the flight data
used for modeling shown in Figure 4.2. Figure 4.3 shows the time history of each term in
the standard moment coefficient equations compared to the total Cl, Cm, and Cn. Clearly,
the Ixṗ

q̄Sb
, Iy q̇

q̄Sc̄
, and Iz ṙ

q̄Sb
terms are the dominant contributions to Cl, Cm, and Cn, respectively.

These dominant terms also directly correspond to Kl, Km, and Kn scaled by mass prop-
erties [cf. Equation (4.6)]. Table 4.1 shows the percent of total Cl, Cm, and Cn variation
described by each term in the standard moment coefficient equations, where the dominant
terms are seen to describe at least 98% of the total moment coefficient response. Even for
the aggressive, large-amplitude multisine maneuver shown in Figure 4.2, this analysis sug-
gests that performing modeling and flight simulations using the simplified, inertia-agnostic
moment coefficients Kl, Km, and Kn will have a small impact on the results. This claim will
be investigated further with the presentation of modeling results shown in the next section.
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Figure 4.3: Time history of each term in the standard moment coefficient equations for the
flight data shown in Figure 4.2.

Table 4.1: Percent of total Cl, Cm, and Cn variation described by each term in the moment
coefficient equations

Cl term % of Cl Cm term % of Cm Cn term % of Cn

+ Ixṗ
q̄Sb

99.3 + Iy q̇

q̄Sc̄
98.9 + Iz ṙ

q̄Sb
98.3

− Ixz ṙ
q̄Sb

0.478 + (Ix−Iz)pr
q̄Sc̄

0.989 − Ixz ṗ
q̄Sb

1.61

+ (Iz−Iy)qr

q̄Sb
0.178 + Ixzp2

q̄Sc̄
0.105 + (Iy−Ix)pq

q̄Sb
0.038

− Ixzpq
q̄Sb

0.007 − Ixzr2

q̄Sc̄
0.037 + Ixzqr

q̄Sb
0.005
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It is expected that most operational flight maneuvers will exhibit similar character to
the analysis shown in Figure 4.3 and Table 4.1 with Ixṗ

q̄Sb
, Iy q̇

q̄Sc̄
, and Iz ṙ

q̄Sb
being the dominant

contributors to the moment coefficients. Accordingly, the mass-agnostic modeling approach
should yield good predictions for most flight maneuvers. However, certain maneuvers ex-
hibiting large simultaneous angular rates, such as descending or climbing turns, will amplify
the importance of neglected terms in Equations (2.17)-(2.19) and, thus, the mass-agnostic
modeling approach would be expected to have degraded prediction capability.

An intermediate practical scenario to the above discussion is when estimates of aircraft
mass and moments of inertia are available, but are not known accurately. For example, the
rough order of magnitude of the aircraft mass and moments of inertia might be known from
a rudimentary computerized aircraft representation or deduced from similar aircraft with
known mass properties. If this is the case, a variant of the mass-agnostic modeling approach
can be applied with the approximate mass, me, and approximate body-axis moments of
inertia, Ixe , Iye , and Ize . The body-axis force and moment coefficients can be redefined as

KXe = meKX =
meax
q̄S

∼ CX , KYe = meKY =
meay
q̄S

∼ CY , KZe = meKZ =
meaz
q̄S

∼ CZ

(4.9)

Kle = IxeKl =
Ixe ṗ

q̄Sb
∼ Cl, Kme = IyeKm =

Iye q̇

q̄Sc̄
∼ Cm, Kne = IzeKn =

Ize ṙ

q̄Sb
∼ Cn (4.10)

where the approximated aircraft mass properties scale the mass-agnostic force and moment
coefficients. This approximate scaling gives more physical meaning to the parameter esti-
mates because they more closely reflect traditional stability and control derivatives, but the
model simplifications are the same as the mass-agnostic modeling approach.

4.4 Results

This section compares the flight-test system identification results for the standard air-
craft dynamic modeling approach with mass properties information to the proposed air-
craft dynamic modeling approach that does not require knowledge of the mass properties.
For simplicity in notation and discussion, the standard approach will be referred to as the
“C(·) model” and the new mass-agnostic approach will be referred to as the “K(·) model”
(where “(·)” is used to represent the X, Y , Z, l, m, and n subscripts), in accordance with
the force and moment coefficient definitions given in Equations (2.16)-(2.19), Equation (4.1),
and Equation (4.6).

The aerodynamic model structure for each body-axis force and moment coefficient was
determined using the CZ-150 flight data with multisine inputs active on the control sur-
faces, shown in Figure 4.2. Following the model structure identification approach outlined
in Section 4.3 (with additional supporting details provided in Section 2.6.2), the final model
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structure for each response variable was composed of candidate regressors describing a sig-
nificant amount of the variation in the response. The model structure for each force and
moment coefficient for the C(·) model was determined to be:

CX = CXαα + CXα̇
ˆ̇α + CXα2α

2 + CXβ2
β2 + CXo (4.11)

CY = CYβ
β + CYp p̂+ CYr r̂ + CYδa

δa + CYδr
δr + CYo (4.12)

CZ = CZαα + CZq q̂ + CZα̇
ˆ̇α + CZo (4.13)

Cl = Clββ + Clp p̂+ Clr r̂ + Clδa
δa + Clo (4.14)

Cm = Cmαα + Cmq q̂ + Cmδe
δe + Cmα̇

ˆ̇α + Cmα2α
2 + Cmo (4.15)

Cn = Cnβ
β + Cnr r̂ + Cnδa

δa + Cnδr
δr + Cno (4.16)

The aerodynamic model structure for the K(·) model is identical, where “C” in Equa-
tions (4.11)-(4.16) is simply replaced by “K”. However, the parameter estimates and their
interpretation in each model are different.

After determining the model structure, complex least-squares regression was used to de-
termine the final estimates of the model parameters for each modeling approach. For each
scalar parameter, the parameter estimate θ̂, parameter standard error s(θ̂), and parameter

percent error (calculated as 100×
[
s(θ̂)/|θ̂|

]
) within the body-axis force and moment coeffi-

cient model equations are given in Tables 4.3-4.14 at the end of this chapter. The parameter
estimates have reasonably low standard error and percent error values, given the low-cost
instrumentation system used for this study and the high susceptibility of small aircraft to
atmospheric disturbance. Table 4.15 shows the K(·) parameter estimates and standard er-
rors scaled by aircraft mass properties according to Equation (4.5) and Equation (4.8), as
well as the scaled K(·) parameter percent errors relative to the corresponding C(·) parameter
estimates. The C(·) force coefficient parameters and standard errors are identical to the K(·)
force coefficient parameters and standard errors multiplied by a factor of m, as would be
expected by the developments presented in Section 4.3.2, where no dynamic simplifications
were made to the translational dynamics model. Conversely, for the moment coefficients,
the C(·) and scaled K(·) parameter estimates and parameter standard errors are different val-
ues as an artifact of the dynamic simplifications made in the rotational dynamics equations
discussed in Section 4.3.2. However, the respective C(·) and scaled K(·) moment coefficient
parameter estimates and standard errors are observed to be similar in value, and the percent
errors of the scaled K(·) moment coefficient parameters relative to the C(·) parameters are
generally low.

The model fits to the force and moment coefficients in the frequency domain for the C(·)
and K(·) models are shown in Figure 4.4. All response variables, except for CX and KX ,
are observed to have an excellent model fit. The R2 metric shown on the plot for each
response is high, indicating that most of the variation of the response variable about its
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(a) C(·) model (b) K(·) model

Figure 4.4: Comparison of the response data and model fit in the frequency domain.

mean is characterized by the model. The model fits for CX and KX are still satisfactory,
with an R2 value of 82.5%, but not as good compared to the other responses because of
the limited excitation along the body x-axis. A bare airframe CX model also has a smaller
influence on aircraft dynamics and is typically more difficult to accurately estimate using
flight data [88]. Although the response magnitudes are different, the respective C(·) and
K(·) force coefficient R2 values are identical because no dynamic simplifications were made
to the translational dynamics model. Conversely, the respective R2 values for the C(·) and
K(·) moment coefficient models are not identical, but the values are observed to be within
0.67%, as a consequence of the simplifications made in the rotational dynamics equations
for the K(·) model. Figure 4.5 shows the corresponding time-domain model fits compared
to the force and moment coefficients computed from the flight data, as well as the time-
domain R2 value for each response. The model predictions for each response in the time
domain reflect the fit quality observed in the frequency domain and show that the model
is able to describe a large amount of the variation in each response. Figure 4.6 shows
the time-domain modeling residuals corresponding to Figure 4.5 with the mass-agnostic
modeling residuals scaled according to Equation (4.5) and Equation (4.8). The three signals
shown on each subplot are the standard modeling approach residuals (C(·)− Ĉ(·)), the scaled

mass-agnostic modeling approach residuals [κ(·)(K(·)− K̂(·))], and the difference between the
standard nondimensional response data and the scaled mass-agnostic modeling approach
predictions (C(·)−κ(·)K̂(·)), where the respective scale factor for each response is represented
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(a) C(·) model (b) K(·) model

Figure 4.5: Comparison of the response data and model fit in the time domain.

by κ(·). The modeling residual magnitude and character are observed to be similar for each
case shown in Figure 4.6.

After identification of the C(·) and K(·) models, flight simulations were performed to
directly compare the performance of the two models to measured flight data and to evaluate
the accuracy of using the identified models for applications requiring flight simulation. This
simulation analysis was performed using multiple flight maneuvers:

1. the multisine maneuver used for model identification,

2. a validation multisine maneuver with a different distribution of harmonic components
assigned to each control effector than was used for model identification, and

3. single-axis multistep maneuvers that were not used for model identification.

The control surface deflections and initial conditions of each flight maneuver were used
as simulation inputs. The equations of motion for each approach (see Section 4.3) were
integrated to obtain the outputs predicted by the model, which are directly comparable to
the measured outputs from the flight data. Because CX , CZ , and Cm each included an
ˆ̇α model term, the equations were manipulated for numerical integration as discussed in
Section 2.2.3. The bias parameters were reestimated using the output-error method for each
maneuver, as is standard practice [19], but the other model parameters were held constant
to the values shown in Tables 4.3-4.14.
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Figure 4.6: Comparison of time-domain modeling residuals.

Figure 4.7 shows simulation results for the multisine maneuver that was used to iden-
tify the model parameters. Figure 4.8 shows simulation results for the validation multisine
maneuver. The output prediction capability for the modeling and validation multisine ma-
neuvers can be quantitatively characterized and directly compared using the NRMSE metric
[Equation (2.86)]. The modeling and validation NRMSE values for each model computed
using the output data shown in Figure 4.7 and Figure 4.8, respectively, are compared in
Table 4.2. Observing that the modeling and validation NRMSE values are generally low and
similar in value for each response provides confidence that both models have good prediction
capability. The visual C(·) model response and K(·) model response shown in Figures 4.7-4.8
are also very similar and the model predictions well-emulate the output flight data. Fur-
thermore, the simulation results for an elevator doublet, rudder doublet, and aileron 1-2-1
maneuver are shown in Figure 4.9, where the output responses of the C(·) and K(·) models
are very similar, and a good match is observed to the flight data. The visual offset between
the ax flight data and model predictions is attributed to the lack of excitation along the
body x-axis for the multistep maneuvers, which results in a low signal-to-noise ratio and,
thus, magnifies the difference between the data and model predictions.
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Figure 4.7: Comparison of C(·) and K(·) model simulation results for the model identification
maneuver.



4.4. Results 101

Figure 4.8: Comparison of C(·) and K(·) model simulation results for a validation multisine
maneuver.

Table 4.2: Comparison of multisine maneuver output modeling and validation NRMSE values
for the C(·) and K(·) models (expressed as a percentage)

V α β p q r ϕ θ ax ay az
Modeling NRMSE, C(·) model 7.8 8.4 7.2 4.3 5.9 5.9 13.0 7.9 8.6 4.7 8.0

Modeling NRMSE, K(·) model 7.4 8.0 7.0 4.2 5.9 6.5 12.3 7.9 8.1 4.6 8.2

Validation NRMSE, C(·) model 10.4 9.1 5.6 3.0 4.1 3.1 4.6 5.2 7.3 4.3 7.3

Validation NRMSE, K(·) model 10.8 9.1 5.7 2.9 4.3 3.2 4.5 5.3 7.1 4.1 7.5
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(a) Elevator doublet maneuver (b) Rudder doublet and aileron 1-2-1 maneuver

Figure 4.9: Comparison of C(·) and K(·) model simulation results for validation multistep
maneuvers.
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Parameter Estimate Tables

Table 4.3: Standard CX parameter estimates
(R2 = 82.51%)

Parameter θ̂ s(θ̂) % Error

CXα +0.240 0.0114 4.7
CXα̇ −1.54 0.229 14.9
CXα2 +1.26 0.123 9.8

CXβ2
+0.188 0.0311 16.5

CXo −0.0569 0.00331 5.8

Table 4.4: Mass-agnostic KX parameter es-
timates (R2 = 82.51%)

Parameter θ̂ s(θ̂) % Error

KXα +0.715 0.0339 4.7
KXα̇ −4.58 0.681 14.9
KXα2 +3.75 0.367 9.8

KXβ2
+0.560 0.0925 16.5

KXo −0.169 0.00986 5.8

Table 4.5: Standard CY parameter estimates
(R2 = 96.64%)

Parameter θ̂ s(θ̂) % Error

CYβ
−0.457 0.00826 1.8

CYp −0.283 0.0375 13.2
CYr +0.360 0.0338 9.4
CYδa

−0.226 0.0186 8.2
CYδr

+0.0968 0.00663 6.9
CYo −0.000340 0.00197 580.2

Table 4.6: Mass-agnostic KY parameter es-
timates (R2 = 96.64%)

Parameter θ̂ s(θ̂) % Error

KYβ
−1.36 0.0246 1.8

KYp −0.844 0.112 13.2
KYr +1.07 0.101 9.4
KYδa

−0.674 0.0554 8.2
KYδr

+0.288 0.0198 6.9
KYo −0.00101 0.00587 580.2

Table 4.7: Standard CZ parameter estimates
(R2 = 95.11%)

Parameter θ̂ s(θ̂) % Error

CZα −2.36 0.119 5.0
CZq −24.5 2.58 10.5
CZα̇ +27.2 2.89 10.6
CZo −0.321 0.00832 2.6

Table 4.8: Mass-agnostic KZ parameter es-
timates (R2 = 95.11%)

Parameter θ̂ s(θ̂) % Error

KZα −7.04 0.354 5.0
KZq −73.1 7.68 10.5
KZα̇ +80.9 8.60 10.6
KZo −0.957 0.0248 2.6

Table 4.9: Standard Cl parameter estimates
(R2 = 91.62%)

Parameter θ̂ s(θ̂) % Error

Clβ −0.0411 0.00224 5.5

Clp −0.290 0.0104 3.6
Clr +0.0978 0.00821 8.4
Clδa

−0.186 0.00516 2.8

Clo −0.00166 0.000223 13.4

Table 4.10: Inertia-agnostic Kl parameter
estimates (R2 = 91.97%)

Parameter θ̂ s(θ̂) % Error

Klβ −0.0917 0.00533 5.8

Klp −0.730 0.0247 3.4
Klr +0.242 0.0195 8.1
Klδa

−0.457 0.0122 2.7

Klo −0.00371 0.000500 13.5
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Table 4.11: Standard Cm parameter esti-
mates (R2 = 93.22%)

Parameter θ̂ s(θ̂) % Error

Cmα −0.300 0.0232 7.7
Cmq −6.49 0.521 8.0
Cmδe

−0.390 0.0173 4.4
Cmα̇ +2.41 0.646 26.8
Cmα2 −0.537 0.137 25.5

Cmo +0.000866 0.00199 229.6

Table 4.12: Inertia-agnostic Km parameter
estimates (R2 = 93.42%)

Parameter θ̂ s(θ̂) % Error

Kmα −0.968 0.0719 7.4
Kmq −19.2 1.61 8.4
Kmδe

−1.21 0.0534 4.4
Kmα̇ +7.46 2.00 26.8
Kmα2 −1.63 0.424 26.1

Kmo −0.00125 0.00659 527.0

Table 4.13: Standard Cn parameter esti-
mates (R2 = 94.42%)

Parameter θ̂ s(θ̂) % Error

Cnβ
+0.0498 0.00163 3.3

Cnr −0.107 0.00703 6.6
Cnδa

+0.0375 0.00224 6.0
Cnδr

−0.0406 0.00140 3.4
Cno +0.00185 0.000181 9.8

Table 4.14: Inertia-agnostic Kn parameter
estimates (R2 = 93.75%)

Parameter θ̂ s(θ̂) % Error

Knβ
+0.0811 0.00282 3.5

Knr −0.151 0.0121 8.0
Knδa

+0.0508 0.00386 7.6
Knδr

−0.0683 0.00241 3.5
Kno +0.00304 0.000316 10.4
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Table 4.15: K(·) parameter estimates scaled by aircraft mass properties

% Error

Parameter θ̂ s(θ̂) (relative to C(·))

mKXα +0.240 0.0114 0
mKXα̇ −1.54 0.229 0
mKXα2 +1.26 0.123 0

mKXβ2
+0.188 0.0311 0

mKXo −0.0569 0.00331 0
mKYβ

−0.457 0.00826 0

mKYp −0.283 0.0375 0
mKYr +0.360 0.0338 0
mKYδa

−0.226 0.0186 0
mKYδr

+0.0968 0.00663 0
mKYo −0.000340 0.00197 0
mKZα −2.36 0.119 0
mKZq −24.5 2.58 0
mKZα̇ +27.2 2.89 0
mKZo −0.321 0.00832 0
IxKlβ −0.0369 0.00215 10.1

IxKlp −0.294 0.00994 1.4
IxKlr +0.0975 0.00786 0.3
IxKlδa

−0.184 0.00494 0.8

IxKlo −0.00150 0.000202 10.0
IyKmα −0.307 0.0228 2.2
IyKmq −6.10 0.511 6.1
IyKmδe

−0.384 0.0169 1.5
IyKmα̇ +2.36 0.634 1.8
IyKmα2 −0.516 0.134 3.8

IyKmo −0.000396 0.00209 145.8
IzKnβ

+0.0479 0.00167 3.8

IzKnr −0.0890 0.00716 16.7
IzKnδa

+0.0300 0.00228 19.9
IzKnδr

−0.0403 0.00142 0.6
IzKno +0.00179 0.000187 2.8



Chapter 5

Part I Conclusions

System identification of small unmanned aircraft from flight data is challenging due to
physical and programmatic challenges, but arguably presents the best method for accurate
flight dynamics model development. Chapter 2 of this dissertation gave an overview of
the fixed-wing aircraft system identification approaches recently applied in the Nonlinear
Systems Laboratory at Virginia Tech using flight data. System identification has been per-
formed for multiple fixed-wing aircraft, which has led to the development and refinement of a
standard set of procedures for nonlinear model development for small, unmanned, fixed-wing
aircraft. Flight data collection is performed with a ground-based pilot executing piloted ma-
neuvers or coordinating automatic input excitations using custom-developed flight software.
After collection of flight data, several data processing steps specific to the small aircraft
operations are executed before performing model identification. Model development is then
performed using model structure determination and parameter estimation methods support-
ing nonlinear dynamic model development. After model validation, the models are used for
applications such as model-based wind estimation, flight control system design, or flight sim-
ulation. Low-cost unmanned aerial systems continue to be used for numerous applications
and the methods described in Chapter 2 provide a common framework to accurately char-
acterize aircraft dynamics and performance to support model-based research progression in
other areas. Four specific flight-test system identification research advancements were high-
lighted, two of which constitute primary contributions of this dissertation: aero-propulsive
model development for propeller aircraft and nonlinear dynamic model identification without
mass properties.

Aircraft flight dynamics models often assume that airframe and propulsion aerodynamic
characteristics are decoupled; however, aircraft with propellers used to generate thrust have
significant propulsion-airframe interactions and propulsion integration losses which result in
modeling inaccuracies when neglected. Chapter 3 in this dissertation proposed and validated
two methods for modeling aero-propulsive characteristics for propeller-driven fixed-wing air-
craft using flight data. Both methods have advantages and disadvantages which determine
the best approach to pursue for a particular modeling effort.

An efficient flight experiment was designed to enable identification of integrated propul-
sion and airframe aerodynamics in a single maneuver. Orthogonal phase-optimized multisine
input signals were applied to the aircraft control surfaces and the propulsion system simul-
taneously, which allowed collecting information rich flight data for aero-propulsive charac-
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terization. The propulsion multisine signal focused excitation power at lower frequencies so
that the input excitations remained within the motor bandwidth. The propulsion and con-
trol surface excitation amplitudes could be adjusted by the pilot in real time to ensure that
the data have a high signal-to-noise ratio, while also keeping the aircraft near the reference
trimmed flight condition. The data collected from the designed multisine maneuver were
used to identify models using both proposed modeling approaches.

The first aero-propulsive modeling approach identified an integrated aero-propulsive model
using flight data from a propulsion and control surface multisine maneuver. The explanatory
variables used for modeling included state and control variables commonly used for aircraft
system identification, as well as propulsion variables derived from propeller aerodynamics
theory. An alternative parametrization of advance ratio used as an explanatory variable for
modeling the nondimensional aircraft force and moment coefficients was demonstrated to sig-
nificantly improve modeling performance. The model identification results indicated that the
airframe and propulsion aerodynamics have significant coupling, demonstrating the impor-
tance of considering their effects jointly for propeller aircraft. The modeling and prediction
error for every response was observed to be less than 6%. The modeling and prediction
error for the CX model was approximately 1%. The models were also shown to have good
qualitative prediction capability for maneuvers with different waveforms than were used for
modeling.

The second aero-propulsive modeling approach developed a separate bare airframe and
propulsion aerodynamic model using flight data. The novelty of this approach is propulsion
model development using flight data, as opposed to using ground testing or computational
methods. A bare airframe aerodynamic model was identified using data from a gliding
maneuver with multisine signals only operating on the control surfaces. Parameters char-
acterizing the propeller thrust effects within the x-axis force coefficient were then identified
using data from a flight maneuver with multisine inputs active on the propulsion system and
control surfaces, while holding the bare airframe aerodynamic model parameters fixed. The
combined bare airframe and propulsion model was shown to have similar but slightly de-
graded modeling and predictive performance compared to the model where aero-propulsive
effects were characterized together. Nonetheless, both proposed modeling methods identified
high-quality models that can be used to perform accurate flight dynamics simulations.

Both the integrated and decoupled aero-propulsive modeling approaches developed using
flight data were compared to a model constructed using the bare airframe aerodynamic
model identified from flight data and a thrust model developed from isolated propeller wind-
tunnel data. The latter conventional modeling strategy significantly overpredicted the thrust
in flight, particularly at lower advance ratios. In contrast, the two approaches proposed
in Chapter 3 yielded models that were able to predict the airframe-integration losses and
accurately represent the propulsive performance in flight. Based on the presented analysis, it
is recommended to identify models for both the propulsion and airframe aerodynamics using
flight data for propeller aircraft applications requiring accurate flight dynamics models.
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Nonlinear aircraft flight dynamics models, including the models described in Chapters 2-3,
generally require knowledge of aircraft mass and moments of inertia. Although mass is
straightforward to accurately measure, computational and/or empirical determination of
moment of inertia tensor elements is labor-intensive and inconvenient to perform. Chapter 4
in this dissertation proposed a nonlinear dynamic modeling approach using flight data which
does not require knowledge of the aircraft mass properties. The standard nonlinear aircraft
dynamics equations were reformulated and the nondimensional force and moment coefficient
definitions were redefined to subsume the aircraft mass properties which obviates the need
to specify constant aircraft mass and moment of inertia tensor elements for accurate iden-
tification of a general nonlinear aerodynamic model. The aerodynamic model parameters
lose physical interpretability, but the resulting dynamic model can still be used for a vari-
ety of simulation, estimation, and control applications. Flight testing must be repeated if
there is a significant change in mass properties, but only a short flight maneuver is required
and model parameters can be rapidly reestimated. The proposed method was evaluated
using flight data collected using a small, fixed-wing, unmanned aircraft and the modeling
results were compared to a standard nonlinear aircraft flight dynamics model development
approach that requires mass properties knowledge. The results indicated that the model-
ing performance of the new mass-agnostic nonlinear dynamic modeling approach was very
similar to the standard nonlinear aircraft dynamic model identification approach. Based on
the analysis presented in Chapter 4, the proposed approach is recommended as a nonlinear
flight dynamics model development technique for a variety of aircraft without accurate mass
properties knowledge.
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System Identification for eVTOL
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Chapter 6

Aero-Propulsive Modeling for eVTOL
Aircraft Using Wind-Tunnel Data

This chapter describes approaches for development of a high-fidelity, integrated propulsion-
airframe aerodynamic model for the NASA LA-8 tandem tilt-wing, electric vertical takeoff
and landing (eVTOL) aircraft. eVTOL vehicle configurations exhibit aerodynamic char-
acteristics of both fixed-wing and rotary-wing aircraft as well as complex vehicle-specific
phenomena, such as propeller-wing interactions and high incidence angle propeller aerody-
namics. Consequently, conventional aircraft aerodynamic modeling strategies require modi-
fication when applied to eVTOL aircraft. Two novel system identification-based approaches
are used to develop an aero-propulsive model for the LA-8 aircraft configuration using wind-
tunnel data collected with design of experiments and response surface methodology tech-
niques. The modeling strategies are compared by assessing their predictive performance for
validation data acquired separately from the data used to identify the model and are shown
to have sufficient predictive capability. Research findings are presented with a discussion
of unique eVTOL vehicle aero-propulsive modeling characteristics and practical strategies
to inform future aero-propulsive modeling efforts for eVTOL aircraft. This work has been
published as a conference paper [27] and a journal article [28].

This chapter, and the remainder of Part II, seeks to provide a thorough development
and assessment of new system identification approaches for eVTOL aircraft aero-propulsive
modeling. A major objective is to formulate and justify generalized eVTOL aircraft empiri-
cal modeling strategies based on vehicle attributes; this includes postulating the definitions
of modeling explanatory variables and response variables, designing experiments to enable
efficient and accurate characterization of pertinent aerodynamic phenomena, development
of approaches to accurately model the aircraft over the full transition flight envelope, and
investigation of the aero-propulsive coupling that is ubiquitous for eVTOL vehicles. The mo-
tivation for this research was explained in Chapter 1. This chapter is organized as follows:
Section 6.1 introduces the LA-8 aircraft and highlights other tilt-wing aircraft modeling
efforts. Section 6.2 provides an overview of established aircraft system identification ap-
proaches in the context of eVTOL aircraft model development. The wind-tunnel data gath-
ering efforts are described in Section 6.3. Section 6.4 describes pertinent system identification
techniques, followed by postulation of vehicle-specific aero-propulsive modeling strategies in
Section 6.5. Section 6.6 shows sample modeling results accompanied by discussion of the
results.
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6.1 LA-8 Aircraft

The Langley Aerodrome No. 8 (LA-8) [191], pictured in a wind tunnel in Figure 6.1
and in a flight test in Figure 6.2, is a subscale, tandem tilt-wing, distributed electric propul-
sion (DEP) aircraft configuration built as a testbed for eVTOL aircraft technology. The
aircraft weighs 63 pounds, the front wingspan is 5.8 ft, and the rear wingspan is 6.2 ft. The
LA-8 was developed at NASA Langley Research Center as one of several eVTOL aircraft
concepts intended to explore their unique flight characteristics and resolve implementation
challenges to help bring similar full-scale vehicles into mainstream operation. The LA-8
project has enabled research in rapid vehicle development [191, 192], computational aero-
dynamic predictions [193, 194], wind-tunnel testing [46, 195], high incidence angle propeller
aerodynamics [36, 37, 196, 197], aero-propulsive modeling [24, 29, 30], flight controls [198],
and flight-test strategies [32, 199].

The LA-8 is equipped with 20 control effectors, including: two tilting wings, four elevons,
four single-slotted Fowler flaps, two ruddervators, and eight electric motors/propellers. A
diagram of the propulsors and control surface definitions is shown in Figure 6.3. The front
and rear wing tilt angles are denoted δw1 and δw2 . The control surface deflections are de-
noted δe1 , δe2 , δe3 , δe4 for elevons; δf1 , δf2 , δf3 , δf4 for flaps; and δr1 , δr2 for ruddervators.
Wing, elevon, flap, and ruddervator deflections are defined positive trailing edge downward.
Wing angle settings of 0 deg correspond to the horizontal, forward flight position and wing
angle settings of 90 deg correspond to the vertical position used near hover. The propulsor
rotational speeds are denoted n1, n2, ..., n8. Propellers 1, 3, 6, and 8 rotate clockwise and
propellers 2, 4, 5, and 7 rotate counterclockwise, as viewed from the rear. All propellers are
16-inch diameter, 8-inch pitch, fixed-pitch, 3-bladed propellers.

(a) LA-8 front view (b) LA-8 rear view

Figure 6.1: LA-8 mounted in the NASA Langley 12-Foot Low-Speed Tunnel.
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Figure 6.2: LA-8 flight test.
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Figure 6.3: LA-8 control effector definitions.

The modeling approaches developed in Part II of this dissertation for eVTOL aircraft
are described in the context of and applied to the LA-8 aircraft. Consequently, the subset of
eVTOL aircraft of interest in this work are tilt-wing aircraft with wing mounted propellers.
The operational advantages resulting from the DEP, tilt-wing design include delayed onset of
stall in transition and control surface effectiveness at low airspeed, both due to the propeller
slipstreams blowing over a majority of the wing [192]. Efficiency benefits also emerge from the
use of DEP technology [200, 201]. The disadvantages of tilt-wing aircraft include sensitivity
to wind at low speed due to the upward wing orientation, requiring powerful actuators to
rotate the wing, and possible flow separation from the wing in transition [192]. Although the
empirical modeling approaches are shown for tilt-wing aircraft, the strategies can be readily
applied to many different transitioning eVTOL aircraft, such as tilt-rotor and lift+cruise
configurations, with straightforward modifications.

Several previous studies have developed dynamic models for single tilt-wing [202–209] and
tandem tilt-wing concepts [210–217]. Many of these efforts develop models using low-to-mid
fidelity analytical and/or computational methods with some efforts using wind-tunnel data.
The direct predecessor to the LA-8 vehicle studied in this work was a subscale, tilt-wing, tilt-
tail, DEP, VTOL aircraft called the GL-10 [218], shown in Figure 6.4. Several different scaled
variants of the GL-10 vehicle were developed and tested to enable research in wind-tunnel
testing [137, 219], simulation development [218], flight controls [220], and flight testing [221,
222]. The complexity associated with the GL-10 aircraft inspired an ongoing initiative to
develop methods to efficiently develop aerodynamic models for arbitrarily complex aerospace
vehicles. Several lessons learned from the GL-10 aircraft study informed the development of
the aero-propulsive modeling strategies presented in this dissertation.

6.2 Standard Aircraft System Identification Techniques

This section presents an overview of experimental fixed-wing and rotary-wing aircraft
modeling techniques, which helps guide the development of the tilt-wing, DEP aircraft mod-
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Figure 6.4: GL-10 aircraft.

eling approaches described in Part II of this dissertation.

6.2.1 Fixed-Wing Aircraft Modeling

Fixed-wing aircraft system identification techniques are well-developed for standard prob-
lems and have been applied successfully to numerous aircraft configurations [223–226]. Aero-
dynamic modeling for fixed-wing aircraft is conventionally performed by developing data
tables or functional representations of dimensionless aerodynamic force and moment coef-
ficients as a function of aircraft states and controls. For subsonic aircraft, as discussed in
Section 2.2, the dimensionless aerodynamic force and moment coefficients are convention-
ally expressed as a function of angle of attack α; angle of sideslip β; dimensionless angular
rates p̂, q̂, r̂; and control surface deflections, such as elevator δe, aileron δa, and rudder δr
positions. The dimensionless forces and moments are the response variables; the airflow
angles, angular rates, and control surface deflections are the explanatory variables. Mod-
els may be developed using computational methods, wind-tunnel testing, or flight testing.
Wind-tunnel testing can be used to develop either tabulated or functional representations
of the force and moment coefficients through a variety of test techniques [227], which can
similarly be applied in a computational setting, whereas flight testing is typically used to
develop functional representations of the force and moment coefficients [19, 20]. The dimen-
sionless force and moment coefficients in the aircraft body-axes (CX , CY , CZ , Cl, Cm, Cn),
defined in Equation (2.13), normalize the measured aerodynamic forces and moments by the
freestream dynamic pressure and aircraft geometry. The forces are also commonly expressed
in the stability-axes for modeling where the lift coefficient CL [Equation (2.14)] and drag
coefficient CD [Equation (2.15)] replace CZ and CX .

Although widely successful for fixed-wing aircraft, the conventional fixed-wing model-
ing methodology cannot be applied in the same way to modeling eVTOL vehicles. Firstly,
nondimensionalization by dynamic pressure q̄ = 1

2
ρV 2 is not valid for vehicles that are

propulsion-dominated and experience significant airframe-propulsion interaction. Propeller
aerodynamics, for example, scale with the dynamic pressure experienced by the individual
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propeller blades, as opposed to freestream dynamic pressure. Due to these aerodynamic
scaling differences, testing must be performed at several different airspeed conditions to
properly identify the aerodynamics changes across the flight envelope. Another modeling
consideration is that eVTOL vehicles will operate at hover which makes modeling in terms
of angle of attack α and angle of sideslip β become undefined based on their definitions
[see Equations (2.24)-(2.25)]. Airflow angles are also less physically meaningful in the tran-
sition regime at low airspeed. Additionally, dimensionless force and moment coefficients are
singular in hover due to division by zero dynamic pressure [see Equation (2.13)], and stability
frame response variables are meaningless due to their dependence on α.

6.2.2 Rotary-Wing Aircraft Modeling

Rotorcraft system identification follows different conventions from fixed-wing modeling,
but is also well defined in the literature for helicopters and tilt-rotor variants [21]. Contrary
to fixed-wing aircraft system identification, rotorcraft models generally rely more heavily on
computational data or flight-test data because wind-tunnel testing is precluded by difficulties
in scaling subscale rotary-wing vehicles and facility limitations [228]. Body-axis force and
moment parameters are also generally estimated in their dimensional form due to the dif-
ferences in scaling between rotor and fuselage aerodynamics. Stability-axes and wind-axes
become undefined in hover, so modeling is generally only performed in the body-axes for
rotorcraft.

Rotorcraft system identification efforts most often develop linear models at a reference
flight condition. These point models are only valid near the flight condition where they are
identified and assume that complex rotorcraft aerodynamics can be represented in coupled,
linear differential equations. The explanatory variables used for estimation are generally
body-axis velocity components u, v, w; angular rates p, q, r; pilot control inputs; and rotor
states, such as flapping, lead-lag, inflow, coning, engine dynamics, etc., depending on the
design of the vehicle and the desired bandwidth of the developed model. Formulation in
terms of body-axis velocity components, as opposed to airflow angles α and β, allows the
state variables to be defined in hover and reflects the fact that fuselage angle of attack
and angle of sideslip are less physically meaningful for describing rotorcraft aerodynamics.
Rotorcraft modeling problems commonly use pilot collective δcol, longitudinal cyclic δlon,
lateral cyclic δlat, and pedal deflection δped because rotor collective and cyclic blade pitch
angles are challenging to measure. Models are commonly expressed in the form of a transfer
function or state-space model with added time delay parameters to account for unmodeled
higher-order dynamics [21].

Similar to fixed-wing aircraft, rotorcraft system identification approaches cannot be ap-
plied in the same way to modeling eVTOL vehicles. Firstly, significant airframe-propulsion
interactions and rapid aerodynamic variation with flight condition for eVTOL vehicles are
not accurately captured using linear rotorcraft modeling techniques, requiring extension to
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nonlinear methods. Secondly, pilot control positions are not acceptable for modeling be-
cause there is a far greater number of control surfaces and propulsors than pilot inputs.
Furthermore, many conventional helicopter rotor states, such as flapping, lead-lag, and con-
ing, are not as relevant to eVTOL vehicles because of smaller and stiffer propeller blades,
and measuring or estimating these quantities for each propulsor would be challenging. These
additional rotor states are not necessary to capture dominant eVTOL vehicle aerodynamic
dependencies due to the smaller-diameter, higher-rigidity distributed propellers and reduced
mechanical complexity compared to articulated rotors. For vehicles with fixed-pitch rotors,
modeling can be performed using propeller rotational speed measurements, whereas vehicles
with variable-pitch rotors will require both rotational speed and blade angle measurements.

6.2.3 Multirotor Aircraft Modeling

Multirotor system identification has become a recent area of research interest with the
growing availability and capabilities of electrically-powered UAVs (e.g., see References [7,
9, 75, 128–136]). Multirotor modeling methodologies generally follow closely to rotorcraft
system identification techniques, with the exception that certain rotor-specific states become
less significant because the rotors generally have a smaller diameter, higher rigidity, and do
not use cyclic pitch controls. Airframe-propulsion interactions can account for a significant
portion of multirotor aerodynamic forces and moments [229], but are often ignored or lumped
into quasi-steady, linear stability derivatives. The aerodynamic characteristics of transition-
ing eVTOL aircraft configurations are generally a hybrid between multirotor and fixed-wing
aircraft, depending on the operational flight mode.

6.3 Wind-Tunnel Testing

The aero-propulsive models presented in this chapter were developed using wind-tunnel
data collected at the NASA Langley 12-Foot Low-Speed Tunnel (LST) [230]. The facility
is an atmospheric pressure tunnel with a 12-foot width and height octagonal cross-section
and 15-foot test section length. Dynamic pressures of up to q̄ = 7 psf (a freestream velocity
of approximately V = 77 ft/s at standard sea level conditions) are able to be achieved.
The air is pulled through the tunnel by a 6-blade, 15.8-ft diameter fan. The test section
longitudinal turbulence intensity is approximately 0.6% for the longitudinal center-line-flow.
The 12-Foot LST is primarily used for exploratory aircraft stability and control research
with experimental flexibility that enables rapid development of innovative test techniques
and characterization of advanced aerospace vehicles. A schematic of the wind tunnel is
shown in Figure 6.5.

The LA-8 wind-tunnel tests used for this chapter included an isolated propeller test and
a powered-airframe test using the same vehicle that is used for flight testing. Testing at
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Figure 6.5: Schematic of the NASA Langley Research Center 12-Foot Low-Speed Tunnel.

the flight vehicle full-scale obviates the need to scale using similitude relationships, which
are challenging for rotorcraft and typically limit vehicle wind-tunnel testing [144, 228]. An
airframe-only test, without propellers, was also performed but not used for model devel-
opment due to difficulty in superimposing data in the transition flight regime. A buildup
aero-propulsive modeling approach was originally considered, including an isolated propulsor
model, bare airframe model, and interaction model. However, the blown-wing aerodynamic
characteristics, such as delayed stall onset, invalidate the full model buildup approach. An
overview of the individual tests used for model development is given next.

6.3.1 Isolated Propeller Testing

Propeller aerodynamics for eVTOL vehicles are complex due to the large range of op-
erational flight conditions, compounded by the presence of many propulsors. An isolated
propeller test was conducted to obtain a better understanding of LA-8 propeller behavior
in isolation and develop mathematical models for the propeller aerodynamics intended to
be used in concert with data from other LA-8 wind-tunnel entries to develop the vehicle
aero-propulsive model. The test conditions for the isolated propeller testing included dy-
namic pressure ranging from 0 to 6 psf (corresponding to a freestream velocity of 0 to 71
ft/s), motor speed ranging from approximately 1500 to 6000 rpm, and angle of incidence
relative to the propeller disk ranging from 0 to 180 deg. Combinations of dynamic pressure,
motor speed, and incidence angle were tested in a one-factor-at-a-time (OFAT) manner for
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both the clockwise and counterclockwise rotating propellers. The collected data cover nearly
the full range of expected flight conditions and are used to augment the powered-airframe
LA-8 wind-tunnel test described next. The propeller testing methodology and experimental
findings are further described in Reference [36]. The test data were subsequently used to
develop a propulsion system model that characterizes propeller aerodynamics across the wide
range of operational flight conditions expected to be encountered by the LA-8 [37]. Although
the OFAT methods employed for this wind-tunnel test were adequate for the intended pur-
pose, the subsequently developed, more efficient and statistically-rigorous experiment design
approach for eVTOL aircraft propeller wind-tunnel testing described in Reference [38] is
recommended for future eVTOL aircraft propeller testing.

6.3.2 Powered-Airframe Testing

Wind-tunnel tests to capture complex eVTOL vehicle nonlinear aerodynamics and inter-
actions is a challenging undertaking. The LA-8 aircraft, with eight propulsors, ten control
surfaces, and two tilting wings, as well as three static flight condition variables, defined by
either V , α, β or u, v, w, results in 23 different experimental factors. Due to the large num-
ber of factors, traditional static OFAT wind-tunnel testing is not practical for developing
models describing the complex nonlinear aerodynamics and vehicle interactions of eVTOL
aircraft. Experiments designed using design of experiments (DOE) [231] and response sur-
face methodology (RSM) [232] theory, however, can efficiently scale to a large number of
factors allowing wind-tunnel tests to be completed in a reasonable amount of time while
supporting identification of interactions between all factors. DOE/RSM-based wind-tunnel
tests were used previously to characterize the GL-10 aircraft [137, 219] and is the approach
used for the LA-8 powered-airframe testing [46].

DOE/RSM-based testing provides a statistically rigorous experiment design methodology
supplying rich information content in a relatively compact data set. The model development
process also benefits from properties of orthogonality, randomization, replication, blocking,
and sequential testing [231]. Nearly orthogonal experimental factors aid the model structure
identification and parameter estimation process by ensuring low candidate regressor correla-
tion. Randomization of test points reduces the effects of systematic measurement errors and
extraneous factors—errors are reflected in the parameter variance rather than corrupting
the parameter estimates. Replication of data points provides insight into the measurement
facility noise characteristics. Blocking minimizes the effects of unmodeled nuisance factors.
Sequential testing allows efficient data collection to obtain the desired modeling fidelity.

Although DOE/RSM-based testing has several advantages compared to OFAT testing,
particularly for eVTOL vehicles, initial exploratory OFAT testing may be needed to help
define the ranges of certain factors for testing [46]. Before performing DOE/RSM-based
testing, an OFAT test of the LA-8 vehicle was performed to define the nominal flight envelope
and find trim points where longitudinal forces were balanced and pitching moment was
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zero [195]. Trimming was primarily accomplished by varying motor speeds and wing angles
to prevent control surfaces from being near their physical limits. The ranges of factors for the
DOE/RSM test were subsequently specified in accordance with the nominal flight envelope,
providing improved data density for modeling over the full flight envelope.

Static DOE/RSM wind-tunnel testing for the LA-8 was performed at eight dynamic pres-
sure settings from 0 to 5 psf (freestream airspeed of approximately 0 to 65 ft/s), where the
factor ranges at each dynamic pressure reflected the values expected to be seen in flight
at that condition. Contrary to subsonic fixed-wing aircraft tests which are typically per-
formed at one dynamic pressure setting, testing was performed at multiple dynamic pressure
settings due to the large contributions of both the fixed and rotating components on the
vehicle. Fixed-wing aircraft forces and moments are traditionally nondimensionalized by
dynamic pressure q̄ and aircraft geometric characteristics. Propeller forces and moments
are nondimensionalized by air density ρ, rotational speed n squared, and propeller diameter
D raised to the power of four or five [see Equations (3.1), (3.2), and (3.6)], while being
highly dependent on airspeed in terms of advance ratio [Equation (3.3)]. These differences
in aerodynamic scaling suggest testing at a variety of wind-tunnel dynamic pressure settings
is required.

The experimental factors specified for DOE testing at each different tunnel dynamic pres-
sure setting were angle of attack α; angle of sideslip β; wing angles δw1 , δw2 ; elevon deflection
angles δe1 , δe2 , δe3 , δe4 ; flap deflection angles δf1 , δf2 , δf3 , δf4 ; ruddervator deflection angles
δr1 , δr2 ; and PWM commands η1, η2,..., η8, resulting in 22 independently varied factors. Al-
though the background information presented in Section 6.2 suggests parameterizing eVTOL
aircraft models using body-axis velocity components, the test matrices were specified using
α and β for ease of envelope definition and simplified integration into the wind-tunnel test
apparatus. The factor ranges for angle of attack, angle of sideslip, and wing angle are shown
in Figure 6.6, with derived parameters of z-axis velocity w = V sinα cos β and y-axis velocity
v = V sin β also displayed. The data points show the upper and lower limit for each variable
against the tested dynamic pressure setting, and the connecting lines reflect the modeled
flight envelope. Although wing angles δw1 and δw2 were varied independently during testing,
the ranges of values were identical for all testing, so the wing angle is displayed with a generic
label δw.

After the ranges of factors for each test condition were determined, the powered-airframe
wind-tunnel experiment was designed using DOE/RSM techniques. For each experiment
at different dynamic pressure settings, a series of five test blocks was designed to ac-
quire the data necessary to identify increasingly complex aero-propulsive models. Block
design was accomplished with the aid of Design-Expert®, a commercially available statis-
tical software package [233]. Following the experiment design approach developed in Refer-
ences [47, 48, 137, 234], the test blocks are: (1) a minimum run resolution V face-centered
central composite design (FCCCD), (2) a nested minimum run resolution V FCCCD [235],
(3) an augmented I-optimal design for quadratic models, (4) another augmented I-optimal
design for quadratic models, and (5) a final augmented I-optimal design for quadratic mod-
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Figure 6.6: LA-8 DOE test state and wing orientation factor ranges against dynamic pressure
setting.

els used as validation data. This experiment design will be explained in detail in Chapter 7
(Section 7.3.1). Figure 6.7 shows a two-dimensional slice of the 22-factor space for the LA-8
powered-airframe experiments; Figure 6.7a shows Blocks 1-2 and Figure 6.7b shows Blocks
3-5. Although “Coded Variable 1” and “Coded Variable 2” are shown in the figure, similar
plots would be obtained for other test variables and the variables would be converted into
engineering units before executing testing.

(a) Blocks 1 and 2 (FCCCD and nested FCCCD
designs)

(b) Blocks 3, 4, and 5 (I-optimal and validation
designs)

Figure 6.7: Two-dimensional slice of the coded factor space for the LA-8 powered-airframe
experiments.

6.4 Model Identification

An overview of the methods used for model identification, collinearity analysis, and val-
idation are discussed in the following sections. Although the aircraft system identification
research in this chapter and the rest of Part II is different than the work discussed in Part I,
the modeling identification techniques were similar to those discussed in Section 2.6 and were
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likewise adapted from the SIDPAC software toolbox [19, 50].

6.4.1 Model Structure Determination and Parameter Estimation

Development of an adequate model structure is one of the most challenging aspects of
aero-propulsive modeling for eVTOL aircraft. eVTOL vehicles share overlapping character-
istics with both fixed-wing and rotary-wing aircraft, as well as complex vehicle-specific phe-
nomena such as high incidence angle propeller aerodynamics, DEP, and propulsion-airframe
interactions, which must be represented in the model structure. Consequently, suitable def-
initions of modeling explanatory and response variables are unclear and the expected model
structure is not well defined due to limited previous research in this area. Furthermore, the
presence of a larger number of candidate regressors compared to conventional aircraft mod-
eling problems leads to numerical conditioning issues, large data processing times, and a re-
quirement for more user insight. Multiple techniques were investigated to develop the model
structure, including stepwise regression [19, 103] and multivariate orthogonal function mod-
eling [19, 102] (see Section 2.6.2). The stepwise regression algorithm from Reference [103],
described in Section 2.6.2.2, was used to produce the results presented in this chapter.

The stepwise regression algorithm can be run automatically or manually. Due to the
abundance of candidate regressors and large number of model terms needed to describe
complex eVTOL aerodynamic phenomena, each model required many iterations to converge
to an adequate model structure. For this reason, the stepwise regression algorithm was
run automatically until the remaining excluded model terms did not surpass the partial F -
statistic cutoff value when added to the model. However, due to the aerodynamic complexity
and large number of candidate regressors, the automated algorithm was found to produce
models deemed by analysts to require further adjustments to model terms. The automated
algorithm was effective in predicting dominant terms that should be included in the model,
but was more challenged to determine which borderline terms with similar statistical mod-
eling metrics were worthy of inclusion in the model structure (a task that would be more
obvious to a subject matter expert based on physical insight). This results in both model
terms excluded from the model that should be included and other model terms included
in the final model that should be excluded, based on analyst judgment. For example, if
three out of four terms describing the interaction of an elevon with its closest propulsor are
included in the model, consideration should be given to adding the fourth elevon-propulsor
interaction term. Conversely, if the model includes an interaction term for control effectors
far apart on the vehicle lacking physical justification, consideration should be given to re-
moving the term from the model. Most often these borderline model terms are either just
above or below the statistical cutoff thresholds. For these reasons, it is useful to add user
insight to the modeling process while still utilizing the efficiency gained through automation
due to the size of the modeling problem.

To address the desire for modeling efficiency, as well as addition of subject matter expert
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user insight when needed, a partially-automated modified stepwise regression (PAMSWR)
process was refined and utilized for model development. The automated algorithm is first
run to develop a baseline model. After termination of the automatic algorithm, a subject
matter expert is given the ability to add insight into the modeling process by adding or re-
moving model terms based on physical vehicle insight and statistical metrics. The PAMSWR
approach is particularly useful for eVTOL vehicle modeling because the automated process
helps to expedite the model development process, but the manual model adjustment at the
end allows for modeling insight from a subject matter expert.

Part of the model structure determination process is to select a pool of candidate re-
gressors to be evaluated for inclusion in the model structure. Due to the large number of
LA-8 test factors (22), practical DOE/RSM experiment designs can only support lower-order
full polynomial models, such as a quadratic model terms with two-factor interactions terms
(Quadratic+2FI). An example of Quadratic+2FI complexity candidate model terms for an
arbitrary three-factor study involving explanatory variables of α, β, and δ would be α, β, δ,
αβ, αδ, βδ, α2, β2, and δ2. From this list of candidate regressors, one can infer that the
number of candidate model terms would become large for a study with many factors. For a
22-factor study with Quadratic+2FI complexity, there are 275 candidate model terms.

After determining an adequate model structure, the final parameter values were esti-
mated using ordinary least-squares regression (see Section 2.6.1.1). A characteristic of mod-
eling eVTOL aircraft is the presence of many regressors and associated parameter estimates
included in the final models. Thus, even when implemented on modern computers, numer-
ical best practices are emphasized for solving the regression problem. This includes scaling
regressor measurements to be the same order of magnitude for performing calculations and

using a robust inversion technique to compute
(
XTX

)−1
, such as singular value decompo-

sition. SIDPAC regression codes use robust singular value decomposition matrix inversion
by default.

6.4.2 Data Collinearity Assessment

As discussed in Section 2.6.2.4, data collinearity is defined as a correlation between re-
gressors high enough to cause corrupted model identification [19]. Data collinearity will cause
difficulty in both model structure determination and parameter estimation because the effects
of certain regressors on the response cannot be distinguished. Model structure identification
is corrupted by candidate regressor correlation, particularly for the large number of candi-
date model terms associated with modeling eVTOL aircraft, because an algorithm is more
inclined to include model terms that lack physical reality or exclude model terms describing
significant aerodynamic phenomena. Parameter estimation algorithms cannot differentiate
between highly correlated model terms, resulting in inaccurate parameter estimates and high
uncertainties. For these reasons, it is important to develop an experiment design with low
correlation among candidate regressors. Note that if a full factorial test matrix was used for



122
Chapter 6. Aero-Propulsive Modeling for eVTOL Aircraft Using

Wind-Tunnel Data

the experiment, all test factors and their interactions would be perfectly orthogonal. The
minimum run resolution V factorial and I-optimal test matrix designs used to run a more
efficient experiment and a desire for higher-order model terms warrants correlation analysis.
Data collinearity should also be assessed after data collection because the designed factor
settings may not be perfectly achieved in the experiment and, in this work, some of the
explanatory variables differ from test factors, as will be discussed in Sections 6.5.1-6.5.2.

Correlation between two regressors can be assessed using the correlation coefficient rij,
shown in Equation (2.80), where ξi and ξj represent the two regressor measurement histo-
ries. A correlation coefficient value of zero means the signals are uncorrelated, or orthogonal,
and an absolute correlation coefficient of one indicates that the signals are completely corre-
lated. A correlation coefficient between regressors with magnitude greater than 0.9 indicates
that data collinearity problems may be encountered [19, 20]. The correlation coefficient
only quantifies correlation between pairs of regressors, and thus cannot diagnose collinearity
among more than two regressors.

Collinearity assessment is useful for confirming a choice of modeling candidate regressors
from a given experiment design or data set are sufficiently decorrelated for model identifica-
tion. Figure 6.8 shows the correlation coefficient values between all Quadratic+2FI candidate
regressors for the designed 22-factor test matrix used for LA-8 model development. The pair-
wise correlation coefficients of each regressor with all other candidate regressors are shown
for each regressor index. Correlation among the pure quadratic model terms is the high-
est at approximately rij = 0.7, but the correlation is still low enough for successful model
identification. This figure demonstrates that Quadratic+2FI regressors derived from the
experiment test factors are sufficiently decorrelated and provides a basis for comparison to
other candidate regressor choices explored in future sections.

Figure 6.8: Correlation of Quadratic+2FI experimental factor candidate regressors in coded
units.

6.4.3 Model Validation

Model validation, discussed previously in Section 2.6.3 in the context of flight-test sys-
tem identification for fixed-wing aircraft, is an examination of model adequacy using data
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withheld from the model development process. Regression methods minimize the summa-
tion of squared modeling residuals between modeled and measured response, so inspection
of modeling fit metrics and modeling residuals alone does not provide information about
the model predictive capability. Assessment of model performance using validation data not
used for modeling provides a more reliable estimate of model prediction accuracy. Validation
assessment can be performed by comparing the measured response for validation data to the
response predicted by the model for the same explanatory variable inputs. Further assess-
ment is performed by analyzing the prediction residuals between the measured and predicted
response, e = z− ŷ. Here, it is useful to compare modeling and prediction residuals because
a significant increase in the spread of prediction residuals compared to modeling residuals is a
way of diagnosing an improper model. Plots of residuals over a measurement history should
appear as white noise with a magnitude below a level deemed acceptable by the analyst for
a particular modeling effort. Repeated test points provided an estimate of the measurement
error variance and aid in determining an acceptable level of modeling and prediction error;
however, acceptable residual character is still somewhat subjective and dependent on factors
such as the flight condition, response type, and test facility. Further residual distribution
statistics can be computed, such as the RMSE [see Equation (2.84)].

Residuals and their statistical properties can be given further interpretability by nor-
malization. Following the justification given in Section 2.6.3, the error normalization metric
used in this work is the range of response variable measurements used to develop the local
model, range(zm) [Equation (2.85)]. The normalized residual vector is defined as:

e∗ =
z − ŷ

range(zm)
(6.1)

The normalized RMSE (NRMSE) was similarly defined in Equation (2.86).

A prediction error metric defined using critical binomial analysis of validation residuals is
also useful as a quantitative measure of the model adequacy. For this analysis, each validation
data point is considered to either pass or fail relative to a prediction error threshold. Failed
trials can indicate model inadequacy or measurement error. The binomial test provides a
threshold to determine when the number of failures is statistically significant. For this metric,
the prediction error level associated with the number of successful trials being equal to the
critical binomial number B can be used for comparison to a pre-defined level of acceptable
modeling error to determine model adequacy. This prediction error threshold is denoted
here as e∗cv. For the experiments designed for this work, there were 75 validation points
acquired to test the prediction capability of each model. At the 95% confidence level, the
binomial test with a 1% inference error has a critical binomial number1 of B = 66. This can
be interpreted as allowing no more than nine validation residuals to exceed the prediction
error threshold for an adequate model. The process of computing the 95% prediction error
metric interval used for this work is to calculate the normalized prediction residual vector

1A method of computing the critical binomial number B is using the binomial inverse cumulative distri-
bution function in MATLAB®, where the syntax in this case would be binoinv(0.01, 75, 0.95).
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e∗ using Equation (6.1) and then sort the absolute value of e∗ in ascending order:

e∗
a = sort (|e∗|) (6.2)

Using the ascending absolute normalized prediction residual vector e∗
a, the prediction error

metric e∗cv is provided as the Bth value of e∗
a vector:

e∗cv = e∗
a(B) (6.3)

Further explanation of critical binomial analysis of residuals and justification for using this
metric to assess prediction error is given in Reference [236]. This metric has been used in
previous aircraft DOE/RSM wind-tunnel testing studies [47, 234, 237].

6.5 Aero-Propulsive Modeling Approaches

Aerodynamic modeling for this effort focuses on developing a polynomial representation
of the aero-propulsive forces and moments as a function of vehicle state and control variables.
Two approaches were postulated and tested to investigate modeling for eVTOL aircraft. The
first approach discussed is a conventional procedure where factors under test, or close vari-
ants, are added to a universal candidate regressor pool and the model is identified from
the powered-airframe wind-tunnel data. The second approach utilizes identified isolated
propeller models to inform full-airframe model identification. The modeling approaches de-
veloped herein apply relevant parts from both fixed-wing and rotary-wing modeling method-
ologies as well as incorporate strategies specific to tilt-wing, DEP aircraft. For this study,
the goal was to develop models minimizing prediction error, where a value of 5% or less for
e∗cv was considered to be adequate based on analyst judgment and previous aerodynamic
modeling studies conducted in the experimental facility used for wind-tunnel testing [234].

Aero-propulsive modeling for tilt-wing, DEP aircraft requires a different approach, com-
pared to conventional fixed-wing and rotary-wing aircraft modeling approaches outlined in
Section 6.2. eVTOL vehicles can be considered a fixed-wing/rotary-wing hybrid suggesting
that a combination of the two modeling methodologies will facilitate suitable model develop-
ment. Accordingly, the modeling approaches defined here largely seek to merge appropriate
fixed-wing and rotary-wing modeling attributes with certain new strategies to develop a mod-
eling methodology for LA-8 and other similar vehicles. Adopted from rotorcraft modeling,
the response variables are defined as the dimensional body-axis aero-propulsive forces and
moments X, Y , Z, L, M , and N , as opposed to nondimensional force and moment coeffi-
cients CX , CY , CZ , Cl, Cm, and Cn. Furthermore, the explanatory variables for aerodynamic
states are defined in terms of the body-axis velocity components v and w, as opposed to an-
gle of attack α and angle of sideslip β. These choices facilitate a modeling strategy valid
from cruise to hover. Adopted from fixed-wing modeling, a generally nonlinear polynomial
expansion modeling approach is used to capture the nonlinear aerodynamic effects including
airframe-propulsion interactions.
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Certain attributes of tilt-wing, DEP aircraft require specific modeling techniques not
gleaned from fixed-wing or rotary-wing system identification. Both fixed-wing and rotary-
wing modeling approaches also do not translate well to a vehicle with many propulsion
elements which individually interact with lifting surfaces and control surfaces. The tilting
wings add additional challenges not seen in tilt-rotor designs because the propellers, wings,
and wing-fixed control surfaces all change orientation with respect to the modeling frame
of reference in the body-axes. Each different combination of wing angle orientation can
be interpreted as a vehicle configuration change. One way of handling this complexity is
to develop a different aero-propulsive model at each combination of wing angle settings,
in addition to flight condition defined by q̄ for wind-tunnel testing. This method would
be ideal when a transition wing angle schedule has been defined. However, the identified
aero-propulsive model may be used to inform the transition wing angle schedule, as is the
case for the present vehicle. The presence of two independently tilting wings adds further
complication. In this case, developing a new aero-propulsive model at numerous possible
combinations of wing angle throughout transition becomes impractical due to the large
increase in the number of test points required, and therefore, it is necessary to include wing
angles as explanatory variables in the modeling rather than as part of the configuration
definition.

6.5.1 Approach I: Modeling Using Only Powered-Aircraft Test
Data and Standard Regressor Definitions

The first approach for modeling the LA-8 aircraft, referred to as “Approach I,” uses the
powered-airframe wind-tunnel test described in Section 6.3.2 for model identification. Mod-
els developed from DOE/RSM-based testing conventionally evaluate the factors under test
as candidates for explanatory variables. However, due to unique characteristics of eVTOL
aircraft, test facility integration limitations, and convenience, analysis was instead performed
by redefining certain explanatory variables for modeling. For example, as mentioned in Sec-
tion 6.3.2, wind-tunnel testing was performed by varying α and β directly for operational
convenience. Although testing was performed with experimental factors of α and β, model-
ing was performed using body-axis velocity components v and w, following rotorcraft system
identification convention. Because body-axis velocity components are closely related to air-
flow angles, this variable change does not affect the ability to identify a model from the
data because the regressors retain their low correlation. Similarly, testing was performed
by varying motor PWM commands, but modeling was performed using measured propeller
rotational speeds. Propeller speed is more relevant to describe propeller aerodynamics and
the relationship between PWM command and propeller speed can change significantly due
to nuisance factors, such as motor temperature. For this reason, it is essential to acquire a
direct measurement of propeller rotational speed for modeling, as opposed to relying on a
calibration curve between motor PWM command and propeller speed. Although the PWM
command to propeller speed relationship does not follow a linear trend, particularly at inci-
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dence [37], low regressor correlation was still sufficiently maintained, making this approach
justifiable. Figure 6.9 shows the correlation coefficient metric for Quadratic+2FI candidate
regressors computed for the centered explanatory variables specified in this section. The cor-
relation for equivalent levels of model complexity is only slightly higher than the correlation
between commanded experimental factors shown in Figure 6.8. This suggests validity in the
proposed modeling approach.

Figure 6.9: Correlation of Approach I Quadratic+2FI candidate regressors.

It is important to perform modeling with explanatory variables expressed in coded units,
or in engineering units with the explanatory variables centered on a reference value, to
maintain low correlation among candidate regressors. The correlation coefficients among
candidate regressors in engineering units assembled from centered explanatory variables are
identical to the correlation coefficients among regressors in coded units, if the centering refer-
ence value for each explanatory variable is the midpoint between the minimum and maximal
value. Both explanatory variable formulations align with the assumptions of a multivari-
ate Taylor series expansion taken from a single reference point. Although models defined in
coded units are suitable for model predictions and simulation, models in engineering units are
generally desired because of their physical meaning relating to stability and control deriva-
tives. For this reason, the LA-8 aero-propulsive models were developed using explanatory
variables in engineering units centered on the respective mean value of each explanatory
variable.

To summarize, the modeling explanatory variables for this approach were defined to be
the centered body-axis velocity components v, w in ft/s; propeller speed n1, n2, ..., n8 in revo-
lutions per second; wing angle δw1 , δw2 in radians; elevon deflection δe1 , δe2 , δe3 , δe4 in radians;
flap deflection δf1 , δf2 , δf3 , δf4 in radians; and ruddervator deflection δr1 , δr2 in radians. The
response variables are defined as the dimensional aero-propulsive forces X, Y, Z in lbf and
moments L,M,N in ft·lbf acting on the aircraft in body-fixed axes. An independent model
was developed at each dynamic pressure condition tested.

One advantage of modeling Approach I is its generality, where the only limitation in de-
scribing the vehicle static aero-propulsive characteristics is the adequacy of modeling with the
particular selection of candidate regressors. Additionally, this approach avoids assumptions
of model superposition validity (i.e. combining aerodynamic models for different aircraft
components, such as propellers and wings) because all model parameters are estimates from
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a comprehensive data set where all states and controls are varied. The final models are also
in a compact form allowing easy use for a variety of applications. A second modeling ap-
proach, described next, strives to add additional fidelity and simulation advantages utilizing
supplementary propeller wind-tunnel testing to develop the aero-propulsive model.

6.5.2 Approach II: Modeling Using a Combination of Isolated
Propulsion and Powered-Airframe Testing

An alternative modeling approach, referred to as “Approach II,” is to combine isolated
propeller models with full-airframe models. Isolated propeller aerodynamics across an eV-
TOL aircraft flight envelope are highly complex and, at incidence, produce significant off-axis
forces and moments in addition to axial thrust and torque. For example, in Reference [37],
31 model terms are identified to characterize the forces and moments produced by a single
isolated propeller for airflow incidence angles ranging between 0 to 60 deg. Consequently, the
complexity of propeller aerodynamics for many different propulsors increases the difficulty of
identifying all necessary model terms from a powered-airframe test alone, suggesting possible
merit for pursuing a hybrid propeller and full-airframe modeling approach.

The LA-8 propeller aerodynamic model was developed using the isolated propeller test
summarized in Section 6.3.1 and described in detail in Reference [36]. A functional represen-
tation of the thrust and torque components in a propeller-fixed axis system were identified
using the dimensionless thrust and torque coefficients [see Equations (3.1), (3.2), and (3.6)]
as the response variables. The propeller modeling explanatory variables were the normal
component of advance ratio,

Jx =
V cos ip
nD

(6.4)

the edgewise (tangential) component of advance ratio,

Jz =
V sin ip
nD

(6.5)

and the propeller blade Reynolds number defined in Equation (3.4). Recall that ip is the
propeller incidence angle relative to the oncoming airflow that was shown in Figure 3.1. The
variables Jx and Jz are similar to an advance ratio representation used for rotorcraft [145, 146]
and have been used in other work characterizing propellers operating at high incidence
angles [38, 238]. The LA-8 propeller aerodynamic model development is described in further
detail in Reference [37].

Using the aerodynamic model developed for the isolated propellers, the aerodynamic con-
ditions at the eight vehicle propeller disk centers were used to estimate forces and moments
produced by each of the propellers in the powered-airframe wind-tunnel data. Each calcu-
lated kth propeller forces and moments were transferred from the propeller center in the
propeller-fixed frame to the aircraft modeling reference location in the body-fixed frame, as
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shown in Reference [37]. The kth propeller forces and moments transferred to the modeling
reference location in the body-fixed frame are denoted T b

xk
, T b

yk
, T b

zk
, Qb

xk
, Qb

yk
, and Qb

zk
. The

estimated propeller forces and moments for each of the eight propellers were then subtracted
from the measured forces and moments to compute an estimate for the non-propulsive forces
and moments experienced by the aircraft, denoted X̂, Ŷ , Ẑ, L̂, M̂ , and N̂ , as follows:

X̂ = X −
8∑

k=1

T b
xk
, Ŷ = Y −

8∑
k=1

T b
yk
, Ẑ = Z −

8∑
k=1

T b
zk
,

L̂ = L−
8∑

k=1

Qb
xk
, M̂ =M −

8∑
k=1

Qb
yk
, N̂ = N −

8∑
k=1

Qb
zk

(6.6)

These forces and moments with propulsion contributions removed, with respective units of
lbf and ft·lbf, are defined as the response variables for modeling Approach II.

Similar to Approach I, the centered explanatory variables used for modeling included
body-axis velocity components v, w in ft/s; wing angle δw1 , δw2 in radians; elevon deflection
δe1 , δe2 , δe3 , δe4 in radians; flap deflection δf1 , δf2 , δf3 , δf4 in radians; and ruddervator deflection
δr1 , δr2 in radians. To model propulsion-airframe interactions and correct for the fact that
the presence of the vehicle will have some effect on the forces and moments produced by the
propellers, it is important to include a propulsion explanatory variable, even though the main
propulsion effects are described by the propeller models. One choice is to use propeller speed
n1, n2, ..., n8 in revolutions per second, as was the method used in Approach I. An alterna-
tive approach is to use the estimated axial thrust for each propeller T p

xk
as an explanatory

variable (referred to henceforth as Tk for simplicity). The primary propulsion-airframe in-
teractions for blown wing aircraft are theoretically proportional to the slipstream dynamic
pressure. Slipstream dynamic pressure, introduced in Equation (3.16), is the theoretical
dynamic pressure located behind a propeller derived from momentum theory [158, 163]. For
the kth propeller:

q̄ssk =
1

2
ρV 2 +

Tk
A

(6.7)

As mentioned previously in Section 3.4.1, slipstream dynamic pressure consists of the sum
of freestream dynamic pressure q̄ = 1

2
ρV 2 and propeller disk loading Tk/A, where A = π

4
D2

is the propeller disk area. A visualization of the propeller slipstreams present on the LA-8
vehicle is given in Figure 6.10. The slipstream dynamic pressure is an important quantity
because it relates to the control authority of control surfaces and wings interacting with
the propeller slipstream. Because a new model is developed at each dynamic pressure for
this study and propeller area is a constant, axial thrust for each propeller is the only quan-
tity governing these interactions, and thus, T1, T2, ..., T8 in lbf are selected as the propulsor
explanatory variables for this approach. Following the logic presented in Section 6.5.1, in-
cluding these quantities as explanatory variables centered on a reference value is permissible
because the correlation between modeling terms remains low, as shown in Figure 6.11.
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Figure 6.10: Visualization of the propulsor slipstreams on LA-8.

Figure 6.11: Correlation of Approach II Quadratic+2FI candidate regressors.

Modeling Approach II offers multiple additional advantages compared to Approach I.
Firstly, Approach II allows for correction of propeller flow conditions when the vehicle model
is implemented into a dynamic simulation with nonzero angular velocity [37]. This attribute
is important for modeling dynamic aerodynamic effects alongside the static models devel-
oped in this study. Angular velocity was not varied during the testing so its effect is not
in the models presented in this chapter, but could be modeled using supplemental dynamic
testing. Approach II also offers some meaningful extrapolation capability because the pri-
mary propulsion forces and moments are modeled in their dimensionless form. Additionally,
utilization of individual propeller models facilitates modeling additional vehicle complex-
ity unable to be described by the candidate regressor pool defined for modeling from the
powered-airframe test alone. Disadvantages of Approach II include the additional resources
needed to perform supplementary propeller testing and the assumption that superposition
of propeller models with full-airframe models is acceptable.

The explanatory variables and response variables defined for each specific approach are
summarized in Table 6.1. Note that u is not included as an explanatory variable, but
its effect is implicitly described by the set of aero-propulsive models identified at different
dynamic pressure settings. The following section presents modeling results for these two
LA-8 modeling approaches.



130
Chapter 6. Aero-Propulsive Modeling for eVTOL Aircraft Using

Wind-Tunnel Data

Table 6.1: Summary of explanatory variables and response variables for the developed mod-
eling approaches

Approach I
Explanatory Variables v, w, n1, n2, n3, n4, n5, n6, n7, n8, δw1 , δw2 , δe1 , δe2 , δe3 , δe4 ,

δf1 , δf2 , δf3 , δf4 , δr1 , δr2
Response Variables X, Y, Z, L,M,N

Approach II
Explanatory Variables v, w, T1, T2, T3, T4, T5, T6, T7, T8, δw1 , δw2 , δe1 , δe2 , δe3 , δe4 ,

δf1 , δf2 , δf3 , δf4 , δr1 , δr2
Response Variables X̂, Ŷ , Ẑ, L̂, M̂ , N̂

6.6 Results

This section presents sample results for the aero-propulsive models identified for the LA-8
aircraft. The two aero-propulsive modeling approaches described in the previous section were
used to develop models at the eight different dynamic pressures tested. The results presented
here only consider the models identified at q̄ = 3.5 psf. For vehicle simulation, local models
at several dynamic pressure (or airspeed) settings throughout the flight envelope are needed
and require a blending methodology to be used for continuous simulation.

6.6.1 Model Identification Results

As described in Section 6.4, the modeling process was facilitated using the PAMSWR
procedure and least-squares regression. The final model terms, parameter estimates, and
standard errors for the identified models at q̄ = 3.5 psf for each dimensional body-axis force
and moment using modeling Approach I are given in Table 6.7 and Table 6.8, at the end
of this chapter. Similar results for the modeling Approach II full-airframe models for each
dimensional body-axis force and moment with estimated propulsion effects removed are given
in Table 6.9 and Table 6.10. Sample clockwise propeller models used for Approach II are
given in Reference [37]. The ranges of validity for each explanatory variable in the identified
models at q̄ = 3.5 psf are given in Table 6.2.

A few interesting characteristics about identified model terms are highlighted. One clear
feature is that the number of parameters in the models is far greater than many conventional
aircraft modeling problems. Another observation is that significant propulsor-wing angle
interaction is reflected in every model equation. Control surface-wing and control surface-
propulsion interactions are also clearly represented. Control surface-wing and control surface-
propulsion interactions are reflected in x-axis force, rolling moment, and yawing moment,
but it is apparent that control surface interactions have limited contributions for pitching
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Table 6.2: Ranges of validity for the LA-8 aero-propulsive models developed at q̄ = 3.5 psf
(V = 54.3 ft/s)

Factor(s) Units Minimum Maximum
v ft/s −4.73 +4.73
w ft/s −5.67 +5.67

n1, n2, ..., n8 rpm 2770 6120
T1, T2, ..., T8 lbf −0.22 +5.94
δw1 , δw2 deg 0 +25

δe1 , δe2 , δe3 , δe4 deg −25 +25
δf1 , δf2 , δf3 , δf4 deg 0 +20

δr1 , δr2 deg −30 +30

moment. Control surfaces appear to only have significant interactions with the wings they
are affixed to or with the corresponding propulsor(s) displayed graphically in Figure 6.10.
Comparing the two modeling approaches, the interaction terms are similar, but Approach II
has fewer propulsion terms because most of the isolated propeller aerodynamics are captured
by the separate propulsion model. The presence of a large number of strong interaction effects
in the model suggests that a linearized form of the aero-propulsive model will have only a
small region of validity.

Another characteristic to note is that the models contain significant lateral-directional
asymmetries that are not apparent from the LA-8 vehicle configuration. This is a result
of manufacturing differences between the clockwise and counterclockwise propellers, which
resulted in a significant difference in thrust production between the propeller variants [36].
Because the propulsion-only and propulsion-airframe interaction effects are significant, this
propulsion asymmetry is manifested in many model terms. Consequently, lateral-directional
forces and moments have nonzero values for symmetric control inputs, and trim solutions
require asymmetric control surface deflections and/or propulsor speeds.

Modeling performance statistics, including R2, PSE, RMSE for modeling data (RMSEm),
and NRMSE for modeling data (NRMSEm) are given in Table 6.3 for Approach I and
Table 6.4 for Approach II. It should be noted that R2 and PSE for Approach II are calculated
using the modeling fit to its unique response variables, X̂, Ŷ , Ẑ, L̂, M̂ , and N̂ , defined in
Section 6.5.2. Accordingly, direct comparison between Approach I and Approach II cannot
be made based on these model fit metrics because a substantial part of the response variations
are already described by the isolated propeller models, which is not reflected in these metrics.
The RMSEm and NRMSEm metrics in Table 6.4 are calculated using the modeling fit to the
total forces and moments to facilitate a fairer comparison to the results of Approach I. To
aid interpretation of results, Table 6.3 and Table 6.4 also list the number of model terms
np (excluding the number of model terms in the propeller model used for Approach II);
the range of total force and moments in the estimation data, range(zm); the maximum
absolute total force or moment value in the estimation data, max(|zm|); and the standard
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deviation of the measured response for replicate data points νm, which gives an estimate of
the measurement error in testing. Modeling metrics indicate a good fit to the data for both
approaches, with comparable metrics reflecting similar values. However, modeling metrics
are not always consistent with actual model prediction capability. Prediction error metrics
are considered a superior measure of modeling success for prediction (see Section 6.4.3) and
are discussed in the next section.

Table 6.3: Approach I modeling metrics at q̄ = 3.5 psf

Metric X Y Z L M N
R2 99.3 97.1 98.1 93.3 97.5 98.5
PSE 4.42 0.519 28.3 17.5 54.6 8.76√
PSE 2.10 0.720 5.32 4.18 7.39 2.96

RMSEm 0.665 0.449 2.94 3.14 4.49 1.33
np 52 37 37 43 35 48

range(zm) 59.1 14.3 116 109 186 78.0
max(|zm|) 43.9 7.26 108 56.0 96.7 45.7

νm 0.196 0.221 0.601 1.00 0.980 0.159
NRMSEm [%] 1.12 3.14 2.54 2.87 2.41 1.71

Table 6.4: Approach II modeling metrics at q̄ = 3.5 psf

Metric X Y Z L M N
R2 98.7 96.0 96.7 86.8 95.2 94.5
PSE 2.71 0.426 25.1 14.7 43.9 3.18√
PSE 1.65 0.653 5.01 3.83 6.62 1.78

RMSEm 0.713 0.466 3.33 3.29 4.89 1.27
np 47 31 35 39 33 45

range(zm) 59.1 14.3 116 109 186 78.0
max(|zm|) 43.9 7.26 108 56.0 96.7 45.7

νm 0.196 0.221 0.601 1.00 0.980 0.159
NRMSEm [%] 1.21 3.27 2.88 3.01 2.63 1.62

6.6.2 Model Validation

A test of model prediction capability using data not considered for model estimation is
the best way to evaluate modeling success for this study because the objective is to mini-
mize prediction error. Recall from Section 6.3.2 that the validation data are I-optimal test
points designed to augment the data used for modeling to optimally reduce prediction er-
ror, but are not used to fit the models. Consequently, these validation test points provide
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a rigorous prediction test for the designed model complexity. Table 6.5 and Table 6.6 list
prediction metrics computed by comparing the modeled response to measured validation re-
sponse data. The prediction error metrics listed are the RMSE for prediction data (RMSEv),
NRMSE for prediction data (NRMSEv), and critical binomial analysis of residuals prediction
error metric (e∗cv). The RMSEv and NRMSEv metrics are useful because they facilitate direct
comparison to the equivalent metrics for modeling data. Observing that modeling RMSE
metrics hold similar values or are only slightly less than the equivalent validation RMSE
metrics, the modeling RMSE metrics are an accurate representation of prediction perfor-
mance suggesting that modeling was successful. Additionally, RMSEv can be compared to
the

√
PSE to quantify how well the model prediction capability can be inferred from the

modeling data alone. The
√
PSE value is close to the RMSEv for all responses, and

√
PSE

generally over-predicts the true prediction error. This is expected because the PSE is a
conservative estimate of the prediction error which has the tendency to over-predict the true
prediction error for validation data [19]. The critical binomial analysis of residuals prediction
error metric e∗cv quantifies the level of error in the models by defining a 95% prediction error
metric interval. Seeing that all e∗cv values are roughly 5% or less indicates good models have
been identified, given the experimental facility used for wind-tunnel data collection [234].

Table 6.5: Approach I validation metrics at q̄ = 3.5 psf

Metric X Y Z L M N
RMSEv 0.796 0.503 3.37 4.19 5.21 2.00

NRMSEv [%] 1.35 3.52 2.92 3.84 2.79 2.57
e∗cv [%] 1.89 5.39 4.16 5.62 4.16 3.75

Table 6.6: Approach II validation metrics at q̄ = 3.5 psf

Metric X Y Z L M N
RMSEv 0.909 0.542 3.48 4.51 5.28 1.78

NRMSEv [%] 1.54 3.79 3.01 4.13 2.83 2.28
e∗cv [%] 2.47 6.00 4.58 7.03 4.02 2.53

Figure 6.12 shows a comparison of validation metrics for modeling Approach I and Ap-
proach II. The metrics displayed are the critical binomial analysis of residuals prediction
error metric e∗cv and normalized root mean square error for validation data NRMSEv. For
Approach II, the calculated model predictions are for the total dimensional forces and mo-
ments which requires use of both the identified propeller models and full-airframe models.
Overall, the prediction error levels and trends are similar between the two different modeling
approaches. Future studies are expected to further investigate the utility of the two modeling
approaches.

For further model response analysis, Figure 6.13 shows a history of normalized modeling
residuals e∗m and normalized validation residuals e∗v, as well as the critical binomial analysis
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Figure 6.12: Comparison of model validation metrics for both modeling approaches at q̄ = 3.5
psf.

of residuals prediction error metric bounds, ±e∗cv. The residuals appear to be mostly white
noise indicating that the dominant, deterministic aero-propulsive effects are reflected in
the identified models. The modeling and prediction residuals also appear to have similar
magnitude, supporting the claim that a good predictive model has been identified.

(a) Results for modeling Approach I (b) Results for modeling Approach II

Figure 6.13: Normalized modeling and prediction residuals at q̄ = 3.5 psf.
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6.6.3 Discussion

When using the models developed in this work, certain attributes should be considered.
Firstly, the presented models only contain information about the static aerodynamics and
are based on a quasi-steady assumption, where aerodynamics at the current point in time are
only dependent on the current states and controls. Identification of dynamic aerodynamic
coefficients dependent on vehicle angular rates (and possibly the history of the explanatory
variables) will be needed to improve model predictive capability in dynamic maneuvering.
Additionally, the experiment design used in this work produces models only capturing two-
factor interaction effects; a higher number of factor interactions may need to be included in
the model for a vehicle of this complexity. However, experimentation to make these terms
identifiable is a challenging task. Also, due to the dimensionality in the models, extrapolation
to different flight conditions is not recommended. Finally, lateral-directional asymmetries in
the models reflecting physical differences between the vehicle propellers will require attention
for trimming and controls.
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Table 6.7: Approach I aero-propulsive models for X, Z, and M at q̄ = 3.5 psf

Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂)
Xw +3.60×10−1 ± 5.88×10−3 Zw −2.17×100 ± 2.44×10−2 Mw −2.27×10−1 ± 3.72×10−2

Xn1 +1.09×10−1 ± 1.18×10−3 Zn1 −8.26×10−2 ± 4.88×10−3 Mn1 +1.91×10−1 ± 7.48×10−3

Xn2 +8.33×10−2 ± 1.36×10−3 Zn2 −1.09×10−1 ± 5.08×10−3 Mn2 +2.73×10−1 ± 7.78×10−3

Xn3 +8.76×10−2 ± 1.15×10−3 Zn3 −1.30×10−1 ± 4.60×10−3 Mn3 +2.96×10−1 ± 7.05×10−3

Xn4 +1.02×10−1 ± 1.26×10−3 Zn4 −8.18×10−2 ± 4.84×10−3 Mn4 +1.97×10−1 ± 7.41×10−3

Xn5 +9.98×10−2 ± 1.71×10−3 Zn5 −5.66×10−2 ± 6.21×10−3 Mn5 −1.56×10−1 ± 9.51×10−3

Xn6 +8.37×10−2 ± 1.38×10−3 Zn6 −1.22×10−1 ± 5.39×10−3 Mn6 −1.86×10−1 ± 8.25×10−3

Xn7 +7.57×10−2 ± 1.46×10−3 Zn7 −1.10×10−1 ± 5.69×10−3 Mn7 −1.92×10−1 ± 8.72×10−3

Xn8 +1.06×10−1 ± 1.47×10−3 Zn8 −6.23×10−2 ± 5.64×10−3 Mn8 −1.53×10−1 ± 8.64×10−3

Xδw1 −1.57×101 ± 1.76×10−1 Zδw1 −4.34×101 ± 6.37×10−1 Mδw1 +8.14×101 ± 9.76×10−1

Xδw2 −2.37×101 ± 1.66×10−1 Zδw2 −9.13×101 ± 6.50×10−1 Mδw2 −1.21×102 ± 9.94×10−1

Xδe1 −4.54×10−1 ± 7.33×10−2 Zδe1 −1.54×100 ± 3.16×10−1 Mδe1 +2.45×100 ± 4.83×10−1

Xδe2 −4.78×10−1 ± 7.35×10−2 Zδe2 −2.35×100 ± 3.16×10−1 Mδe2 +2.67×100 ± 4.84×10−1

Xδe3 −4.54×10−1 ± 7.33×10−2 Zδe3 −1.59×100 ± 3.16×10−1 Mδe3 −2.71×100 ± 4.84×10−1

Xδe4 −9.52×10−1 ± 7.36×10−2 Zδe4 −3.79×100 ± 3.17×10−1 Mδe4 −6.71×100 ± 4.85×10−1

Xδf1 −2.56×100 ± 1.86×10−1 Zδf1 −6.85×100 ± 7.98×10−1 Mδf1 +1.28×101 ± 1.22×100

Xδf2 −2.57×100 ± 1.84×10−1 Zδf2 −6.84×100 ± 7.91×10−1 Mδf2 +9.54×100 ± 1.21×100

Xδf3 −3.59×100 ± 1.84×10−1 Zδf3 −1.32×101 ± 7.93×10−1 Mδf3 −2.14×101 ± 1.22×100

Xδf4 −3.55×100 ± 1.83×10−1 Zδf4 −1.22×101 ± 7.87×10−1 Mδf4 −1.74×101 ± 1.21×100

Xw2 +2.32×10−2 ± 2.91×10−3 Zδr1 −1.42×100 ± 2.63×10−1 Mδr1 −2.25×100 ± 4.04×10−1

Xn2
1

+9.07×10−4 ± 1.24×10−4 Zδr2 −1.91×100 ± 2.65×10−1 Mδr2 −2.66×100 ± 4.06×10−1

Xn2
2

+5.26×10−5 ± 1.29×10−4 Zw2 +5.28×10−2 ± 1.12×10−2 Mwδw1 −4.55×100 ± 1.92×10−1

Xn2
3

+7.35×10−4 ± 1.12×10−4 Zwδw1 +2.80×100 ± 1.25×10−1 Mn1δw1 +3.91×10−1 ± 3.90×10−2

Xn2
4

+3.75×10−4 ± 1.21×10−4 Zn1δw1 −2.36×10−1 ± 2.55×10−2 Mn2δw1 +4.42×10−1 ± 4.05×10−2

Xn2
5

+3.09×10−4 ± 1.80×10−4 Zn2δw1 −2.97×10−1 ± 2.65×10−2 Mn3δw1 +4.60×10−1 ± 3.67×10−2

Xn2
6

+3.82×10−4 ± 1.49×10−4 Zn3δw1 −3.30×10−1 ± 2.41×10−2 Mn4δw1 +3.49×10−1 ± 3.88×10−2

Xn2
7

+3.60×10−4 ± 1.57×10−4 Zn4δw1 −2.35×10−1 ± 2.53×10−2 Mδw2
1

−1.87×102 ± 1.09×101

Xn2
8

+8.69×10−5 ± 1.58×10−4 Zδw2
1

+9.62×101 ± 7.89×100 Mwδw2 +4.86×100 ± 1.94×10−1

Xwδw1 +1.59×10−1 ± 2.95×10−2 Zwδw2 +3.90×100 ± 1.27×10−1 Mn5δw2 −1.42×10−1 ± 4.90×10−2

Xn1δw1 −4.27×10−2 ± 6.37×10−3 Zn5δw2 −1.05×10−1 ± 3.20×10−2 Mn6δw2 −5.64×10−1 ± 4.33×10−2

Xn2δw1 −1.12×10−1 ± 6.93×10−3 Zn6δw2 −4.29×10−1 ± 2.83×10−2 Mn7δw2 −5.10×10−1 ± 4.47×10−2

Xn3δw1 −1.12×10−1 ± 6.07×10−3 Zn7δw2 −3.94×10−1 ± 2.92×10−2 Mn8δw2 −1.77×10−1 ± 4.54×10−2

Xn4δw1 −6.23×10−2 ± 6.41×10−3 Zn8δw2 −1.23×10−1 ± 2.97×10−2 Mδw1δw2 −3.95×101 ± 5.01×100

Xδw2
1

−3.37×101 ± 2.06×100 Zδw2
2

+1.60×102 ± 7.73×100 Mδw2
2

+1.95×102 ± 1.10×101

Xn5δw2 −6.14×10−2 ± 8.21×10−3 Zn1δe1 −4.15×10−2 ± 1.26×10−2 Mo −6.75×100 ± 2.83×10−1

Xn6δw2 −1.35×10−1 ± 7.02×10−3 Zn4δe2 −5.31×10−2 ± 1.25×10−2

Xn7δw2 −1.47×10−1 ± 7.34×10−3 Zo −6.70×101 ± 1.89×10−1

Xn8δw2 −6.40×10−2 ± 7.63×10−3

Xδw2
2

−4.35×101 ± 2.04×100

Xδw1δe1 −2.05×100 ± 3.82×10−1

Xδw1δe2 −2.62×100 ± 3.81×10−1

Xδw2δe3 −1.59×100 ± 3.87×10−1

Xδw2δe4 −2.72×100 ± 3.83×10−1

Xn2δf1 −3.42×10−2 ± 7.70×10−3

Xδw1δf1 −7.26×100 ± 9.73×10−1

Xn3δf2 −2.27×10−2 ± 6.94×10−3

Xδw1δf2 −6.42×100 ± 9.67×10−1

Xn6δf3 −4.90×10−2 ± 8.07×10−3

Xδw2δf3 −8.36×100 ± 9.64×10−1

Xn7δf4 −5.42×10−2 ± 8.45×10−3

Xδw2δf4 −1.14×101 ± 9.54×10−1

Xo +6.26×100 ± 4.70×10−2
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Table 6.8: Approach I aero-propulsive models for Y , L, and N at q̄ = 3.5 psf

Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂)
Yv −6.30×10−1 ± 4.40×10−3 Lv −5.44×10−1 ± 3.10×10−2 Nv +1.50×10−1 ± 1.33×10−2

Yn1 −5.29×10−3 ± 7.49×10−4 Ln1 +1.50×10−1 ± 5.28×10−3 Nn1 +2.36×10−1 ± 2.25×10−3

Yn2 −1.86×10−2 ± 7.79×10−4 Ln2 +1.18×10−1 ± 5.49×10−3 Nn2 +6.13×10−2 ± 2.35×10−3

Yn3 +1.98×10−2 ± 7.06×10−4 Ln3 −1.28×10−1 ± 4.98×10−3 Nn3 −6.99×10−2 ± 2.12×10−3

Yn4 +6.86×10−5 ± 7.43×10−4 Ln4 −1.51×10−1 ± 5.24×10−3 Nn4 −2.21×10−1 ± 2.23×10−3

Yn5 +1.00×10−2 ± 9.54×10−4 Ln5 +1.61×10−1 ± 6.73×10−3 Nn5 +2.83×10−1 ± 2.85×10−3

Yn6 −2.67×10−3 ± 8.27×10−4 Ln6 +1.37×10−1 ± 5.87×10−3 Nn6 +8.71×10−2 ± 2.49×10−3

Yn7 +6.03×10−4 ± 8.75×10−4 Ln7 −1.34×10−1 ± 6.14×10−3 Nn7 −7.51×10−2 ± 2.61×10−3

Yn8 −1.22×10−2 ± 8.70×10−4 Ln8 −1.72×10−1 ± 6.10×10−3 Nn8 −2.97×10−1 ± 2.60×10−3

Yδe1 −4.37×10−2 ± 4.84×10−2 Lδe1 +4.35×100 ± 3.42×10−1 Nδe1 −2.28×100 ± 1.46×10−1

Yδe2 −9.44×10−2 ± 4.86×10−2 Lδe2 −3.90×100 ± 3.42×10−1 Nδe2 +2.10×100 ± 1.47×10−1

Yδe3 −1.58×10−1 ± 4.85×10−2 Lδe3 +3.05×100 ± 3.42×10−1 Nδe3 −4.90×10−1 ± 1.46×10−1

Yδe4 +3.03×10−1 ± 4.87×10−2 Lδe4 −8.18×100 ± 3.44×10−1 Nδe4 +1.44×100 ± 1.46×10−1

Yδf1 −1.18×100 ± 1.23×10−1 Lδf1 +7.12×100 ± 8.68×10−1 Nδf1 −4.26×100 ± 3.69×10−1

Yδf2 +1.06×100 ± 1.22×10−1 Lδf2 −7.89×100 ± 8.57×10−1 Nδf2 +3.76×100 ± 3.66×10−1

Yδf3 +1.62×100 ± 1.22×10−1 Lδf3 +1.65×101 ± 8.62×10−1 Nδf3 −7.10×100 ± 3.66×10−1

Yδf4 −1.71×100 ± 1.21×10−1 Lδf4 −1.41×101 ± 8.56×10−1 Nδf4 +6.22×100 ± 3.64×10−1

Yδr1 −1.67×100 ± 4.05×10−2 Lδw1 −8.53×10−1 ± 6.90×10−1 Nδr1 +2.87×100 ± 1.22×10−1

Yδr2 +1.61×100 ± 4.06×10−2 Lδw2 +3.43×100 ± 7.03×10−1 Nδr2 −2.81×100 ± 1.22×10−1

Yδw1 +8.60×10−2 ± 9.78×10−2 Lw +4.35×10−2 ± 2.63×10−2 Nδw1 +1.87×100 ± 2.93×10−1

Yδw2 +1.82×10−1 ± 9.97×10−2 Ln1δe1 +6.86×10−2 ± 1.37×10−2 Nδw2 +2.63×10−1 ± 2.97×10−1

Yw +1.61×10−2 ± 3.74×10−3 Ln4δe2 −6.92×10−2 ± 1.36×10−2 Nn1δe1 −3.74×10−2 ± 5.86×10−3

Yn2δr1 −9.69×10−3 ± 1.67×10−3 Ln5δe3 +9.12×10−2 ± 1.74×10−2 Nn4δe2 +4.09×10−2 ± 5.81×10−3

Yn3δr2 +9.91×10−3 ± 1.54×10−3 Ln8δe4 −8.85×10−2 ± 1.60×10−2 Nn5δe3 −1.66×10−2 ± 7.50×10−3

Yvδw1 −1.01×10−1 ± 2.29×10−2 Ln6δf3 +1.32×10−1 ± 3.75×10−2 Nn8δe4 +2.89×10−2 ± 6.80×10−3

Yn1δw1 −1.94×10−2 ± 3.94×10−3 Ln7δf4 −1.46×10−1 ± 3.97×10−2 Nn2δf1 −8.06×10−2 ± 1.53×10−2

Yn2δw1 −9.28×10−3 ± 4.07×10−3 Ln1δw1 +4.80×10−1 ± 2.75×10−2 Nn3δf2 +4.73×10−2 ± 1.38×10−2

Yn3δw1 +1.64×10−2 ± 3.68×10−3 Ln2δw1 +3.88×10−1 ± 2.87×10−2 Nn6δf3 −6.99×10−2 ± 1.60×10−2

Yn4δw1 +2.20×10−2 ± 3.90×10−3 Ln3δw1 −3.64×10−1 ± 2.62×10−2 Nn7δf4 +1.03×10−1 ± 1.69×10−2

Yvδw2 −1.74×10−1 ± 2.31×10−2 Ln4δw1 −4.44×10−1 ± 2.73×10−2 Nvδw1 +5.54×10−1 ± 6.88×10−2

Yn5δw2 +2.54×10−3 ± 4.91×10−3 Ln1δw2 +1.06×10−1 ± 2.77×10−2 Nn1δw1 −2.18×10−1 ± 1.17×10−2

Yn6δw2 +2.45×10−2 ± 4.35×10−3 Ln2δw2 +1.35×10−1 ± 2.84×10−2 Nn2δw1 −1.70×10−1 ± 1.22×10−2

Yn7δw2 −2.92×10−2 ± 4.49×10−3 Ln3δw2 −1.45×10−1 ± 2.59×10−2 Nn3δw1 +2.12×10−1 ± 1.12×10−2

Yn8δw2 −1.24×10−2 ± 4.56×10−3 Ln4δw2 −9.99×10−2 ± 2.71×10−2 Nn4δw1 +2.58×10−1 ± 1.17×10−2

Yδw2
2

−5.25×100 ± 8.17×10−1 Ln5δw2 +4.29×10−1 ± 3.47×10−2 Nδe1δw1 −5.02×100 ± 7.61×10−1

Yvw +3.77×10−3 ± 8.83×10−4 Ln6δw2 +5.05×10−1 ± 3.06×10−2 Nδe2δw1 +3.92×100 ± 7.67×10−1

Yo +2.66×10−1 ± 2.66×10−2 Ln7δw2 −5.02×10−1 ± 3.17×10−2 Nδf1δw1 −1.10×101 ± 1.94×100

Ln8δw2 −3.72×10−1 ± 3.20×10−2 Nδf2δw1 +6.15×100 ± 1.93×100

Lδe3δw2 −9.22×100 ± 1.79×100 Nvδw2 +1.08×100 ± 6.91×10−2

Lδe4δw2 +1.22×101 ± 1.81×100 Nn5δw2 −1.84×10−1 ± 1.48×10−2

Lδw2
2

+4.16×101 ± 5.73×100 Nn6δw2 −1.93×10−1 ± 1.30×10−2

Lvw −3.88×10−2 ± 6.24×10−3 Nn7δw2 +1.75×10−1 ± 1.37×10−2

Lo −4.59×100 ± 1.87×10−1 Nn8δw2 +1.60×10−1 ± 1.37×10−2

Nδe3δw2 −3.81×100 ± 7.73×10−1

Nδe4δw2 +6.35×100 ± 7.71×10−1

Nδf3δw2 −1.29×101 ± 1.92×100

Nδf4δw2 +1.04×101 ± 1.90×100

No −4.62×10−1 ± 4.82×10−2
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Table 6.9: Approach II aero-propulsive models for X̂, Ẑ, and M̂ at q̄ = 3.5 psf

Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂)

X̂w +2.62×10−1 ± 5.93×10−3 Ẑw −1.83×100 ± 2.73×10−2 M̂w −4.11×10−1 ± 4.04×10−2

X̂δw1 −1.57×101 ± 1.57×10−1 Ẑδw1 −2.38×101 ± 7.23×10−1 M̂δw1 +4.68×101 ± 1.07×100

X̂δw2 −2.44×101 ± 1.60×10−1 Ẑδw2 −7.43×101 ± 7.30×10−1 M̂δw2 −9.69×101 ± 1.08×100

X̂δe1 −4.47×10−1 ± 7.83×10−2 Ẑδe1 −1.43×100 ± 3.58×10−1 M̂δe1 +2.49×100 ± 5.26×10−1

X̂δe2 −4.67×10−1 ± 7.82×10−2 Ẑδe2 −2.23×100 ± 3.57×10−1 M̂δe2 +2.67×100 ± 5.27×10−1

X̂δe3 −4.05×10−1 ± 7.77×10−2 Ẑδe3 −1.67×100 ± 3.56×10−1 M̂δe3 −2.51×100 ± 5.27×10−1

X̂δe4 −9.23×10−1 ± 7.81×10−2 Ẑδe4 −3.62×100 ± 3.57×10−1 M̂δe4 −6.72×100 ± 5.29×10−1

X̂δf1 −2.43×100 ± 1.97×10−1 Ẑδf1 −6.84×100 ± 8.95×10−1 M̂δf1 +1.24×101 ± 1.33×100

X̂δf2 −2.47×100 ± 1.96×10−1 Ẑδf2 −6.83×100 ± 8.93×10−1 M̂δf2 +9.65×100 ± 1.32×100

X̂δf3 −3.53×100 ± 1.96×10−1 Ẑδf3 −1.35×101 ± 8.90×10−1 M̂δf3 −2.14×101 ± 1.32×100

X̂δf4 −3.47×100 ± 1.94×10−1 Ẑδf4 −1.24×101 ± 8.87×10−1 M̂δf4 −1.77×101 ± 1.31×100

X̂T1 −1.61×10−1 ± 8.57×10−3 Ẑδr1 −1.39×100 ± 2.97×10−1 M̂δr1 −2.35×100 ± 4.39×10−1

X̂T2 −2.84×10−1 ± 1.03×10−2 Ẑδr2 −1.97×100 ± 2.98×10−1 M̂δr2 −2.68×100 ± 4.42×10−1

X̂T3 −3.20×10−1 ± 8.04×10−3 ẐT1 −3.65×10−1 ± 3.93×10−2 M̂T1 +4.28×10−1 ± 5.83×10−2

X̂T4 −1.45×10−1 ± 9.37×10−3 ẐT2 −6.46×10−1 ± 4.68×10−2 M̂T2 +1.20×100 ± 6.92×10−2

X̂T5 −1.44×10−1 ± 1.24×10−2 ẐT3 −7.00×10−1 ± 3.69×10−2 M̂T3 +1.07×100 ± 5.46×10−2

X̂T6 −2.91×10−1 ± 1.05×10−2 ẐT4 −4.12×10−1 ± 4.31×10−2 M̂T4 +6.33×10−1 ± 6.37×10−2

X̂T7 −3.36×10−1 ± 1.13×10−2 ẐT5 −2.23×10−1 ± 5.67×10−2 M̂T5 −3.75×10−1 ± 8.40×10−2

X̂T8 −1.55×10−1 ± 1.05×10−2 ẐT6 −7.33×10−1 ± 4.79×10−2 M̂T6 −9.06×10−1 ± 7.07×10−2

X̂δw2
1

−4.17×101 ± 1.77×100 ẐT7 −6.75×10−1 ± 5.21×10−2 M̂T7 −9.96×10−1 ± 7.70×10−2

X̂wδw2 −1.61×10−1 ± 3.11×10−2 ẐT8 −2.41×10−1 ± 4.82×10−2 M̂T8 −2.56×10−1 ± 7.13×10−2

X̂δw2
2

−5.16×101 ± 1.78×100 Ẑw2 +9.37×10−2 ± 1.26×10−2 M̂wδw1 −5.74×100 ± 2.08×10−1

X̂δw1δe1 −2.10×100 ± 4.04×10−1 Ẑwδw1 +3.38×100 ± 1.40×10−1 M̂δw2
1

−2.43×102 ± 1.21×101

X̂δw1δe2 −2.64×100 ± 4.02×10−1 Ẑδw2
1

+1.40×102 ± 8.95×100 M̂wδw2 +5.84×100 ± 2.11×10−1

X̂δw2δe3 −1.61×100 ± 4.10×10−1 Ẑwδw2 +4.42×100 ± 1.42×10−1 M̂δw1δw2 −4.35×101 ± 5.46×100

X̂δw2δe4 −3.10×100 ± 4.06×10−1 Ẑδw2
2

+2.06×102 ± 8.76×100 M̂δw2
2

+2.04×102 ± 1.22×101

X̂δw1δf1 −5.86×100 ± 1.03×100 Ẑδw1T1 −5.03×10−1 ± 2.02×10−1 M̂δw1T1 +1.33×100 ± 2.99×10−1

X̂δw1δf2 −5.26×100 ± 1.02×100 Ẑδe1T1 −2.49×10−1 ± 1.00×10−1 M̂δw1T2 +2.34×100 ± 3.59×10−1

X̂δw2δf3 −9.32×100 ± 1.02×100 Ẑδw1T2 −1.29×100 ± 2.43×10−1 M̂δw1T3 +1.98×100 ± 2.78×10−1

X̂δw2δf4 −1.03×101 ± 1.01×100 Ẑδw1T3 −1.24×100 ± 1.89×10−1 M̂δw1T4 +1.36×100 ± 3.33×10−1

X̂δw1T1 −8.70×10−2 ± 4.37×10−2 Ẑδw1T4 −8.21×10−1 ± 2.25×10−1 M̂δw2T6 −2.62×100 ± 3.66×10−1

X̂δe1T1 −1.12×10−1 ± 2.19×10−2 Ẑδe2T4 −4.36×10−1 ± 1.12×10−1 M̂δw2T7 −2.41×100 ± 3.94×10−1

X̂δw1T2 −5.07×10−1 ± 5.31×10−2 Ẑδw2T6 −2.03×100 ± 2.48×10−1 M̂o −1.03×101 ± 3.33×10−1

X̂δf1T2 −2.71×10−1 ± 6.68×10−2 Ẑδw2T7 −2.05×100 ± 2.67×10−1

X̂δw1T3 −5.44×10−1 ± 4.14×10−2 Ẑo −6.41×101 ± 2.31×10−1

X̂δf2T3 −1.77×10−1 ± 5.17×10−2

X̂δw1T4 −2.01×10−1 ± 4.88×10−2

X̂δe2T4 −1.08×10−1 ± 2.45×10−2

X̂δw2T5 −1.30×10−1 ± 6.37×10−2

X̂δe3T5 −8.65×10−2 ± 3.21×10−2

X̂δw2T6 −8.24×10−1 ± 5.38×10−2

X̂δf3T6 −3.33×10−1 ± 6.61×10−2

X̂δw2T7 −8.49×10−1 ± 5.89×10−2

X̂δf4T7 −4.33×10−1 ± 7.28×10−2

X̂δw2T8 −1.38×10−1 ± 5.47×10−2

X̂δe4T8 −7.64×10−2 ± 2.71×10−2

X̂o −9.89×100 ± 4.88×10−2
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Table 6.10: Approach II aero-propulsive models for Ŷ , L̂, and N̂ at q̄ = 3.5 psf

Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂) Term θ̂ ± s(θ̂)

Ŷv −5.26×10−1 ± 4.55×10−3 L̂v −5.12×10−1 ± 3.23×10−2 N̂v +2.72×10−1 ± 1.26×10−2

Ŷδe3 −1.81×10−1 ± 5.01×10−2 L̂δe1 +4.27×100 ± 3.59×10−1 N̂δe1 −2.10×100 ± 1.39×10−1

Ŷδe4 +3.08×10−1 ± 5.04×10−2 L̂δe2 −3.80×100 ± 3.58×10−1 N̂δe2 +2.10×100 ± 1.40×10−1

Ŷδf1 −1.26×100 ± 1.26×10−1 L̂δe3 +2.92×100 ± 3.57×10−1 N̂δe3 −3.95×10−1 ± 1.39×10−1

Ŷδf2 +1.11×100 ± 1.26×10−1 L̂δe4 −8.02×100 ± 3.60×10−1 N̂δe4 +1.44×100 ± 1.39×10−1

Ŷδf3 +1.59×100 ± 1.26×10−1 L̂δf1 +7.25×100 ± 8.99×10−1 N̂δf1 −3.86×100 ± 3.50×10−1

Ŷδf4 −1.68×100 ± 1.25×10−1 L̂δf2 −7.81×100 ± 8.94×10−1 N̂δf2 +3.82×100 ± 3.50×10−1

Ŷδr1 −1.66×100 ± 4.21×10−2 L̂δf3 +1.66×101 ± 9.01×10−1 N̂δf3 −7.08×100 ± 3.47×10−1

Ŷδr2 +1.60×100 ± 4.23×10−2 L̂δf4 −1.39×101 ± 8.96×10−1 N̂δf4 +6.04×100 ± 3.47×10−1

Ŷδw1 +1.66×10−1 ± 1.02×10−1 L̂δw1 −1.04×100 ± 7.23×10−1 N̂δr1 +2.83×100 ± 1.15×10−1

Ŷδw2 +2.42×10−1 ± 1.03×10−1 L̂δw2 +4.86×100 ± 7.36×10−1 N̂δr2 −2.84×100 ± 1.16×10−1

Ŷw +1.86×10−2 ± 3.85×10−3 L̂w +3.36×10−2 ± 2.73×10−2 N̂δw1 +1.28×100 ± 2.80×10−1

ŶT1 −3.65×10−2 ± 5.51×10−3 L̂T1 +6.78×10−1 ± 3.91×10−2 N̂δw2 −1.66×10−1 ± 2.81×10−1

ŶT2 −1.61×10−1 ± 6.58×10−3 L̂T2 +6.84×10−1 ± 4.67×10−2 N̂w −6.10×10−2 ± 1.06×10−2

ŶT3 +1.43×10−1 ± 5.19×10−3 L̂T3 −5.86×10−1 ± 3.69×10−2 N̂T1 −5.93×10−1 ± 1.50×10−2

ŶT4 −4.05×10−3 ± 6.06×10−3 L̂T4 −8.01×10−1 ± 4.31×10−2 N̂T2 −4.60×10−1 ± 1.80×10−2

ŶT5 +7.71×10−2 ± 8.00×10−3 L̂T5 +5.91×10−1 ± 5.68×10−2 N̂T3 +4.49×10−1 ± 1.41×10−2

ŶT6 −1.90×10−2 ± 6.72×10−3 L̂T6 +9.89×10−1 ± 4.77×10−2 N̂T4 +5.16×10−1 ± 1.66×10−2

ŶT7 −1.73×10−3 ± 7.33×10−3 L̂T7 −9.72×10−1 ± 5.19×10−2 N̂T5 −6.01×10−1 ± 2.16×10−2

ŶT8 −9.40×10−2 ± 6.80×10−3 L̂T8 −5.47×10−1 ± 4.82×10−2 N̂T6 −4.92×10−1 ± 1.83×10−2

Ŷvδw2 −1.78×10−1 ± 2.39×10−2 L̂δe3δw2 −1.00×101 ± 1.87×100 N̂T7 +5.47×10−1 ± 1.98×10−2

Ŷδw2
2

−4.67×100 ± 9.14×10−1 L̂δe4δw2 +1.33×101 ± 1.87×100 N̂T8 +5.97×10−1 ± 1.85×10−2

Ŷδw1T1 −1.21×10−1 ± 2.86×10−2 L̂δw2
2

+4.02×101 ± 6.46×100 N̂vδw1 +5.36×10−1 ± 6.53×10−2

Ŷδr1T2 −7.16×10−2 ± 1.42×10−2 L̂vw −3.63×10−2 ± 6.48×10−3 N̂δe1δw1 −4.87×100 ± 7.21×10−1

Ŷδw1T2 −1.34×10−1 ± 3.42×10−2 L̂δe1T1 +5.02×10−1 ± 1.01×10−1 N̂δe2δw1 +3.87×100 ± 7.23×10−1

Ŷδr2T3 +6.25×10−2 ± 1.12×10−2 L̂δw1T1 +1.21×100 ± 2.01×10−1 N̂vδw2 +1.13×100 ± 6.55×10−2

Ŷδw1T3 +1.57×10−1 ± 2.66×10−2 L̂δw1T2 +2.38×100 ± 2.44×10−1 N̂δe3δw2 −3.15×100 ± 7.29×10−1

Ŷδw1T4 +1.47×10−1 ± 3.17×10−2 L̂δw2T2 +1.11×100 ± 2.44×10−1 N̂δe4δw2 +5.55×100 ± 7.26×10−1

Ŷδw2T6 +2.00×10−1 ± 3.49×10−2 L̂δw1T3 −1.56×100 ± 1.90×10−1 N̂δf3δw2 −1.19×101 ± 1.82×100

Ŷδw2T7 −2.62×10−1 ± 3.76×10−2 L̂δw2T3 −1.10×100 ± 1.90×10−1 N̂δf4δw2 +9.13×100 ± 1.80×100

Ŷo +2.44×10−1 ± 2.93×10−2 L̂δe2T4 −4.68×10−1 ± 1.12×10−1 N̂δe1T1 −2.89×10−1 ± 3.90×10−2

L̂δw1T4 −1.30×100 ± 2.24×10−1 N̂δw1T1 −7.71×10−1 ± 7.79×10−2

L̂δe3T5 +8.39×10−1 ± 1.46×10−1 N̂δf1T2 −6.41×10−1 ± 1.18×10−1

L̂δf3T6 +9.71×10−1 ± 3.04×10−1 N̂δw1T2 −1.09×100 ± 9.47×10−2

L̂δw2T6 +2.86×100 ± 2.48×10−1 N̂δf2T3 +3.01×10−1 ± 9.16×10−2

L̂δf4T7 −1.04×100 ± 3.34×10−1 N̂δw1T3 +1.15×100 ± 7.38×10−2

L̂δw2T7 −3.10×100 ± 2.68×10−1 N̂δe2T4 +3.25×10−1 ± 4.35×10−2

L̂δe4T8 −6.11×10−1 ± 1.25×10−1 N̂δw1T4 +1.22×100 ± 8.72×10−2

L̂o −4.22×100 ± 2.07×10−1 N̂δe3T5 −1.06×10−1 ± 5.71×10−2

N̂δf3T6 −4.98×10−1 ± 1.18×10−1

N̂δw2T6 −1.35×100 ± 9.60×10−2

N̂δf4T7 +6.55×10−1 ± 1.29×10−1

N̂δw2T7 +1.21×100 ± 1.04×10−1

N̂δe4T8 +1.72×10−1 ± 4.84×10−2

N̂o +5.19×10−1 ± 4.49×10−2



Chapter 7

Evaluation of Response Surface
Experiment Designs for eVTOL
Aircraft Aero-Propulsive Modeling

Modern distributed hybrid and electric propulsion aircraft, including vertical, short, and
conventional takeoff and landing configurations, exhibit significant aero-propulsive complex-
ity and a large number of interacting test factors. This chapter presents the development and
evaluation of experiment designs for aero-propulsive characterization of distributed propul-
sion aircraft. Five different foundational response surface designs are evaluated to inform the
development of two sequential design approaches tailored to complex aircraft aerodynamic
characterization experiments. The first approach, which builds on sequential face-centered
central composite designs, has been used previously to develop aero-propulsive models for
complex aircraft using wind-tunnel testing, including the work described in Chapter 6. The
second approach is a new response surface design strategy leveraging a regular I-optimal and
nested I-optimal design that was developed for this study. The two sequential design strate-
gies are compared for experiments with a large number of test factors using pre-experiment
design evaluation metrics, as well as modeling results obtained from simulated wind-tunnel
data for the NASA LA-8 eVTOL aircraft. The design evaluation metrics show that the
sequential I-optimal base design has higher statistical power, lower correlation among can-
didate regressors, lower prediction variance, and more precise parameter estimates. The
simulated wind-tunnel experiments conducted using each design reveal that the sequential
I-optimal base design has better predictive capability with fewer test points. The experiment
design and evaluation procedures are described in detail to inform future aerodynamic char-
acterization experiments for complex aircraft. This work has been published as a conference
paper [29].

The chapter is organized as follows: Section 7.1 provides additional motivation for this
study and describes the LA-8 wind-tunnel simulation applied in this chapter. Section 7.2
compares five foundational response surface designs using pre-experiment design evaluation
metrics. This analysis informs presentation of a new block design approach developed along-
side a legacy block design approach in Section 7.3. A comparison of pre-experiment design
evaluation metrics for the two sequential design approaches is shown in Section 7.4. An
overview of the employed model identification approach is given in Section 7.5, followed by
modeling results for simulated wind-tunnel experiments presented in Section 7.6.

140
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7.1 Research Motivation

Traditional aircraft aerodynamic characterization methods generally involve using OFAT
experiments, where testing is commonly conducted by sweeping one variable with the other
variables held at a constant setting. This approach has been used successfully for many years
in aerospace testing and yields suitable results for conventional aerospace vehicles. However,
traditional static OFAT testing is not practical for developing models describing the complex
nonlinear aerodynamics and interactions present with distributed propulsion aircraft due to
the large number of test factors. Fortunately, experiments planned using DOE [231] and
RSM [232] theory can efficiently scale to a large number of factors, allowing tests to be
completed in a reasonable amount of time while also supporting identification of interaction
effects. DOE/RSM-based testing fundamentally provides a statistically-rigorous experiment
design approach supplying rich information content in a relatively compact data set. As
discussed in Section 6.3.2, the model development process also benefits from additional design
properties of orthogonality, randomization, replication, blocking, and sequential testing [231].

As an example of the efficiency gains realized using DOE/RSM techniques, consider a
complex aircraft with 22 test factors—the number of factors independently varied in static
LA-8 wind-tunnel experiments at each dynamic pressure setting (see Chapter 6). OFAT
testing covering all possible combinations of each test factor at three different levels (a low,
medium, and high value) requires 31,381,059,609 test points. Alternatively, a minimum run
resolution V, face-centered central composite design (CCD) with one center point, which also
tests three levels of each factor and allows characterization of interactions among all pairs of
test factors as well as quadratic response variation with each test factor, requires only 299
test points. A two-dimensional and three-dimensional slice of the OFAT and face-centered
CCD factor space are shown in Figures 7.1a-7.1b. This example comparing the number
of test points for a three-level OFAT and CCD test matrix is expanded to between 5 and
30 test factors in Figure 7.1c. Clearly, application of the CCD response surface design has
substantially reduced the number of required test points, while still allowing characterization
of nonlinear, interactional features.

This chapter presents an assessment of multiple static experiment designs and evalu-
ates their relative utility for application to experiments characterizing complex distributed
propulsion aircraft. A new DOE/RSM test matrix design approach is formulated and com-
pared to previous experiment designs [28, 47, 48, 234] using design evaluation metrics and
prediction capability assessment from simulated LA-8 wind-tunnel experiments. The sequen-
tial experiment designs compared in this chapter were applied to develop an aero-propulsive
model for the LA-8 vehicle (see Section 6.1). The experiments were executed in an LA-8
simulation modeling the primary aero-propulsive characteristics of tilt-wing aircraft. The
aircraft components included in the model were the fuselage, two tilting wings, inverted
v-tail, four elevons, four flaps, two ruddervators, and eight wing-mounted propellers with
geometry and placement consistent with the LA-8 vehicle. Other smaller components, such
as winglets and propeller support struts, were not included in the model. The semi-empirical
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(a) Two-dimensional design space slice (b) Three-dimensional design space slice

(c) Number of test points

Figure 7.1: Comparison of three-level OFAT and minimum run resolution V, face-centered
CCD experiments.

aircraft model utilizes strip-theory-based tilt-wing aerodynamic predictions [207] combined
with high-fidelity LA-8 propeller models identified from isolated propeller wind-tunnel test-
ing [37]. For this study, force and moment predictions were corrupted using zero-mean, Gaus-
sian, white noise with measurement noise standard deviations representative of values seen in
the LA-8 wind-tunnel tests. The simulation was intended to be representative of LA-8 wind-
tunnel test results to inform future wind-tunnel experiments and allow rapid, inexpensive
experimentation in a controlled, repeatable test environment. The simulated experiments
were executed at a dynamic pressure of q̄ = 3.5 psf (freestream airspeed of V = 54.3 ft/s at
standard sea-level conditions), with the test factor ranges shown in Table 7.1. This condition
represents a high-speed transition phase of flight for the LA-8 aircraft. Multiple dynamic
pressure settings need to be tested to develop a full-envelope aero-propulsive model [28], but
these experiments provide a suitable data set for evaluation and comparison of experiment
designs.
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Table 7.1: LA-8 simulated wind-tunnel experiment test factor ranges at q̄ = 3.5 psf (V = 54.3
ft/s)

Factor(s) Units Minimum Maximum
α deg −6 +6
β deg −5 +5

δw1 , δw2 deg 0 +25
δe1 , δe2 , δe3 , δe4 deg −25 +25
δf1 , δf2 , δf3 , δf4 deg 0 +20

δr1 , δr2 deg −30 +30
n1, n2, ..., n8 rpm 3700 6100

7.2 Evaluation of Foundational Response Surface Ex-

periment Designs

Within the body of DOE/RSM theory, there are multiple response surface design types
that can yield an adequate model for experiments with a large number of test factors. This
section compares five different 22-factor, cuboidal, completely randomized response surface
experiment designs supporting identification of a full quadratic design model (all possible
linear, pure quadratic, and two-factor interaction model terms). All the experiment designs
presented in this chapter were created using Design-Expert® [233]. The designs include:
(1) a minimum run resolution V, face-centered central composite design (FCCCD); (2) an
I-optimal design; (3) an A-optimal design; (4) a D-optimal design; and (5) a distance-
based optimal design. The FCCCD is composed of a two-level fractional factorial design,
six center points, and a low and high axial point for each test factor, for a total of 304
test points. Minimum run resolution V fractional factorial designs contain the minimum
number of test points to support estimation of linear and two-factor interaction model terms.
The axial test points augment the fractional factorial design to allow estimation of pure
quadratic model terms. The center points aid in stabilization of the prediction variance
within the experimental region and allow estimation of pure error [231]. The other designs
considered are I-, A-, D-, and distance-based optimal designs for a full quadratic design
model, each with the same number of test points and center points as the FCCCD to allow
direct comparisons of the designs. It has also been observed in related research that using
the same number of test points as a minimum run resolution V FCCCD for a given number
of test factors generally yields good design evaluation metrics for optimal designs. I-optimal
designs minimize the integrated prediction variance for a predefined model order over the
range of factors [231, 232, 239, 240]. Alternatively, D- and A-optimal designs focus on
optimizing the design for precise estimation of model parameters for a predefined model
order. D-optimal designs minimize the confidence ellipsoid volume of the model parameters
and A-optimal designs minimize the sum of the variances of model parameters. The distance-
based design is a Maximin design, or a design where the minimum distance between design
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points is maximized [232], that is modified to ensure that model terms are not aliased [233].
The designs were optimized using 298 free design points and one center point. After design
optimization had completed, 5 additional center points were added to the design and the
test matrix was re-randomized. This was done because it has been noted that including
multiple replicate points in the center of a design during the optimization process can repel
the optimized points away from the interior of the design space.

Figure 7.2 shows two-dimensional slices of the 22-factor space for each design. The figure
shows that the I- and A-optimal designs cover the broadest number of individual factor set-
tings in two-dimensions, although, the test points are mostly concentrated around the design
space boundaries. The D-optimal and distance-based designs are more heavily concentrated
around the design boundaries, with very few points in the interior of the displayed factor
space. The FCCCD design only tests the low, high, and center value of each test factor.
Favoring the design space boundaries can result in significant bias error in the interior of
the design space when there are nonlinearities not described by the assumed model [232].
The remainder of this section presents a comparison of the design evaluation metrics of the
five candidate base designs. These metrics provide insight into the design quality prior to
conducing an experiment. Evaluation of the base designs is then used to justify the choice of
a new sequential design aimed at mitigating against bias errors in the interior of the design
space.

Figure 7.2: Two-dimensional slices of the 22-factor space for each base design.

7.2.1 Statistical Power

Statistical power is the probability of detecting a significant effect in a model [231, 239,
241]. In other words, power is the probability of including a particular model term that is
significant to the model. Power is a function of the number of design points, the placement
of the design points, the significance level αp, and the ratio of the effect size δ and noise
level σ. A general rule of thumb for experiment design is to strive for statistical power of at
least 80% [241].

The lowest power among all the linear (L), interaction (I), and quadratic (Q) model
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terms for each base design is shown graphically in Figure 7.3 and numerically in Table 7.2.
Figure 7.3a and Table 7.2a show the power for each design with αp = 0.05 and δ/σ = 2, which
are common values used when assessing power. All designs have nearly 100% power for the
linear and interaction model terms. The power for quadratic model terms is just below 80%
for the FCCCD and distance-based design, whereas the I-, A-, and D-optimal designs have
close to 100% power for quadratic model terms. Figure 7.3b and Table 7.2b show the power
for each design with αp = 0.0001 and δ/σ = 1, which are much more conservative numbers
to use in the power calculation and, accordingly, the power is lower. The FCCCD design
has the lowest power for each classification of model terms, followed by the distance-based
design. The highest power is generally observed for the I- and A-optimal designs. This
suggests that models estimated from the I- and A-optimal designs have a lower probability
of failing to include model terms that are significant to the model.

Table 7.2: Base design power comparison (expressed as a percentage)

(a) Power calculation with αp = 0.05 and δ/σ = 2

Model Power for Power for Power for Power for Power for
Terms FCCCD I-optimal design A-optimal design D-optimal design distance design

L 99.999996 100.0000000000 100.0000000000 99.9999999999 99.999999995
I 99.99991 99.9999999997 99.9999999999 99.9999999999 99.9999996
Q 79.8 99.9999999999 99.9999999999 99.8 76.8

(b) Power calculation with αp = 0.0001 and δ/σ = 1

Model Power for Power for Power for Power for Power for
Terms FCCCD I-optimal design A-optimal design D-optimal design distance design

L 27.8 85.7 77.4 69.4 46.0
I 19.6 54.4 57.1 59.1 34.1
Q 0.4 66.2 70.9 4.3 0.4

(a) Power calculation with αp = 0.05 and
δ/σ = 2

(b) Power calculation with αp = 0.0001 and
δ/σ = 1

Figure 7.3: Base design power comparison.
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7.2.2 Correlation Metrics

As discussed previously in Sections 2.6.2.4 and 6.4.2, data collinearity occurs when the
correlation between regressors high enough to cause corrupted model identification [19].
Data collinearity will cause difficulty in both model structure determination and parameter
estimation, thus, it is important to develop an experiment design with low correlation among
candidate regressors.

Correlation between two candidate regressors can be assessed using the pairwise corre-
lation coefficient rij, defined in Equation (2.80) and discussed in Section 6.4.2, where ξi
and ξj are two regressor measurement histories. Another metric that can be used to assess
candidate regressor correlation is the variance inflation factor (VIF). For the regressor ξj,
the respective VIF is

VIFj =
1

1−R2
j

(7.1)

where R2
j is the coefficient of determination obtained through creating a regression model

of ξj as a function of all other regressors. A VIF value greater than 10 suggests that data
collinearity may be present [19, 240, 242]. The rij, VIFj, and R2

j metrics only quantify
correlation between pairs of regressors and, thus, cannot diagnose collinearity among more
than two regressors [19, 109].

An alternative method that can be used to assess multiple correlation between more than
two inputs is analysis of the eigenvalues of XTX, where X is a matrix composed of column
vectors of the regressors in the regression model. The inverse of the XTX matrix is required
to compute the ordinary least-squares regression solution [cf. Equation (2.56)]. The ratio of
the maximum eigenvalue and minimum eigenvalue

κ = λmax/λmin (7.2)

is the condition number of the XTX matrix. A value of κ close to one indicates low multiple
correlation whereas a large value of κ indicates an ill-conditioned estimation problem due to
data collinearity. Values of κ indicating adverse effects from data collinearity range anywhere
from 100 to 100,000 depending on the particular data set [19, 20, 109, 242].

The pairwise and multiple correlation metrics for each design evaluated for a full quadratic
model are shown in Figures 7.4-7.7. This represents a conservative analysis performed prior
to the experiment that assumes all candidate regressors are included in the model. Many
candidate model terms considered here for the full quadratic model were expected to be
excluded through model structure determination after data collection.

Figure 7.4 shows the maximum absolute pairwise correlation value, |rij|, among pairs of
linear regressors (L-L), linear-interaction regressors (L-I), linear-quadratic regressors (L-Q),
interaction regressors (I-I), interaction-quadratic regressors (I-Q), and quadratic regressors
(Q-Q). The maximum VIFj and R

2
j for linear (L), two-factor interaction (I), and quadratic

(Q) model terms are shown in Figures 7.5-7.6. Figure 7.7 shows the condition number κ
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Figure 7.4: Maximum absolute rij values
among candidate regressors in a quadratic
model for each base design.

Figure 7.5: Maximum VIFj for candidate re-
gressors in a quadratic evaluation model for
each base design.

Figure 7.6: Maximum R2
j for candidate re-

gressors in a quadratic evaluation model for
each base design.

Figure 7.7: Condition number of XTX in a
full quadratic evaluation model for each base
design.

of XTX for a full quadratic model. The overall takeaway from these figures is that the
correlation metric values are generally lowest for the I- and A-optimal designs. The cor-
relation metrics are generally highest for the FCCCD and distance-based designs, with the
correlation metrics associated with the quadratic model terms being the highest, particu-
larly for the FCCCD, where the pairwise correlation and VIF for the quadratic regressors
are above 0.95, and 19, respectively. This analysis supports the recommendation given in
Reference [243] against using a face-centered central composite design for a large number of
test factors because of the high correlation among the quadratic model terms.

7.2.3 Prediction Variance

Assessment of the prediction variance of a response surface design for a given model
structure provides insight into its precision of prediction and allows comparison of different
experiment designs. The variance of the predicted response is

Var[ŷ(x0)] = σ2xT
0

(
XTX

)−1
x0 (7.3)

where ŷ(x0) is the predicted response evaluated at the design space location x0 expanded
to the form of the model structure, X is a matrix composed of the designed test points
in the form of the model structure, and σ2 is the measurement error variance [232]. From
Equation (7.3), the prediction variance is a function of the experiment design, the model
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structure, the location in the design space, and the measurement facility error variance.
The scaled prediction variance (SPV) and unscaled prediction variance (UPV) removes the
dependence on σ2 and, thus, can be used to compare experiment designs when σ2 is unknown
prior to experimentation. SPV is defined as

SPV =
N Var[ŷ(x0)]

σ2
= N xT

0

(
XTX

)−1
x0 (7.4)

where the number of test points N penalizes a larger design size [232]. The SPV considers
the prediction accuracy as well as the expense of test points when comparing designs. The
UPV, defined as

UPV =
Var[ŷ(x0)]

σ2
= xT

0

(
XTX

)−1
x0 (7.5)

provides an assessment of the prediction precision independent from the size of the experi-
ment design.

Graphical presentation of the distribution of prediction variance throughout the design
space is an effective way to assess experiment designs. Fraction of design space (FDS) plots,
introduced by Reference [244], depict the prediction variance distribution over the design
space in a concise manner, where the prediction variance metrics are plotted against the FDS
encompassing a prediction variance less than or equal to a particular value. It is also useful to
consider the FDS including a particular model precision, quantified by the confidence interval
half-width δ [240, 245, 246]. The model precision δ normalized by the response standard
deviation σ plotted against FDS provides further insight into the prediction capability of the
model developed from a particular experiment design, prior to conducting the experiment.
For this study, a design was deemed to be adequate for fitting a particular model complexity
if δ/σ was less than two for greater than 95% of the design space. The prediction variance
threshold PV∗ used to determine the FDS within a given model precision level is

PV∗ =

(
δ/σ

tαp/2,N−p

)2

(7.6)

where N is the number of test points, p is the number of parameters in the model, and αp

is the significance level chosen as αp = 0.05.

Figure 7.8 shows the UPV and δ/σ threshold values against FDS for each base experiment
design using a quadratic evaluation model order. The average UPV for each design is also
shown. The FCCCD and distance-based designs have the highest UPV and δ/σ threshold
across the design space; the I- and A-optimal designs have the lowest UPV and δ/σ threshold
across the design space. The I-optimal design has the lowest average UPV, which is expected
because the design objective for the I-optimal designs is to minimize the average prediction
variance across the design space; however, the prediction variance distribution for the A-
optimal design is very close to the I-optimal design.

Table 7.3 lists the FDS with δ/σ ≤ 1, δ/σ ≤ 1.5, and δ/σ ≤ 2 for each design using a
full quadratic evaluation model. An adequate FDS (FDS ≥ 0.95) for a normalized model
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Figure 7.8: Prediction variance plots for a quadratic evaluation model for each base design.

precision δ/σ ≤ 2 is only obtained for the I-, D-, and A-optimal designs. Evaluation with
δ/σ ≤ 1 and δ/σ ≤ 1.5 shows that, the I- and A-optimal designs have the highest FDS
meeting these δ/σ thresholds.

Table 7.3: Prediction variance threshold FDS values using a quadratic evaluation model for
each base design

Design FDS with δ/σ ≤ 1 FDS with δ/σ ≤ 1.5 FDS with δ/σ ≤ 2
FCCCD 0.000 0.003 0.093
I-optimal 0.048 0.853 0.999
A-optimal 0.037 0.858 0.999
D-optimal 0.000 0.297 0.982

distance-based 0.000 0.003 0.161

7.2.4 Model Parameter Precision

The precision of the estimated model parameters can be assessed using the standard error
of individual model parameters or properties of the (XTX)−1 matrix. Figure 7.9 shows the
highest standard error for linear (L), interaction (I), and quadratic (Q) model terms for each
design. The standard errors are normalized by assuming unity measurement noise variance
and are denoted SE∗. The standard error of the model terms estimated using the FCCCD
and distance-based designs are the largest, particularly for the quadratic model terms, as
a consequence of the higher correlation associated with the quadratic model terms. The I-
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and A-optimal designs generally have the lowest standard error values. Figure 7.10 shows
the scaled D-optimality criterion [243]

D∗ = N
(
det
[
(XTX)−1

])1/p
(7.7)

and the trace of (XTX)−1 which reflects the A-optimality [232]. The D-optimal design has
the lowest D∗ and the A-optimal design has the lowest value of tr[(XTX)−1], as expected.
The FCCCD design has the highest D∗ and tr[(XTX)−1] values.

Figure 7.9: Normalized standard error of the model parameters in a full quadratic model for
each base design.

(a) Scaled D-optimality metric (b) A-optimality metric

Figure 7.10: Overall model parameter precision metrics for a full quadratic evaluation model
for each base design.

7.2.5 Discussion

The analysis in the previous subsections has shown that the I- and A-optimal designs
generally have the highest statistical power for candidate model terms, the lowest correlation
among candidate model terms, the lowest prediction variance across the design space, and
the lowest model parameter standard errors. Based on these metrics, the I- and A-optimal
designs are expected to yield the most appropriate model structure, provide the most precise
estimates of model parameters, and have the best predictive performance. The FCCCD and
distance-based designs generally have the worst design evaluation metrics, and theD-optimal
design generally has moderate values between the most and least favorable designs. Based
on this analysis, the I- and A-optimal designs are recommended for experiments with a large
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number of test factors in a cuboidal test region, as is needed to develop an aero-propulsive
model for a distributed propulsion aircraft. For this study, the decision was made to proceed
with the I-optimal over the A-optimal design because of the slightly better precision of
prediction. An I-optimal design will be expanded in the next section to address the scarcity
of design points in the interior of the design space.

7.3 Sequential Response Surface Experiment Designs

Two separate sequential, cuboidal, completely randomized, response surface block de-
signs were executed and compared to investigate possible improvement of modeling results
and reduction of the number of test points needed for future aircraft characterization ex-
periments. The designs will be referred to as the face-centered base (FCB) design and a
I-optimal base (IOB) design. The FCB design has been used previously in wind-tunnel and
computational testing for fixed-wing and eVTOL aircraft [28, 39, 47, 48, 137, 234], including
the powered-airframe wind-tunnel test described in Chapter 6. The IOB design is a new
block design process introduced in this work building on previous work which developed the
FCB design. The I-optimal design was selected for this study based on the design evaluation
analysis presented in Section 7.2. The block design approach for the FCB and IOB designs
are described in the following subsections. For each design, a series of five test blocks was de-
signed to acquire the data necessary to incrementally develop more accurate aero-propulsive
models.

7.3.1 Face-Centered Base (FCB) Design

The sequential FCB design blocks for the LA-8 22-factor experiments are as follows [28]:

� Block 1 is the same minimum run resolution V, face-centered central composite design
(FCCCD) described in Section 7.2.

� Block 2 is a nested FCCCD. The nested FCCCD was originally developed in Refer-
ence [235], where it was shown to be an effective design strategy for a 5-factor fixed-
wing aircraft aerodynamic characterization experiment. The nested design augments
the conventional FCCCD to allow estimation of pure cubic model terms and provides
additional information in the interior region of the design space. The nested FCCCD
applied for this work emulates the ordinary FCCCD, except that the factorial and axial
points are all located at half the distance from the center of the design space. The
nested FCCCD is designed separately from the Block 1 FCCCD (i.e., knowledge of the
data points within Block 1 do not influence the choice of data points in Block 2).

� Block 3 is an I-optimal design for a full quadratic design model with the number of
model points being five times the number of test factors [137]. Five additional lack-
of-fit points, which are selected using the Maximin distance-based criterion, as well as
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five additional non-center replicates are also included in the design [243]. Inclusion of
five lack-of-fit points and five non-center replicates are the default settings in Design-
Expert® for base optimal response surface designs to permit lack-of-fit testing [233].
The I-optimal design augments the designs from previous blocks to sequentially im-
prove the model and avoid duplicating previously tested combinations of factor settings.
In other words, the previously tested FCCCD and nested FCCCD design points are
factored into the optimization algorithm to minimize the prediction variance.

� Block 4 is another augmented I-optimal design for a quadratic design model, which
follows the same augmented design procedure from Block 3. With fewer test factors,
the design model could be increased to a higher order, for example, including cubic
model terms [47, 48].

� Block 5 is another augmented I-optimal design for a quadratic design model, or the
highest design model complexity from Blocks 1-4, which is used for model validation.
The block contains 75 validation test points, which has been found to provide a good
estimate of prediction error while remaining a modest number of test points. No lack-
of-fit, replicate, or center points are included. Because the validation data are I-optimal
test points designed to augment the data used for modeling to optimally reduce pre-
diction error, but are not used to fit the models, the data provide a rigorous prediction
test for the designed model complexity. The factor settings for these validation data,
however, are dependent on the designs used for model identification and tend to favor
the boundaries of the design space.

7.3.2 I -Optimal Base (IOB) Design

The sequential IOB design blocks for the LA-8 22-factor experiments are as follows:

� Block 1 is the same I-optimal design for a quadratic design model described in Sec-
tion 7.2. The design includes the same total number of test points and the same number
of center points as the Block 1 FCB design to provide a direct comparison. Lack-of-fit
points and non-center replicates are not included in the design.

� Block 2 is a nested I-optimal design for a quadratic design model, which was inspired
by the concept of the nested FCCCD proposed in Reference [235]. The nested I-optimal
emulates the same design process as Block 1, except that the design points are all
located at half the distance from the center of the design space. The nested I-optimal
design was created separately from the Block 1 I-optimal design (i.e., knowledge of
the Block 1 design does not influence the Block 2 design). The design provides more
broad coverage of the interior portion of the design space, which aids in reducing model
bias [232].

� Block 3 is an I-optimal design for a quadratic design model with the number of model
points being five times the number of experimental factors, following Reference [137].
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Five additional lack-of-fit points and five additional non-center replicates are also in-
cluded in the design, following the Block 3 FCB design approach. The I-optimal design
augments the designs from previous blocks to sequentially improve the model and avoid
duplicating previously tested combinations of factor settings.

� Block 4 is another augmented I-optimal design for a quadratic design model following
the same augmented design procedure from the previous block, and also following the
Block 4 FCB design approach.

� Block 5 contains 75 additional validation test points selected using a random number
generator. This block provides validation data that are agnostic to the model develop-
ment experiment design and the model complexity it was designed for. Because this
block is design agnostic, it will be used to directly compare the IOB design with the
FCB design later in the chapter. Note that for the simulated LA-8 wind-tunnel exper-
iments executed for this study, the validation block was increased to 304 test points
(the same number of test points as Block 1 and Block 2) selected using a random
number generator to provide a greater validation sample size. Increasing the num-
ber of validation points for these simulated experiments is justified because of the low
computational expense of executing each test point, but acquiring a large number of
validation test points would not be practical for an expensive and/or time-consuming
experiment.

7.3.3 Block Design Summary

The FCB and IOB designs are summarized in Table 7.4. The designs intentionally
have the same number of test points in each block so that the design qualities can be
compared directly. The difference between the sets of test blocks is the type of design used
in Block 1, Block 2, and Block 5. It is worth noting that the FCCCD designs are available
nearly instantaneously, whereas each I-optimal design blocks can take roughly 1-2 hours to
create due to the computational expense of the employed coordinate exchange optimization
algorithm [232, 239]. Figures 7.11-7.12 show two-dimensional slices of the 22-factor space
for each design. Each block is plotted sequentially with points from the previous blocks to
show how the higher complexity designs fill the design space. The figure shows that the IOB
design covers a broader number of individual factor settings compared to the FCB design.
The next section compares the pre-experiment design evaluation metrics for the FCB and
IOB designs.

7.4 Sequential Experiment Design Evaluation

This section compares the sequential FCB and IOB experiment design approaches using
the pre-experiment design evaluation metrics described in Section 7.2. The designs are
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Table 7.4: FCB and IOB test block design summary

(a) FCB design

Design Block Cumulative
Block Type Points Points

1 FCCCD 304 304
2 nested FCCCD 304 608
3 I-optimal 120 728
4 I-optimal 120 848
5 I-optimal 75 923

(validation)

(b) IOB design

Design Block Cumulative
Block Type Points Points

1 I-optimal 304 304
2 nested I-optimal 304 608
3 I-optimal 120 728
4 I-optimal 120 848
5 random 75 923

(validation)

Figure 7.11: Sequential two-dimensional slices of the 22-factor space for each FCB test block.

Figure 7.12: Sequential two-dimensional slices of the 22-factor space for each IOB test block.

assessed sequentially at each block, meaning that the analysis for each block includes the
design points in the current block and all previous blocks.

7.4.1 Statistical Power

The lowest statistical power among all the linear (L), interaction (I), and quadratic (Q)
model terms for each design and block number are shown in Figure 7.13. The power values
are also shown numerically in Table 7.14. Figure 7.13a and Table 7.14a show the power for



7.4. Sequential Experiment Design Evaluation 155

(a) Power calculation with αp = 0.05 and δ/σ = 2

(b) Power calculation with αp = 0.0001 and δ/σ = 1

Figure 7.13: FCB and IOB design power comparison.

Figure 7.14: FCB and IOB design power comparison (expressed as a percentage)

(a) Power calculation with αp = 0.05 and δ/σ = 2

Model Power for Power for
Block Terms FCB Design IOB Design

1 L 99.999996 100.0000000000
1 I 99.99991 99.9999999997
1 Q 79.8 99.9999999999

2 L 99.9999999999 100.0000000000
2 I 99.999996 99.9999999999
2 Q 84.5 100.0000000000

3 L 100.0000000000 100.0000000000
3 I 100.0000000000 100.0000000000
3 Q 99.9999999999 100.0000000000

4 L 100.0000000000 100.0000000000
4 I 100.0000000000 100.0000000000
4 Q 100.0000000000 100.0000000000

(b) Power calculation with αp = 0.0001 and
δ/σ = 1

Model Power for Power for
Block Terms FCB Design IOB Design

1 L 27.8 85.7
1 I 19.6 54.4
1 Q 0.4 66.2

2 L 74.6 99.9
2 I 39.5 88.2
2 Q 0.8 91.0

3 L 99.96 99.9996
3 I 98.3 99.6
3 Q 72.3 99.2

4 L 99.999997 99.9999998
4 I 99.990 99.998
4 Q 98.7 99.98

each design with common values of αp = 0.05 and δ/σ = 2. The FCB design has nearly
100% power for the linear and interaction model terms in all blocks. The power for quadratic
model terms is near 80% for Blocks 1-2 and near 100% for Blocks 3-4. The IOB design has
nearly 100% power for all model terms in all blocks. Figure 7.13b and Table 7.14b show
the power for each design with conservative values of αp = 0.0001 and δ/σ = 1, resulting
in lower power. For Block 1, the lowest power among the groups of model terms is between
54% and 86% for the IOB design and between 0% and 28% for the FCB design. For Block
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2, each group of model terms has a power value below 75% for the FCB design, whereas all
model terms have a power above 88% for the IOB design. For Block 3, the lowest power for
the quadratic model terms is 72.3% for the FCB design, but above 99% for the IOB design;
the power for linear and interaction model terms are above 98% for both designs, but the
power is higher for the IOB design. For Block 4, all model terms in each design have a high
power, but the power for the IOB design is higher. The overall takeaway is that, for the
same number of design points, the statistical power for the IOB design is always higher than
the FCB design, particularly for the quadratic model terms. This means that for the same
significance level, models estimated from the IOB design have a lower probability of failing
to include model terms that are significant to the model. The power is also seen to increase
as the block number increases, as would be expected when increasing the total number of
available data points.

7.4.2 Correlation Metrics

The pairwise and multiple correlation metrics for each design evaluated for a full quadratic
model are shown in Figures 7.15-7.18. As mentioned in Section 7.2.2, this is a conservative
analysis that assumes all candidate regressors are included in the model and many candidate
model terms were expected to be excluded through model structure determination after data
collection. The important takeaway from these figures is that the correlation metric values
are generally lower for the IOB design compared to the FCB design. For the FCB design, the
correlation metrics associated with the quadratic model terms are the highest, particularly
for the Block 1 FCCCD and Block 2 nested FCCCD, where the pairwise correlation and VIF
for the quadratic regressors are above 0.95, and 19, respectively. The condition number for
each FCB design block is also higher compared to the corresponding IOB block, indicating
that adverse effects from multiple correlation are greater, particularly for the Block 1 FCCCD
and Block 2 nested FCCCD designs. Again, this analysis assumes a full quadratic model;
if a subset of the model terms is selected for the model, then the condition number will be
reduced.

Figure 7.15: Maximum absolute rij values among candidate regressors in a quadratic model
for FCB and IOB designs.
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Figure 7.16: Maximum VIFj for candidate regressors in a quadratic evaluation model for
FCB and IOB designs.

Figure 7.17: Maximum R2
j for candidate regressors in a quadratic evaluation model for FCB

and IOB designs.

Figure 7.18: Condition number of XTX in a full quadratic evaluation model for FCB and
IOB designs.

7.4.3 Prediction Variance

Figure 7.19 shows the UPV and δ/σ threshold values against FDS, as well as the average
UPV, for each experiment design using a quadratic evaluation model order. The UPV and
δ/σ threshold curve decreases in value and becomes more uniform (flat) as the block number
increases. Block 1 and Block 2 for the FCB design (a FCCCD and nested FCCCD) have a
significantly higher UPV across the design space compared to Block 1 and Block 2 for the
IOB design (an I-optimal and nested I-optimal design). This is expected because the design
objective for the I-optimal designs is to minimize the average prediction variance across the
design space. The respective Block 3 and Block 4 designs have a more similar prediction
variance distribution and average value because both design approaches employ augmented
I-optimal designs for these blocks, but the IOB design blocks still have a lower UPV value
across the design space.
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Figure 7.19: Prediction variance plots for a quadratic evaluation model for FCB and IOB
designs.

Table 7.5 lists the FDS with δ/σ ≤ 1 and δ/σ ≤ 2 for each design using a full quadratic
evaluation model. An adequate FDS (FDS ≥ 0.95) for a normalized model precision δ/σ ≤ 2
is obtained for each IOB block, whereas this threshold is only achieved in Block 3 and Block
4 for the FCB design. Evaluation with δ/σ ≤ 1 shows that, for each block, a larger FDS
meets this more stringent requirement for the IOB design compared to the FCB design.

Table 7.5: Prediction variance threshold FDS values using a quadratic evaluation model for
FCB and IOB designs

FCB Design IOB Design FCB Design IOB Design
Block FDS with δ/σ ≤ 1 FDS with δ/σ ≤ 1 FDS with δ/σ ≤ 2 FDS with δ/σ ≤ 2
1 0.000 0.048 0.093 0.999
2 0.000 0.288 0.222 1.000
3 0.448 0.799 1.000 1.000
4 0.953 0.982 1.000 1.000

7.4.4 Model Parameter Precision

Figure 7.20 shows the highest standard error for each group of model terms for each
design and block number. The standard error of the model terms estimated using the FCB
design are greater, particularly for the quadratic model terms, as a consequence of the
higher correlation associated with the quadratic model terms. Figure 7.21 shows the scaled
D-optimality criterion [243] and the trace of (XTX)−1 (representing the A-optimality [232]).
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For Block 1 and Block 2, the IOB design has lower D- and A-optimality metrics compared
to the FCB designs. For Block 3 and Block 4, the D- and A-optimality metrics are similar
for each design.

Figure 7.20: Normalized standard error of the model parameters in a full quadratic model
for FCB and IOB designs.

(a) Scaled D-optimality metric (b) A-optimality metric

Figure 7.21: Overall model parameter precision metrics for a full quadratic evaluation model
for FCB and IOB designs.

7.4.5 Discussion

This section presented several pre-experiment design metrics and direct comparisons were
made between the FCB and IOB design approaches assuming a full quadratic model struc-
ture. The analysis indicated that the IOB design has improved statistical power, correlation
among model terms, prediction variance, and precision of estimated model parameters com-
pared to the FCB design. The following sections further investigate the two experiment
design approaches by comparing results from simulated LA-8 wind-tunnel experiments.

7.5 Model Identification Approach

Similar to Chapter 6, aero-propulsive modeling for this effort focuses on developing a
polynomial representation of the aero-propulsive forces and moments as a function of vehicle
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state and control variables. Factors under test, or close variants (as discussed in Chapter 6
and Reference [28]), are defined as explanatory variables, and a model is identified from
the data collected using the experiment designs described in Section 7.3. Following the ap-
proach described in Section 6.5.1, the modeled responses are the dimensional body-axis aero-
propulsive forces X, Y, Z in lbf and moments L,M,N in ft·lbf. The explanatory variables
are defined as the body-axis velocity components v, w in ft/s; propeller speeds n1, n2, ..., n8

in revolutions per second; wing angles δw1 , δw2 in radians; elevon deflections δe1 , δe2 , δe3 , δe4
in radians; flap deflections δf1 , δf2 , δf3 , δf4 in radians; and ruddervator deflections δr1 , δr2 in
radians.

The model structure was developed using the stepwise regression algorithm from Ref-
erence [103] (see Section 2.6.2.2) and the model parameters were estimated using ordinary
least-squares regression (see Section 2.6.1.1). The stepwise regression algorithm was run au-
tomatically until the remaining excluded model terms did not surpass the partial F -statistic
cutoff value when added to the model. The significance level αp is commonly chosen as
αp = 0.05, or 95% confidence that a model term is significant; however, this threshold has
been noted to admit a large number of model terms that lack physical justification for eV-
TOL aircraft aero-propulsive modeling problems. For the data analyzed in this chapter,
a significance level from αp = 0.01 to αp = 0.0001 (99% confidence to 99.99% confidence,
respectively) appeared to be a good choice to obtain a parsimonious model with good pre-
diction capability. After identifying the model structure and parameter estimates, model
adequacy was examined by comparing modeling residuals to validation residuals using data
withheld from the model development process.

7.6 Modeling Results

Separate aero-propulsive models were identified using the data collected from the FCB
and IOB simulated wind-tunnel experiments for each sequential test block. Figure 7.22 shows
a comparison of the modeling NRMSE (NRMSEm) and validation NRMSE (NRMSEv) for
the sequential models developed using the FCB and IOB designs. Histories of normalized
modeling residuals and normalized validation residuals, as well as validation NRMSE metric
bounds (±2NRMSEv), for each block are shown in Figures 7.23-7.26 at the end of this
chapter to compare residual values and verify that the residuals are independent. The y-axis
limits for each response across each block and design type are identical to aid in visual
comparisons of residual character. Additional omitted residual diagnostic plots were viewed
for each design to verify that the residuals were normally distributed and had constant
variance.

As can be seen in Figure 7.22, most respective IOB-design NRMSE values calculated
using the modeling and validation data for each response are similar and low-valued sig-
nifying that a high-quality model has generally been identified at each block; however, for
the first IOB design block, the NRMSEv values for Z and M are notably larger than the
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Figure 7.22: Modeling and validation NRMSE for models developed at each test block for
LA-8 simulated wind-tunnel experiments.

respective NRMSEm values suggesting that the Block 1 model for these responses may re-
quire improvement to obtain an adequate model. There is a decrease between the NRMSEv

values between Block 1 and Block 2 for all responses indicating that augmentation with the
nested I-optimal design has improved the prediction capability. The NRMSEv values for
Block 3 and Block 4 are similar to those obtained for Block 2 indicating that the additional
data collected in Block 3 and Block 4 provide little additional benefit in terms of prediction
capability. These results suggests that only the first two IOB test blocks need to be executed
for this experiment.

For the first FCB design block, the NRMSEv values for all responses except N are sig-
nificantly larger than the respective NRMSEm values suggesting that the model may be
deficient, which could be attributed to the sparsity of interior data points. This residual
character is also clearly reflected in Figure 7.23a, where the magnitude of normalized valida-
tion residuals for most responses is significantly larger than the magnitude of the respective
normalized modeling residuals. Although model adequacy reservations were noted for the
Block 1 IOB design for some responses, the disparity between the respective modeling and
validation NRMSE values is more prominent for the FCB design. Execution of the second
FCB block decreases the NRMSEv for most responses and results in the NRMSEv values for
each response being closer to the respective NRMSEm values; however, the NRMSEv values
are still notably larger compared to the NRMSEm values for certain responses. For the Block
3 and Block 4 FCB models, the NRMSEm and NRMSEv values for each response are similar
in value, providing confidence that model development was successful. The NRMSEv values
obtained for the models identified from the Block 3 and Block 4 FCB designs are also similar
in value to the corresponding NRMSEv values obtained for the Block 3 and Block 4 IOB
models, but lower prediction error is still generally obtained for the models identified using
the IOB block designs. I-optimal designs are optimized to reduce prediction error for the
identified models, so it makes sense that the IOB design blocks result in lower prediction
error values. Future studies are recommended to further investigate the utility of the pre-
sented response surface experiment design approaches in wind-tunnel experimentation and
other complex modeling problems with a large number of test factors.
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Residual Plots

(a) FCB test matrix (b) IOB test matrix

Figure 7.23: Normalized modeling and prediction residuals (1 modeling block).
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(a) FCB test matrix (b) IOB test matrix

Figure 7.24: Normalized modeling and prediction residuals (2 modeling blocks).

(a) FCB test matrix (b) IOB test matrix

Figure 7.25: Normalized modeling and prediction residuals (3 modeling blocks).
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(a) FCB test matrix (b) IOB test matrix

Figure 7.26: Normalized modeling and prediction residuals (4 modeling blocks).



Chapter 8

Aero-Propulsive Modeling for eVTOL
Aircraft Using Wind-Tunnel Testing
with Multisine Inputs

This chapter describes an approach for modeling the aero-propulsive characteristics of
eVTOL aircraft leveraging wind-tunnel testing with dynamic excitation inputs. As has been
emphasized in previous chapters, compared to many conventional aircraft, eVTOL aircraft
designs exhibit greater aero-propulsive complexity and many interacting factors requiring
development of new testing and aerodynamic modeling strategies. An efficient, hybrid wind-
tunnel experiment is designed for the NASA LA-8 eVTOL aircraft using a combination of
response surface methods and dynamic programmed test inputs. An I-optimal response
surface design is developed for slow moving test variables and orthogonal phase-optimized
multisine signals are designed for each control surface and propulsor. Testing is conducted by
applying both experiment design methods simultaneously to collect informative wind-tunnel
data subsequently used for model identification using a novel, multistep modeling process.
The model adequacy is assessed using validation data acquired separately from data used
to identify the model and indicates that the models have good predictive capability. The
amount of required test time using the techniques described in this chapter is substantially
reduced compared to previous static wind-tunnel testing for the LA-8 aircraft, while still
providing high-quality models and greater parameterization flexibility. This work has been
published as a conference paper [30].

The chapter is organized as follows: Section 8.1 provides motivation and background
information for this research. Section 8.2 describes the experiment design methodology,
followed by a description of the wind-tunnel test and data processing methods in Section 8.3.
The aero-propulsive modeling approach and the model identification strategy are described
in Section 8.4. Section 8.5 provides sample modeling results, followed by discussion of the
results and modeling approach in Section 8.6.

165
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8.1 Research Motivation

Previous research, including the work described in Chapters 6-7, has investigated meth-
ods for efficient eVTOL aircraft aero-propulsive modeling across their wide flight envelopes
using static DOE/RSM wind-tunnel testing [28, 46, 137, 219]. Although these methods are
much more efficient and statistically rigorous compared to executing a traditional OFAT test,
the efficiency can be further improved by using continuously sampled data and techniques
gleaned from flight-test system identification. The present work builds on and combines pre-
vious research to develop an effective aero-propulsive modeling strategy for eVTOL aircraft
using novel wind-tunnel testing that results in substantial test efficiency increases. The dis-
tributed propulsion, tilt-wing aircraft modeling approach proposed in Chapter 6 is combined
with a more efficient, hybrid wind-tunnel experiment designed using modern response surface
methods [231, 232] and multisine PTI excitations [19, 82–85]. This multilayered testing and
modeling strategy is similar to previous fixed-wing aircraft modeling research using flight
testing [247] and flight simulations [248]. The present work is also inspired by recent NASA
Learn-to-Fly Project [249, 250] wind-tunnel testing [237] and flight testing [105, 106, 140]
used for modeling fixed-wing aircraft and extends efficient model development strategies to
eVTOL aircraft. Reference [237] presents a related wind-tunnel testing and modeling ap-
proach leveraging a combination of response surface designs and PTI excitations used for
fixed-wing aircraft aerodynamic modeling. The new contributions of this work include a
new experiment design methodology and a novel, multistep model identification procedure
tailored to the data collection methods, as well as application to a complex eVTOL aircraft
with significant aero-propulsive coupling.

8.2 Experiment Design

The factors under test were divided into static factors and dynamic factors for the wind-
tunnel experiment design based on the frequency band of typical variations in flight, as well
as the capabilities of the wind-tunnel testing apparatus. Static and dynamic test factor ex-
periment designs were developed separately, but the designs were run simultaneously for test
execution. The respective experiment design methods forming the hybrid testing strategy
are discussed in the following subsections. Note that this study was exploratory in nature
with an objective of refining the proposed testing approach to guide future wind-tunnel tests
for eVTOL vehicles. Consequently, the wind-tunnel experiment was expected to yield excess
data with the goal of determining the data collection requirements enabling development of
satisfactory aero-propulsive models in an efficient manner.
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8.2.1 Static Experiment Design

The static test factors were angle of attack α, angle of sideslip β, front wing angle δw1 ,
and rear wing angle δw2 . These factors were held at constant settings during data collection
due to their slow relative movement and for operational convenience in wind-tunnel testing.
Moving the airflow orientation angles and wing angles dynamically changes the tare values
and introduces additional dynamic modeling complexity. The factor settings for each of the
four static test factors were independently commanded by the wind-tunnel control system
at each test point. Although Chapter 6 suggests parameterizing eVTOL aircraft models
using body-axis velocity components, the test matrices were specified using α and β for
ease of envelope definition and simplified integration into the wind-tunnel test apparatus.
The freestream velocity was held at a constant setting for the testing described in this
chapter, but would need to be varied to develop an aero-propulsive model valid throughout
the operational flight envelope.

A set of five sequential static test blocks was developed using DOE [231] and RSM [232]
theory to acquire the data necessary to identify and validate increasingly complex aero-
propulsive models. Modeling block design was accomplished with the aid of Design-Expert®

[233]. Previous model identification results for the LA-8 aircraft suggested that at least pure
quadratic and two-factor interaction model terms are needed to characterize the slow moving
test factors (see Chapter 6), but additional model complexity in the form of higher-order
model terms was not investigated in that study. The hybrid testing strategy employed in
this work allows identification of higher-order models, while still conducting efficient testing.

The static factor settings were chosen using sequential, completely randomized I-optimal
response surface designs, which are designs that minimize the average prediction variance
for a predefined model order over the range of factor settings [231, 232]. The four blocks
used for modeling were I-optimal designs for:

1. a quadratic design model (up to pure quadratic and two-factor interaction model
terms),

2. a cubic design model (up to pure cubic terms and all arrangements of cross terms up
to a total of third order),

3. a quartic design model (up to pure quartic terms and all arrangements of cross terms
up to a total of fourth order), and

4. a quintic design model (up to pure quintic terms and all arrangements of cross terms
up to a total of fifth order).

The I-optimal block designs were composed of the minimum number of test points needed to
fit a full model of the specified complexity. Three additional center points were also included
in each block to allow estimation of pure error and to aid in stabilization of the prediction
variance at the center of the experimental region [231]. Each sequential I-optimal design
augmented the collective design from previous blocks to sequentially increase the identifiable
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model complexity, improve the model prediction, and avoid duplicating previously tested
combinations of factor settings. All modeling blocks were executed to investigate the model
complexity needed to characterize eVTOL aircraft, but not all blocks were expected to be
needed to identify a satisfactory aero-propulsive model.

An additional fifth block consisting of 20 static test points selected using a random
number generator was used as validation data withheld from model identification. The
choice of randomized test points makes the validation test impartial to the experiment design.
This validation block was found to provide a good estimate of prediction error while using a
modest number of test points for the present application.

Figure 8.1 shows two-dimensional slices of the factor space for the four static test factors.
Each block is plotted sequentially with points from the previous blocks to show how the
higher complexity I-optimal designs fill the design space. The randomized validation test
points are also shown on each plot. Figure 8.2 shows a four-dimensional representation for
all static test factors and all test blocks. Although the factors are displayed in coded units
in the figure, the variables would be converted into engineering units for test execution.

Figure 8.1: Sequential two-dimensional slices of the coded factor space for the static test
factors.

As discussed in Section 7.2.3, evaluation of the prediction variance of a response surface
design provides insight into its precision of prediction and allows comparison of different
designs prior to experimentation. Table 8.1 lists the number of test points for each block,
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Figure 8.2: Four-dimensional representation of the coded factor space for the static test
factors.

as well as the FDS with δ/σ ≤ 2 for quadratic, cubic, and quartic evaluation models. An
adequate FDS (FDS ≥ 0.95) for a normalized model precision δ/σ ≤ 2 is obtained with a
design order one power larger than the evaluation model order. Figures 8.3, 8.4, and 8.5
show the UPV, SPV, and δ/σ threshold values against FDS for a quadratic, cubic, and
quartic model evaluation model order, respectively. Each block is analyzed sequentially,
meaning that the analysis for each block includes the design points in the current block and
all previous blocks. The UPV and δ/σ threshold curve decreases in value and becomes more
uniform (flat) as the design order increases. The SPV curves for each block are similar for
the quadratic evaluation model. For the cubic and quartic evaluation models, a lower and
more uniform SPV is obtained with a design complexity greater than the evaluation model
complexity.

Table 8.1: Cumulative experiment design properties for each test block

Design Block Cumulative Quadratic Model Cubic Model Quartic Model
Block Order Points Points FDS with δ/σ ≤ 2 FDS with δ/σ ≤ 2 FDS with δ/σ ≤ 2

1 Quadratic 18 18 0.448 0.000 0.000
2 Cubic 23 41 0.999 0.215 0.000
3 Quartic 38 79 1.000 0.998 0.151
4 Quintic 59 138 1.000 1.000 0.994
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Figure 8.3: FDS plots for a quadratic evaluation model.

Figure 8.4: FDS plots for a cubic evaluation model.

Figure 8.5: FDS plots for a quartic evaluation model.

8.2.2 Dynamic Experiment Design

The ten control surfaces (four elevons, four flaps, and two ruddervators) and eight propul-
sors present on the LA-8 aircraft were treated as dynamically changing factors at each
static test point. Orthogonal phase-optimized multisine inputs [19, 82–85], described in
Section 2.3.2, were the excitation input type, or PTI, applied to these control effectors. Mul-
tisine inputs have been used successfully in previous aircraft system identification work to
simultaneously characterize the effects of many individual control effectors [84, 251–253].
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For this study, individual multisine signals were generated for each of the LA-8 control
surfaces and propulsors, for a total of 18 different excitation signals. The multisine design
process is similar to the process that would be used to create multisine inputs for LA-8
flight experiments, as will be discussed in Chapter 9 (Reference [32]). Several harmonic
components were assigned to each control surface and propulsor multisine signal, where the
overall frequency range was set to between 0.05 Hz and 1.8 Hz in accordance with frequencies
that would be used in flight. The propulsion harmonic components were focused into lower
frequencies below 1.2 Hz to adhere to the lower bandwidth of the propulsors [37]. Focusing
the propulsor excitation frequencies below this limit avoids over-stressing the motors and
prevents the propulsor excitation power from being attenuated by the motor dynamics. Six
different sets of multisine input frequency components were considered for the experiment by
varying the fundamental period T from 30 seconds to 180 seconds in 30-second increments.
A larger fundamental period results in a finer frequency resolution, ∆f = 1/T Hz, which
allows assigning more frequency components to each individual multisine signal. The design
with the shortest fundamental period (T = 30 seconds) had three harmonic components as-
signed to each propulsor and control surface signal; the design with the longest fundamental
period (T = 180 seconds) had 16 harmonic components assigned to each propulsor signal
and 18 harmonic components assigned to each control surface signal. Because the starting
phase angles for each harmonic component in the non-convex RPF optimization are gen-
erally chosen randomly in (−π,+π], a different set of phase angles optimized for minimum
RPF is generally obtained each time a multisine signal is designed. Multisine optimization
with randomly chosen starting phase angles was performed 30 times for each different set
of frequency components and the design with the shortest time to decrease the maximum
absolute pairwise correlation among up to quadratic and two-factor interaction control ef-
fector model terms was selected to compare to signals developed with different fundamental
periods.

Multisine signals are orthogonal in the time domain at integer multiples of T , which
might be interpreted to suggest using a multisine design with a small fundamental period.
However, obtaining high-quality modeling results requires low correlation rather than zero
correlation [85], meaning that good modeling results can be obtained by using a data collec-
tion time shorter than the fundamental period of the multisine signal. Also, using a larger
number of frequency components provides more diverse dynamic information, which has been
shown to improve modeling results [251]. Following an approach similar to Reference [85],
correlation metrics were used as criteria to assess the quality of each multisine design as data
collection time progresses.

As explained in Section 7.2.2, correlation between pairs of signals (ξi and ξj) can be
assessed using the pairwise correlation coefficient rij [Equation (2.80)]. The variance inflation
factor VIFj [Equation (7.1)] and R2

j metrics (see Section 7.2.2) can also be used to assess
pairwise correlation. Multiple correlation between more than two inputs is quantified by the
eigenvalues of XTX and condition number κ of XTX [Equation (7.2)]. The evolution of
correlation metrics over time for four multisine designs with a different fundamental period is
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shown in Figure 8.6. A linear and full quadratic model (every possible linear, quadratic, and

(a) Maximum absolute rij (linear model) (b) Maximum absolute rij (quadratic model)

(c) Maximum VIFj (linear model) (d) Maximum VIFj (quadratic model)

(e) Maximum R2
j (linear model) (f) Maximum R2

j (quadratic model)

(g) Condition number of XTX (linear model)
(h) Condition number of XTX (quadratic
model)

Figure 8.6: Input signal correlation metrics against time.
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two-factor interaction model term) for all the control surfaces and propulsors are considered
for this analysis. This represents a conservative analysis performed prior to the experiment
that assumes all candidate regressors are included in the model. Many candidate model
terms considered here, particularly for the full quadratic model, were expected to be excluded
through model structure determination after data collection. The PTI excitations were run
in a continuous loop for testing, meaning that different set points contained different portions
of the full PTI signals. Consequently, the analysis here shows the highest value of each metric
for time segments evaluated throughout the full duration of the periodic signal, as opposed
to just from the start of the signal at t = 0.

Figures 8.6a and 8.6b show the maximum absolute pairwise correlation value, max(|rij|),
for each multisine design as a function of time for a linear and quadratic evaluation model,
respectively. The maximum correlation for each different multisine design shows a similar
rate to decrease below 0.5, which is achieved in roughly 10 seconds for the linear model and
roughly 25 seconds for the quadratic model. Figure 8.6a shows that the pairwise correlation
values are zero at integer multiples of the fundamental period of the respective multisine
design for a linear model. For the quadratic model, the correlation pairwise correlation
values decrease until passing the fundamental period for the multisine design where the
pairwise correlation value remains relatively constant thereafter. Multisine designs with
a larger fundamental period ultimately achieve lower correlation among quadratic model
regressors. Similar character is observed for the maximum VIFj and R

2
j variation with time

shown in Figures 8.6c-8.6f. For a linear model, all multisine designs achieve a maximum VIF
of less than 10 in roughly 7 seconds. For a quadratic model, the multisine designs with a
longer fundamental period achieve a maximum VIF of less than 10 in roughly 40 seconds.

Figures 8.6g-8.6h show the condition number κ of XTX for each multisine design as a
function of time. For the linear model, all multisine designs achieve a condition number of less
than 100 in approximately 7 seconds at nearly the same rate and, thereafter, the condition
numbers continue to decrease at a slower rate. For the quadratic model, the condition
number for each multisine design is seen to decrease until reaching the fundamental period,
and a nearly constant condition number is observed thereafter. The multisine designs with
longer fundamental periods achieve a condition number less than 1,000 in roughly 40 seconds.
Again, this analysis assumes that all candidate regressors are included in the model. If a
subset of the model terms is selected for the model, then the condition number is typically
reduced.

The overall takeaway from Figure 9.2 is that multisine designs with different fundamental
periods reduce correlation metric values at a similar rate up to the respective fundamental
period of each design. Also, multisine designs with longer fundamental periods obtain lower
correlation metrics over time for a quadratic model. Informed by these time-dependent
correlation analysis results and previous research showing the benefits of increased frequency
resolution [251], the multisine design with the largest fundamental period (T = 180 seconds)
was selected to be used for the wind-tunnel experiment.
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The input spectra for the final set of orthogonal phase-optimized multisine signals with a
fundamental period of T = 180 seconds is shown in Figure 8.7. There are 308 total harmonic
components, with 16 frequencies assigned to each propulsor and 18 frequencies assigned to
each control surface in an alternating manner. The overall frequency range is between
fmin = 0.05 Hz and fmax = 1.756 Hz with a frequency resolution of ∆f = 1/T = 0.00556 Hz.
The input spectra plot shows that the propulsor harmonic components are in a lower fre-
quency range, reflecting that the input excitations were designed to be within the bandwidth
of the propulsion system. Figure 8.8 shows the first 20 seconds of the input excitation signals
normalized to have a maximum absolute value of one. The RPF values for the propulsor
inputs were below 1.32 and the RPF values for the control surface inputs were below 1.60.
A gain is applied to scale each input signal to a sufficient amplitude to obtain a good signal-
to-noise ratio for model identification.

Figure 8.7: Multisine input spectra for the LA-8 control effectors.

Figure 8.8: Normalized multisine inputs for the LA-8 control effectors.
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8.3 Data Collection and Signal Processing

The experiment described in the previous section was executed at the NASA Langley
12-Foot Low-Speed Tunnel [230] (described in Section 6.3). The static test points, consist-
ing of α, β, δw1 , and δw2 settings, were run using an automated data collection procedure
developed for previous testing using DOE/RSM techniques [46, 219]. The PTI excitations
for control surface and propulsor commands were run in a continuous loop while traversing
through the static test matrix, but data were only collected at each static test point. Ex-
periments used for this chapter were executed at a dynamic pressure of 3.5 psf (freestream
airspeed of 54.3 ft/s at standard sea-level conditions), with the test factor ranges shown
in Table 8.2. This condition represents a high-speed transition phase of flight for the LA-
8 aircraft. Note that multiple dynamic pressure settings need to be tested to develop a
full-envelope aero-propulsive model.

Table 8.2: Test factor ranges at q̄ = 3.5 psf (V = 54.3 ft/s)

Factor(s) Units Minimum Maximum
α deg −6 +6
β deg −5 +5

δw1 , δw2 deg 0 +25
δe1 , δe2 , δe3 , δe4 deg −15 +15
δf1 , δf2 , δf3 , δf4 deg 0 +20

δr1 , δr2 deg −15 +15
η1, η2, ..., η8 µs 1400 1500

Data collected for model identification included sting orientation, control surface deflec-
tion angles, propulsor rotational speeds, and applied forces and moments. The six force and
moment components were measured using a strain gage balance, and a propeller rotational
speed measurement was provided by the ESC. Direct control surface position measurements
were not available, so a calibration curve was developed for each control surface to convert
the desired deflection angles to commanded PWM signal values for testing. Data were col-
lected at a sample rate of 50 Hz for 60 seconds at each static test point, with less overall
time expected to be needed for model identification.

The dynamic nature of the data used for this study required multiple signal processing
steps to condition the data for model identification. First, the propulsor speed and control
surface deflection angle signals were found to have a time lag relative to the force and
moment measurements. The time lag was determined by finding the peak of the cross-
correlation function between the control surface and propulsor signals and the dominant
force or moment component where the control effects manifested. The cross-correlation was
computed using data collection runs executed with a reduced number of control effectors
being dynamically excited to clarify time lag estimation. After determining the time lag,
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time skew corrections were made for the signals used for model identification.

The force and moment signals were also found to contain significant measurement noise
and suspected structural modes. An analog sixth-order low-pass Butterworth anti-alias filter
with a cutoff frequency of 10 Hz was applied to the balance measurements prior to sampling.
Nonetheless, residual frequency content outside of the excitation frequencies was observed
in the data. To mitigate these effects, the model identification from the dynamic data was
performed using only information content contained in the dynamic excitation frequency
range, as will be discussed further in Section 8.4. For time-domain model validation, data
were smoothed using a zero phase-shift digital filtering technique using the filtfilt func-
tion in MATLAB® [90], with a digital sixth-order low-pass Butterworth filter with a cutoff
frequency of 3.1 Hz applied both forward and backward in time [94]. The cutoff frequency
was selected to preserve lower frequency information associated with the control effector
excitation frequencies, but reject most higher frequency noise. The frequency response of
the zero phase-shift digital smoother is shown in Figure 8.9 (phase is not shown because
it is zero across the frequency range). The linear magnitude at 1.756 Hz (the highest PTI
excitation frequency) is greater than 0.999 and −20 dB attenuation is achieved at 3.7 Hz.

Figure 8.9: Frequency response for the zero phase-shift digital low-pass Butterworth
smoother.

Sample measured and smoothed force and moment data in the time and frequency domain
are shown in Figures 8.10-8.11. The power spectra shown in Figure 8.11 were computed using
Welch’s method with the pwelch MATLAB® function available in the MathWorks® Signal
Processing Toolbox [90]. The power spectra of the original force and moment measurements
show evidence of structural modes and measurement noise above the PTI excitation frequen-
cies, which are avoided by only performing model identification using the frequency band
corresponding to the control effector excitation frequencies, indicated by the shaded areas on
the plot. The figures also show that the smoother suppresses the structural modes and mea-
surement noise above the PTI excitation frequencies while preserving the lower-frequency
information attributed to the dynamic excitation inputs.

Furthermore, the reaction torque effects in the rolling and yawing moment signals must be
accounted for because the propulsors are being dynamically excited [37]. The combination of
aero-propulsive moments and moments due to the angular momentum rate of the propulsors
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Figure 8.10: Sample balance force and moment measurement histories (v = w = 0 ft/s,
δw1 = δw2 = 12.5 deg).

Figure 8.11: Sample balance force and moment measurement power spectra (v = w = 0 ft/s,
δw1 = δw2 = 12.5 deg).

is measured by the balance. Therefore, to model the aero-propulsive moments, the angular
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momentum rate effects must be removed. This is accomplished using the expressions

L = LE + ḣx = LE +

np∑
k=1

ḣpk cos δwk
= LE +

np∑
k=1

IpkΩ̇pk cos δwk
(8.1)

N = NE + ḣz = NE +

np∑
k=1

ḣpk(− sin δwk
) = NE +

np∑
k=1

IpkΩ̇pk(− sin δwk
) (8.2)

where LE and NE are the uncorrected balance measurements. The angular momentum of the
kth propulsor about its axis of rotation is hpk = IpkΩpk , where Ipk is the moment of inertia
of the rotating portion of the propulsor and Ωpk = 2πnk is the rotation rate in radians
per second, with clockwise rotation when viewed from behind the rotating propulsor being
positive. For use in the above equations, the angular momentum rate for each propulsor
is rotated into the aircraft body axes through the corresponding wing angle δwk

, and then
summed to compute the components of net angular momentum rate for all np propulsors (ḣx,
ḣz). Note that if the vehicle orientation was dynamically changing during data collection,
propulsor gyroscopic effects would also need to be taken into account.

8.4 Aero-Propulsive Modeling Approach

Similar to Chapters 6-7, aero-propulsive modeling for this effort focuses on developing a
polynomial representation of the aero-propulsive forces and moments as a function of vehicle
state and control variables. However, a different model parameterization and identification
approach is needed to properly create a model from the wind-tunnel data collected using the
techniques described in Sections 8.2-8.3. Following the justification given in Chapter 6, the
modeled responses are the dimensional body-axis aero-propulsive forces X, Y, Z in lbf and
moments L,M,N in ft·lbf. Likewise, the explanatory variables are defined as the body-axis
velocity components v, w in ft/s; propeller speeds n1, n2, ..., n8 in revolutions per second;
wing angles δw1 , δw2 in radians; elevon deflections δe1 , δe2 , δe3 , δe4 in radians; flap deflections
δf1 , δf2 , δf3 , δf4 in radians; and ruddervator deflections δr1 , δr2 in radians. Note that it is
important to perform modeling with explanatory variables centered on a reference value to
maintain low correlation among candidate regressors in time or spatial domain analysis and
to avoid spectral leakage in frequency-domain analysis [100]. For this work, the centering
reference values were the explanatory variable mean values in the data used for modeling.

The following subsections provide an overview of the methods used for model struc-
ture development, parameter estimation, and model validation. The model identification
approach occurs in two stages. First, the continuous time series data at each static test
point, or set point, are analyzed using frequency-domain methods to determine the model
structure and parameter estimates associated with the dynamically changing explanatory
variables (n1, n2, ..., n8, δe1 , δe2 , δe3 , δe4 , δf1 , δf2 , δf3 , δf4 , δr1 , δr2) using the aero-propulsive
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force and moments (X, Y , Z, L, M , N) as the response variables. Then, in the second step,
the parameter estimates for the models identified from the dynamically changing explana-
tory variables become the responses to be modeled as a function of the static explanatory
variables (v, w, δw1 , δw2). Model structure determination and parameter estimation are per-
formed in a weighted least-squares formulation using the parameter uncertainty estimates
from the first model identification step. This framework ultimately yields a two-layer model
to predict the aero-propulsive force and moments as a function of the static and dynamic
explanatory variables, as will be explained further throughout the remainder of the chapter.

To the best knowledge of the author, this chapter (first published in Reference [30])
presents the first development and application of a compound modeling strategy leveraging
frequency-domain and weighted least-squares regression methods for model structure deter-
mination to combine the static and dynamic data information content for aggregate model
identification. Previous work presented in References [247, 248] implemented a similar two-
layered aerodynamic modeling approach using time-domain ordinary least-squares regression
methods. Reference [140] developed a global aerodynamic model using a tabulated represen-
tation of local parameters estimated using the same frequency-domain equation-error method
used in this work.

8.4.1 Step I: Frequency-Domain Modeling at Each Set Point

The first step in the modeling process involves analyzing the continuous time series
data collected during each individual set point. As mentioned in Section 8.3, the sampled
data contained measurement noise and structural dynamics outside of the range of the PTI
excitations. Fortunately, as discussed in Section 2.6.1.2, application of frequency-domain
estimation techniques allows model identification to be performed only in the frequency
band associated with the input excitations, which effectively smooths the modeling data [19,
70, 100]. Model identification was performed using the equation-error method formulated in
the frequency domain [19, 100] (see Section 2.6.1.2). For this study, the transform frequency
range was selected to match the excitation input design with a fundamental period of T =
180 s (see Section 8.2.2). The Fourier transform frequencies were set between fmin = 0.05 Hz
and fmax = 1.756 Hz with a frequency resolution of ∆f = 0.00556 Hz, resulting in M = 308
transform frequencies. A parameter sensitivity study indicated that using a finer frequency
resolution relative to the input design provided minimal additional parameter estimation
accuracy, and it is expected that using a frequency resolution coarser than the input design
will degrade parameter estimation accuracy.

MOF modeling [19, 102] applied in the frequency domain [100, 107, 108], described in
Sections 2.6.2.1 and 2.6.2.3, was used as the model structure identification technique for this
work. After the orthogonal regressors were ranked by their ability to reduce the MSFE, the
cutoff for model term addition was chosen to be the candidate model term where the PSE
was minimized. For this work, MOF modeling was applied separately to the time series data
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collected at each individual set point. Although the model structure determined for each
response at each set point was similar, there were some differences due to the experimental
nature of the study and having a rough estimate of σ2

max. The model structure for each
individual response used to identify the final model parameter estimates at each set point
was constrained to be the same. The model terms selected for the final model for each
response were the terms that the MOF algorithm included in the model for a majority of
the set points.

After determining the model structure for each response, the final parameter values were
estimated using ordinary least-squares regression with the complex regressor and response
data. Then, for each response, the bias parameter estimate was found in the time domain
and the bias parameter standard error was estimated accounting for colored residuals [19, 99].

8.4.2 Step II: Weighed Least-Squares Aggregate Modeling

The results from Step I of the model identification yield parameter estimates and uncer-
tainty estimates associated with the dynamic explanatory variables at each set point. Step II
of the model identification procedure developed for this work uses the Step I modeling results
to develop a response surface model for each parameter identified in Step I as a function
of the static explanatory variables held constant at each set point. Contrary to Step I, the
explanatory and response variable data for this step are real and have no meaningful time
dependence. Also, each response data point has an associated uncertainty estimate accu-
rately determined using the methods implemented in Step I. This suggests using a weighted
least-squares framework for identification of the model structure and parameter estimates.
The weights are stored in a diagonal matrix W with the diagonal elements being the inverse
of the variance associated with each response observation (i.e., the uncertainty estimates
obtained using the methods described in Section 8.4.1):

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wN

 =


1/s21 0 . . . 0
0 1/s22 . . . 0
...

...
. . .

...
0 0 . . . 1/s2N

 (8.3)

The MOF modeling algorithm [19, 102] (see Section 2.6.2.1), is again used for model
structure determination in Step II of model identification; however, certain modifications are
needed to accommodate the fact that the variance estimates associated with each response
measurement are known and not constant, which leads to a weighted least-squares estimation
problem. First, after generation of the candidate regressors, but before orthogonalization, the
candidate regressors and response data for each data point are multiplied by the square root
of the diagonal elements of the diagonal weight matrix W , or the inverse of the estimated
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standard error at each data point, as:

X ′′ =


√
w1 x11

√
w1 x12 . . .

√
w1 x1p√

w2 x21
√
w2 x22 . . .

√
w2 x2p

...
...

. . .
...√

wN xN1
√
wN xN2 . . .

√
wN xNp

 =


x11/s1 x12/s1 . . . x1p/s1
x21/s2 x22/s2 . . . x2p/s2

...
...

. . .
...

xN1/sN xN2/sN . . . xNp/sN

 (8.4)

z′′ =


√
w1 z1√
w2 z2
...√

wN zN

 =


z1/s1
z2/s2
...

zN/sN

 (8.5)

Recall that the response variable data in this step are the model parameter estimates from
the frequency-domain modeling performed at each set point in Step I. Additionally, the PSE
expression is reformulated as:

PSE =
1

N
(z − ŷ)T W (z − ŷ) + c

p

N
(8.6)

Here, the weight matrix W serves as a model-independent error variance estimate. Due
to the scaling by W , the response measurement error variance σ̂ is equal to one. Thus,
inclusion of the scale factor c = cσ̂2 = σ2

max is a similar concept to the scale factor used in
References [254, 255] when a model-independent measurement error variance estimate was
available from wind-tunnel testing. A value of c = 10 was found to be a good value to
develop models with minimum prediction error.

After determining the model structure for each response, weighted least-squares regres-
sion is used to compute the final parameter estimates in ordinary regressor space. Weighted
least-squares regression estimates a vector θ of p unknown model parameters for a given
model y = Xθ, where y is the length N model response vector and X is a N × p matrix
consisting of column vectors of regressors assumed to be measured without error [19, 20, 242].
The regression equation shown in Equation (2.54) still applies, except that the measurement
of the response variable z is corrupted by zero-mean, uncorrelated error ν with non-constant
variance. For weighted least-squares parameter estimation, the optimal estimate of the un-
known parameters θ is determined by minimizing the cost function

J(θ) =
1

2
(z −Xθ)T W (z −Xθ) (8.7)

where W is the diagonal matrix given in Equation (8.3) and each diagonal element is the
inverse of the variance associated with each response data point which, here, is a parameter
estimate from Step I. Consequently, response data with lower uncertainty have an increased
influence for computing the least-squares solution. It follows that the solution to compute
an optimal estimate of the unknown parameters is

θ̂ =
(
XTWX

)−1
XTWz (8.8)
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where θ̂ is a vector of p estimated parameters. The length p vector of standard errors s(θ̂)
corresponding to the estimated parameters θ̂ is given as:

s(θ̂) =

√
diag

[(
XTWX

)−1
]

(8.9)

An alternative way to compute the weighted least-squares solution is to multiply each normal
equation by the square root of the respective diagonal element in W (or the inverse of the
measurement standard error) and then use ordinary least-squares regression to compute the
parameter estimates. In other words, the same solution is obtained using X ′′ and z′′ from
Equations (8.4)-(8.5) in an ordinary least-squares regression estimator.

8.4.3 Final Model Validation

As discussed previously, model fit metrics and modeling residuals alone do not provide
information about the model predictive capability—analysis using validation data withheld
from modeling provides a more reliable estimate of model prediction accuracy. Final model
validation is performed by comparing the measured response for validation data to the re-
sponse predicted by the model for the same explanatory variable inputs. Further assessment
is performed by analyzing the prediction residuals between the measured and predicted re-
sponse, normalized residuals [Equation (6.1)], and NRMSE [Equation (2.86)]. For this study,
the goal was to develop models minimizing prediction error, where a value of approximately
5% or less for NRMSE was considered to be adequate based on analyst judgment and previous
aerodynamic modeling studies conducted in the experimental facility used for wind-tunnel
testing.

8.5 Results

This section presents sample results for the aero-propulsive models identified for the LA-8
aircraft. The results presented here only consider models identified at q̄ = 3.5 psf, which
corresponds to an airspeed of 54.3 ft/s at standard sea-level conditions. For eVTOL vehicle
simulations, models valid at multiple dynamic pressure (or airspeed) settings throughout the
flight envelope are needed [28, 46].

8.5.1 Step I Modeling Results

Following the aero-propulsive modeling approach described in Section 8.4, for Step I, a
model structure for each force and moment component was developed using the time se-
ries data collected at each set point as a function of the dynamically changing explanatory
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variables. The candidate regressors included in the model structure for a majority of the
individual set point models were included in a uniform, final aero-propulsive model structure
used to identify the local parameter values for each set point. In other words, only regressors
modeling a significant portion of the variation in the response variables throughout the ma-
jority of the static test variable space were included, in accordance with the model structure
determination strategy discussed in Section 8.4.1. The individual set point model structures
for each aero-propulsive force and moment component were determined to be:

X = Xδe1
δe1 +Xδe2

δe2 +Xδe3
δe3 +Xδe4

δe4 +Xδf1
δf1 +Xδf2

δf2 +Xδf3
δf3

+Xδf4
δf4 +Xn1n1 +Xn2n2 +Xn3n3 +Xn4n4 +Xn5n5 +Xn6n6 +Xn7n7

+Xn8n8 +Xo

(8.10)

Y = Yδf1δf1 + Yδf2δf2 + Yδf3δf3 + Yδf4δf4 + Yδr1δr1 + Yδr2δr2 + Yn1n1 + Yn2n2

+ Yn3n3 + Yn4n4 + Yn5n5 + Yn6n6 + Yn7n7 + Yn8n8 + Yo
(8.11)

Z = Zδe1
δe1 + Zδe2

δe2 + Zδe3
δe3 + Zδe4

δe4 + Zδf1
δf1 + Zδf2

δf2 + Zδf3
δf3

+ Zδf4
δf4 + Zδr1

δr1 + Zδr2
δr2 + Zn1n1 + Zn2n2 + Zn3n3 + Zn4n4 + Zn5n5

+ Zn6n6 + Zn7n7 + Zn8n8 + Zo

(8.12)

L = Lδe1
δe1 + Lδe2

δe2 + Lδe3
δe3 + Lδe4

δe4 + Lδf1
δf1 + Lδf2

δf2 + Lδf3
δf3

+ Lδf4
δf4 + Ln1n1 + Ln2n2 + Ln3n3 + Ln4n4 + Ln5n5 + Ln6n6 + Ln7n7

+ Ln8n8 + Lo

(8.13)

M =Mδe1
δe1 +Mδe2

δe2 +Mδe3
δe3 +Mδe4

δe4 +Mδf1
δf1 +Mδf2

δf2 +Mδf3
δf3

+Mδf4
δf4 +Mδr1

δr1 +Mδr2
δr2 +Mn1n1 +Mn2n2 +Mn3n3 +Mn4n4

+Mn5n5 +Mn6n6 +Mn7n7 +Mn8n8 +Mo

(8.14)

N = Nδe1
δe1 +Nδe2

δe2 +Nδe3
δe3 +Nδe4

δe4 +Nδf1
δf1 +Nδf2

δf2 +Nδf3
δf3

+Nδf4
δf4 +Nδr1

δr1 +Nδr2
δr2 +Nn1n1 +Nn2n2 +Nn3n3 +Nn4n4 +Nn5n5

+Nn6n6 +Nn7n7 +Nn8n8 +No

(8.15)

Although pure quadratic and two-factor interaction candidate regressors were considered for
Step I model structure determination, the final model describing the variation of the force and
moment components at each test point is linear in the dynamic explanatory variables. This
makes sense because the variables were excited over a relatively small range of values. The
method, however, is also capable of modeling nonlinear effects, such as propulsor-control
surface interactions, which can be considered for future studies with a greater excitation
range. As was found in Chapter 6 (Reference [28]), tilt-wing vehicles exhibit significant
nonlinearity with body-axis velocity and wing angle variation, which is captured in the
Step II model identification strategy.

Figure 8.12 shows the Z parameter estimates and error bars of ±2s(θ̂) computed using
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Figure 8.12: Variation of Z parameter estimates with data collection time used for modeling
at a sample set point (v = w = 0 ft/s, δw1 = δw2 = 12.5 deg).

the parameter estimation techniques described in Section 8.4.1 against the amount of data
collection time used for modeling at a sample set point. The parameters appear to converge
to reasonably consistent values by the time 40 seconds has elapsed, which was also deter-
mined to be a satisfactory data collection time in a simulated flight-test system identification
study for the LA-8 aircraft [32] that will be described in Chapter 9. A similar parameter
convergence rate was observed for the parameters corresponding to the other aero-propulsive
forces and moments, and at different set points. In view of the parameter convergence anal-
ysis shown in Figure 8.12, the findings in Reference [32],1 and with the knowledge that 40
seconds is the amount of time needed to complete two full periods of the lowest frequency
sinusoidal component of the multisine signals (fmin = 0.05 Hz), 40 seconds was selected as
the amount of data collection time to use for modeling at each set point. Although the actual
data collection time at each set point was greater than 40 seconds, providing additional in-
formation for modeling, a goal of this study was to inform future wind-tunnel testing efforts
with practical, efficient data collection strategies. Consequently, modeling was performed
with the recommended data collection time of 40 seconds based on the present reasoning,
as opposed to using all available data. Note that the parameter estimates shown in Fig-

1Note that the work presented in Reference [32] (Chapter 9) was chronologically completed before the
work described in this chapter (Reference [30]). This is why Reference [32] is cited as justification for selection
of the data collection time before presentation of the work in this dissertation.



8.5. Results 185

ure 8.12 contain asymmetries that are not apparent from the LA-8 vehicle configuration,
such as differences in the reflected flap parameter estimates. This is a result of manufactur-
ing differences between the clockwise and counterclockwise propellers, which resulted in a
significant difference in thrust production between the propeller variants [36]. Because the
propulsion-only and propulsion-airframe interaction effects are significant, this propulsion
asymmetry is manifested in many of the model terms (see Chapter 6 and Reference [28]).

Figure 8.13a shows the model fit in the frequency domain using a modeling time of 40
seconds at a sample set point. The corresponding control surface deflection and propulsor
rotational speed signals are shown in Figure 8.14. A good model fit is observed for each
response. The R2 metric shown on the subplot for each response is approximately 95% or
higher, indicating that most of the variation of the response variable about its mean value
is characterized by the model. Figure 8.13b shows the corresponding time-domain model
fit compared to the smoothed, measured aero-propulsive forces and moments. The modeled
responses are close to the measured responses, indicating that the model is able to describe
a large amount of the variation in each response. The modeling performance at other set
points was similar.

(a) Model fit in the frequency domain (b) Model fit in the time domain

Figure 8.13: Comparison of response data and model fit at a sample set point (v = w = 0
ft/s, δw1 = δw2 = 12.5 deg).
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Figure 8.14: Control effector signals at a sample set point (v = w = 0 ft/s, δw1 = δw2 =
12.5 deg).

8.5.2 Step II Modeling Results

After identification of the model parameters associated with the dynamic explanatory
variables at each set point, models were developed to characterize the variation in those model
parameters across the static variable space. As discussed in Section 8.4.2, the parameter
estimates associated with the dynamic explanatory variables were treated as the response
variables for Step II of the modeling approach. In Step II, the static test variables associated
with each set point (v, w, δw1 , δw2) were the explanatory variables. The models for each
Step II response variable were developed using weighted least-squares regression techniques
because uncertainty estimates for each response variable data point were available from the
Step I parameter estimation results.

As an example of a polynomial model structure developed in this modeling stage, the
final model structure identified for Zδf1

using MOF modeling in a weighted least-squares
formulation was:

Zδf1
= Zδf1 (w)

w + Zδf1 (δw1 )
δw1 + Zδf1 (wδw1 )

wδw1 + Zδf1 (δ2w1
)
δ2w1

+ Zδf1 (o)
(8.16)

The bias parameters (e.g., Zo) had the largest number of model terms because they charac-
terize the direct effects of the static explanatory variables on the aero-propulsive forces and
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moments. For example, a model structure identified for the Zo model was:

Zo = Zo(w)
w + Zo(v)v + Zo(δw1 )

δw1 + Zo(δw2 )
δw2 + Zo(w2)

w2 + Zo(wv)
wv + Zo(v2)

v2

+ Zo(wδw1 )
wδw1 + Zo

(δ2w1
)
δ2w1

+ Zo(wδw2 )
wδw2 + Zo(δw1δw2 )

δw1δw2 + Zo
(δ2w2

)
δ2w2

+ Zo(o) (8.17)

For use of the final model equations to predict the aero-propulsive forces and moments as
a function of all static and dynamic explanatory variables, each of the models identified in
Step II are used to compute the values of the parameters in Equations (8.10)-(8.15) as a
function of the centered static explanatory variables (v, w, δw1 , δw2). Then, the total aero-
propulsive forces and moments are computed using the Equations (8.10)-(8.15) polynomial
expressions as a function of the centered dynamic explanatory variables (n1, n2, ..., n8, δe1 ,
δe2 , δe3 , δe4 , δf1 , δf2 , δf3 , δf4 , δr1 , δr2).

Several models were developed to explore the utility of using a different number of model-
ing blocks and different model complexities. The same general modeling approach was used
for each model, with the only difference being the data volume associated with the sequen-
tial blocks of static test points described in Section 8.2.1. Figure 8.15 shows the modeling
NRMSE (NRMSEm), the validation NRMSE (NRMSEv), and the cumulative execution time
for each block (including the data collection time from all preceding blocks) with a different
model complexity determined based on the analysis presented in Section 8.2.1 and with the
knowledge that at least quadratic model, or up to pure quadratic and two-factor interaction
model terms, are needed to model the LA-8 aircraft over the static explanatory variable range
tested for this study (see Chapter 6 and Reference [28]). Consequently, up to a quadratic
model is used for Block 1, even though the model evaluation metrics do not meet the FDS
criteria explained in Section 8.2.1. Blocks 2-4 are assigned the highest model complexity
meeting the FDS criteria for this comparison (see Table 8.1 and the accompanying discus-
sion). The test execution time shown in Figure 8.15b indicates the amount of time needed
to complete the data collection with a sample time of 40 seconds per set point, including the

(a) Modeling and validation NRMSE (b) Cumulative test time

Figure 8.15: Comparison of NRMSE metrics and test time for each modeling block with
different model complexity.
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amount of time to conduct a static tare run. Block 1 generally has the highest validation
NRMSE value for each response; there is also a significant increase in the values of the vali-
dation NRMSE compared to the modeling NRMSE for the Block 1 model, suggesting that
the model is deficient due to the sparsity of data points. For the X, Y , and Z responses, the
Block 4 model has the lowest prediction error. For L andM , the Block 2 and Block 3 models,
respectively, have the lowest prediction error. The prediction error for N is similar for each
number of modeling blocks. For the Block 2 to 4 models, the respective modeling NRMSE
and validation NRMSE for each response have similar values, which provides confidence that
model development was successful.

Balancing prediction performance, test execution time, and model parsimony, using data
up to Block 2 (a cubic design order) with a quadratic model complexity was selected as the
final modeling strategy. Given these results, it is recommended to use a cubic I-optimal
experiment design with up to a quadratic polynomial structure for modeling similar aircraft
over a similar range of test variables. For the Block 2 quadratic model, the prediction error,
quantified by the NRMSEv metric, is less than 6% for every response, and X, Y , Z, M , and
N have NRMSEv values of approximately 3% or less, indicating that high-quality models
have been developed.

Figure 8.16a shows the model fit and model prediction compared to the smoothed, mea-
sured aero-propulsive force and moment histories. Figure 8.16b shows the same plot zoomed
in on a single validation set point, which better conveys the dynamic prediction capability.
The model fits and model predictions are close to the measured responses, indicating that
the model is able to describe a large amount of the variation in each response. Figure 8.17
shows a history of normalized modeling residuals and normalized validation residuals. The
modeling and prediction residuals have similar magnitudes, supporting the claim that good
predictive models have been identified.

8.6 Discussion

The preceding results show that good models have been identified for the LA-8 eVTOL
aircraft using the hybrid testing and compound modeling approach developed in this chap-
ter. Furthermore, the final aero-propulsive model at q̄ = 3.5 psf was developed from a total
of 48 minutes of test execution time. If the test technique and modeling approach were
to be applied to model the LA-8 transition envelope by executing testing and developing
models at several dynamic pressure settings (see Chapter 6 and References [28, 46]), then
a global transition model could be developed in a single day of wind-tunnel testing. This
approach is significantly faster than previous testing conducted to characterize the LA-8
aircraft using purely static DOE/RSM testing, which was already vastly more efficient com-
pared to using OFAT testing (see Section 7.1). The amount of test time needed for modeling
data collection and tare runs for a purely static DOE/RSM wind-tunnel experiment to de-
velop aero-propulsive models at q̄ = 3.5 psf described in Chapter 6 (Reference [28]) took



8.6. Discussion 189

(a) Modeling and validation data (two blocks
used for model identification)

(b) Sample validation set point

Figure 8.16: Model fit and model prediction compared to smoothed, measured response data.

approximately 267 minutes (4.45 hours). The hybrid DOE/RSM and PTI wind-tunnel test
technique described in this chapter is 5.6 times more efficient in terms of test execution time
for the data used to develop the model. Note that the models developed in Chapter 6 (Refer-
ence [28]) included additional quadratic and interaction model terms for the control effectors;
however, that is largely because of the reduced range of excitation for those variables in this
study. The control effector amplitude used for the results presented in this chapter could be
increased without requiring additional test time.

In addition to reduced test time, the models developed using the approach presented
in this chapter allow characterization of additional important aero-propulsive phenomena
for tilt-wing aircraft. The tilting wings add significant modeling challenges not seen in
conventional aircraft designs because the propellers, wings, and wing-fixed control surfaces
all change orientation with respect to the modeling frame of reference in the body axes.
Furthermore, there will also be interactions with the magnitude and orientation of oncoming
airflow, suggesting that up to four-factor interactions may be present among the explanatory
variables. As was mentioned in Section 6.5, one way of handling this complexity is to develop
a different aero-propulsive model at each combination of wing angle settings, treating each
different combination of wing angle orientation as a vehicle configuration change. This
method would be ideal when a transition wing angle schedule has been defined; however,
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Figure 8.17: Normalized modeling and prediction residuals against time.

this is impractical when the identified aero-propulsive model is used to develop the flight
controller and informs the transition wing angle schedule. In Chapter 6 (Reference [28]),
the propeller, control surface, wing, and airflow interactions were modeled using only two-
factor interaction effects and were limited by the purely static DOE/RSM testing strategy.
Alternatively, the experiment design and compound modeling strategy developed in this
chapter supports modeling additional interactions among the explanatory variables. This is
possible because of the way the model parameters associated with the dynamic test variables
are modeled as a function of the static test variables.

As an example of how the compound modeling approach supports characterization of ad-
ditional complexity, consider Equation (8.16), where Zδf1

is modeled as a function of w and

δw1 including variation with a wδw1 interaction and a δ2w1
quadratic term. Note that these are

effectively cubic model terms because of the multiplication of the Zδf1
parameter by δf1 . For

a static DOE/RSM experiment supporting up to a quadratic model, the only model terms
involving w and δw1 that could model an interaction with δf1 are δf1w and δf1δw1 . Suppose
also that a larger range of the dynamic test variables were tested and the interaction term
n2δf1 was included in the Step I model. Then, by the same process, the n2δf1 interaction
could be modeled as a function of w and δw1 including nonlinear model terms. This addi-
tional parameterization flexibility enabled by the testing and modeling approach described
herein provides significant benefits to modeling complex eVTOL aircraft. Furthermore, the
range of each static explanatory variable, determined as described in Reference [46], could
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be increased to model a larger range of aero-propulsive phenomena. This might require
additional design complexity beyond the Block 2 cubic experiment design order, but this
increase in static experiment design complexity could be accommodated with only modest
increases in the amount of test time (cf. Figure 8.15b) while allowing characterization of
a broader range of flight conditions and aero-propulsive complexity using the same model
identification framework.

When using the modeling approach developed in this chapter, a few limitations and draw-
backs should be considered. First, the models are based on a quasi-steady assumption, where
aero-propulsive effects at the current point in time are only dependent on the current states
and controls. Second, the data were collected in the wind tunnel with zero vehicle angular
velocity, and consequently, no damping terms could be identified. Identification of models de-
pendent on vehicle angular rates (and possibly the history of the explanatory variables) will
be needed to improve model predictive capability in dynamic maneuvering. Also, integrat-
ing the PTI excitation technique into an existing wind-tunnel test facility typically requires
significant time and engineering effort. After the PTI excitation capability is integrated,
however, the test efficiency gains are significant. Finally, the compound model identification
approach is more complex than ordinary least-squares regression analysis, which is generally
used for model development from conventional static DOE/RSM experiments and is readily
available in commercial statistical software packages. However, the model identification ap-
proach described in this chapter is still tractable to implement using algorithms available in
SIDPAC [19, 50] to develop models leveraging the much more efficient hybrid test technique.
Ultimately, the ability to develop a higher complexity aero-propulsive model and significantly
reduce the amount of required test time can easily justify the steps required to implement
the new approach.

Acknowledgment of Collaborative Research

The research presented in this chapter was primarily conducted by the author, but in-
cluded important collaborative contributions with other individuals. Eugene Morelli pro-
vided guidance on the dynamic experiment design for the LA-8 aircraft, helped to formulate
the two-layered model identification approach, and offered many helpful technical sugges-
tions on the paper documenting the work in this chapter. Ronald Busan, Wes O’Neal, and
David Hatke provided wind-tunnel test support and integrated a new capability into the
NASA Langley 12-Foot Low-Speed Tunnel allowing injection of PTI excitations. Additional
wind-tunnel testing and LA-8 vehicle support was provided by Gregory Howland, David
North, and Steven Geuther. The author gratefully acknowledges and appreciates these con-
tributions which made the research described in this chapter possible.



Chapter 9

Flight-Test System Identification
Approach for eVTOL Aircraft

This chapter presents a flight-test system identification method for eVTOL aircraft. Em-
ploying the techniques discussed in previous chapters, the approach merges fixed-wing and
rotary-wing system identification approaches with new strategies to develop a modeling
method for eVTOL vehicles using flight-test data. The eVTOL aircraft system identification
approach is demonstrated through application to the NASA LA-8 eVTOL aircraft using a
high-fidelity flight dynamics simulation, but can be applied to future aircraft flight-test sys-
tem identification efforts. Orthogonal phase-optimized multisine inputs are applied to each
control surface and propulsor at numerous trimmed flight conditions throughout the flight
envelope to collect informative flight data enabling aero-propulsive model identification at
each condition. The local model parameters are then blended to create a global model across
the nominal flight envelope. The identified models are shown to provide a good fit to mod-
eling data with good prediction capability. The methodology is developed with a discussion
of unique eVTOL vehicle aerodynamic characteristics and practical strategies intended to
inform future flight-based system identification efforts for eVTOL aircraft. This work has
been published as a conference paper [31] and a journal article [32].

The chapter is organized as follows: The motivation for this research is presented in Sec-
tion 9.1. Section 9.2 provides an overview of the eVTOL aircraft flight dynamics simulation
used to perform simulated flight testing. Section 9.3 describes the proposed eVTOL aircraft
aero-propulsive modeling framework, followed by a description of the flight-test experiment
design techniques needed to collect data for model identification in Section 9.4. Section 9.5
provides sample local and global modeling results.

9.1 Research Motivation

Previous research, including Chapters 6-8 in this dissertation, has investigated methods
for efficient, empirical eVTOL aircraft aero-propulsive modeling across their wide flight en-
velopes using wind-tunnel testing [28–30, 46, 47, 137, 219]. Other related work has applied
similar methods to CFD experiments [39, 48]. Based on this work, References [28, 30, 39]
justified the use of eVTOL-aircraft-specific modeling procedures.

192
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CFD aerodynamic characterization studies are advantageous because they allow analysis
in early design stages, where the aircraft configuration is not yet finalized and vehicle hard-
ware has not yet been developed. Wind-tunnel studies require a test asset, but allow efficient,
high-fidelity vehicle characterization in a low-risk test environment. The disadvantages of
CFD include necessary simplifying assumptions to make calculations computationally ten-
able and flowfield models which may not adequately reflect real flight vehicle aerodynamics,
particularly for modeling complex flowfields of eVTOL aircraft. One disadvantage of wind-
tunnel testing is the presence of sting and wall effects. Also, the general requirement of
using subscale models for wind-tunnel testing requires using similitude relationships to scale
the results, which are challenging for rotorcraft and typically limit vehicle wind-tunnel test-
ing [144, 228].

A goal of an aircraft aerodynamic model is to accurately describe the aerodynamics in
flight, which drive aircraft flight dynamic behavior. Thus, aerodynamic characterization
using flight data offers the closest prediction to operational reality. This work builds on the
previous chapters in this dissertation to propose a method for flight-based aero-propulsive
model development. As discussed in Section 6.2, fixed-wing aircraft and rotorcraft generally
follow different modeling conventions, but their system identification techniques are well-
developed for standard problems and have been applied successfully to numerous aircraft
configurations [19–21, 223–226].

Although eVTOL aircraft share aerodynamic characteristics overlapping with both fixed-
wing and rotary-wing aircraft, system identification approaches used for either type of vehicle
must be applied differently for modeling eVTOL vehicles. As highlighted previously, eVTOL
aircraft aerodynamic modeling is also challenging due to the presence of many control sur-
faces and propulsors, propulsion-airframe interactions, high incidence angle propulsor aero-
dynamics, vehicle instability, rapidly changing aerodynamics through transition, and large
flight envelopes with complex character that need to be described by a global aero-propulsive
model. Recent system identification research for aircraft configurations with related chal-
lenges is briefly highlighted to provide context for the present work. Reference [84] describes
a procedure for efficient estimation of the effectiveness of 16 different control surfaces on
a dynamically-scaled model of a generic commercial transport aircraft using the equation-
error method in the frequency domain. Orthogonal phase-optimized multisine signals were
applied to each control surface allowing individual control derivatives to be identified si-
multaneously using the data from a single flight maneuver. A similar strategy was used for
system identification of the X-56 aeroelastic technology demonstrator aircraft [252, 256, 257],
which has 10 control surfaces on the trailing edge of the wing and two engines. A collection
of different multisine signals was designed to excite the control effectors independently and
in pairs for efficient model identification using frequency domain modeling methods [253].
Reference [10] describes a system identification effort for an aircraft propelled by eight dis-
tributed electric ducted fans (EDFs). Multisine signals were applied to control surfaces
and throttle doublets were applied to individual EDFs to identify linear longitudinal and
lateral-directional state-space models using a frequency-domain equation-error method. Nu-
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merous recent studies have developed models for distributed propulsion multirotor vehicles
using both time-domain and frequency-domain system identification techniques and various
excitation input types exercised in flight testing [75, 128–136]. System identification for a
quadrotor configuration intended for a UAM mission using simulated flight data was de-
scribed in Reference [258]. Frequency sweeps were applied to each pilot control input to
generate data for frequency response and state-space model identification. References [7, 9]
injected orthogonal phase-optimized multisine signals to the motor commands on multirotor
configurations to identify linear dynamic models. Due to vehicle instabilities, system identi-
fication for the X-56 aircraft and multirotor configurations highlighted here was performed
with active feedback control.

This work proposes an aircraft system identification process tailored to eVTOL aircraft
based on their unique aero-propulsive characteristics and extends global modeling techniques
used in previous fixed-wing aircraft research [140]. System identification maneuvers are
executed sequentially starting from trimmed flight conditions throughout transition and
modeling is performed using the equation-error method in the frequency domain at each
reference condition in post-flight analysis. The approach is formulated using simulated flight
data, but can be applied to future flight-test system identification efforts for eVTOL aircraft.

9.2 LA-8 Flight Dynamics Simulation

The system identification approach is exercised for the LA-8 tandem tilt-wing eVTOL
vehicle in a MATLAB®/Simulink® generalized UAM-class vehicle simulation developed at
NASA Langley Research Center [259]. The high-fidelity simulation environment contains
both common, aircraft-agnostic simulation components and aircraft-specific model compo-
nents, which provides a flexible framework for algorithm development for multiple eVTOL
vehicle configurations. The vehicle equations of motion, numerical integrators, and the
atmospheric model are common to all vehicles. Each vehicle model, which includes the aero-
propulsive model, actuator models, inertial properties, and control laws, is implemented in
a modular framework to enable simultaneous assessment of multiple vehicles.

Nonlinear vehicle simulations are performed using the kinematic and dynamic aircraft
equations of motion developed under a standard set of assumptions [19, 68, 72]. The aircraft
is modeled as a six degree-of-freedom rigid body, treating the gyroscopic effects from the
rotating portions of the propulsion system as applied external moments. Aircraft moments
of inertia and center of gravity are varied through vehicle conversion, as applicable, depending
on the specific vehicle. Applied forces (X, Y, Z) and moments (L,M,N) are computed using
the vehicle aero-propulsive model, which includes the collective contributions of propulsion
and airframe effects as well as their interactions. The translational dynamics equations
are the same as those shown previously in Equations (2.7)-(2.9). The rotational dynamics
equations, assuming that the vehicle is symmetric about the body x–z plane (Ixy = Iyz = 0)
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and augmented to include propulsor gyroscopic effects, are:

Ixṗ− Ixz ṙ = L+ (Iy − Iz)qr + Ixzpq − (ḣx + qhz − rhy) (9.1)

Iy q̇ =M + (Iz − Ix)pr + Ixz(r
2 − p2)− (ḣy + rhx − phz) (9.2)

Iz ṙ − Ixzṗ = N + (Ix − Iy)pq − Ixzqr − (ḣz + phy − qhx) (9.3)

The angular momentum of a single propulsor about its axis of rotation is hp = IpΩ, where
Ip is the moment of inertia of the rotating portion of the propulsor and Ω = 2πn is the
rotation rate in radians per second, with clockwise rotation when viewed from behind the
rotating propulsor being positive. For use in the above equations, the angular momentum
for each propulsor is rotated into the aircraft body axes and then summed to compute the
net angular momentum for all propulsors (hx, hy, hz) [37]. Computing the net rate of change
of angular momentum (ḣx, ḣy, ḣz) follows the same process. If the propulsors are operated
symmetrically, their angular momentum components cancel; however, asymmetric propul-
sor operation necessary for system identification causes the propulsion gyroscopic effects to
become significant.

The aircraft equations of motion are also augmented with additional states to repre-
sent the dynamics associated with control surface actuation and propulsor speed changes.
Lag associated with the propulsors is particularly important to consider for controller de-
sign because propulsion dynamics can be significantly slower than control surface dynamics,
particularly for eVTOL vehicles with fixed-pitch propellers. For this work, propulsor and
control surface dynamics were modeled using first-order and second-order dynamics, respec-
tively, representing the lag between a commanded value and an actual value. Expressed as
a differential equation, these respectively take the form,

τ δ̇ + δ = δcmd (9.4)

δ̈ + 2ζωnδ̇ + ω2
nδ = ω2

nδcmd (9.5)

where δ is the actual value of a propulsor or control surface variable, δcmd is the corresponding
commanded value, τ is the first-order time constant, ωn is the natural frequency, and ζ is
the damping ratio.

eVTOL aircraft are generally unstable in a significant portion of their flight envelope.
Consequently, an active flight control system is required to fly the aircraft or perform simu-
lation studies. Flight control system design for complex eVTOL aircraft is a major challenge
for many reasons, including: inherent vehicle instability, strong aerodynamic nonlinearities,
interaction effects, and ambiguous control allocation strategies due to the availability of many
redundant control effectors. The baseline control framework implemented in the simulation,
described in References [198, 260], is referred to as the robust uniform control approach
for VTOL aircraft. The approach integrates a robust servomechanism linear quadratic reg-
ulator (RSLQR) control framework with control allocation techniques and airspeed-based
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gain scheduling to develop a full-envelope flight controller. The controller has been success-
fully applied to multiple eVTOL aircraft configuration types across their operational flight
envelopes [198, 260].

Although atmospheric turbulence models are included within the simulation architecture,
for this study, flight simulations were performed in still air, for simplicity. The simulated
flight data were corrupted with white, Gaussian measurement noise. The sensor noise levels
used for this work emulate values estimated from flight testing of a subscale jet transport
aircraft that were implemented in a simulation-based aircraft system identification study [87].
Accurate flight-test noise levels for eVTOL aircraft were not known at the time of this study.
It is recognized that the noise levels for an actual eVTOL aircraft flight test may be different
than the values used in this chapter. Sensor bias and scale factor errors generally seen in
flight data were not considered because these systematic instrumentation errors would be
removed using kinematic consistency correction techniques prior to model identification [19].

The LA-8 aero-propulsive model development process using wind-tunnel testing was de-
scribed in Chapter 6 and Reference [28]. The aero-propulsive model consists of a set of
nonlinear response surface equations describing the aero-propulsive forces and moments ex-
erted on the aircraft at several discrete reference airspeed conditions throughout the vehicle
flight envelope with a range of wing angle settings corresponding to the trim envelope at
each airspeed condition. These point model responses are then blended together to enable
continuous simulation from hover through forward flight. Recall that two approaches were
used to identify the LA-8 aero-propulsive response surface equations. The first approach
used data from a powered-airframe wind-tunnel experiment executed at multiple freestream
velocity settings to develop the model (see Section 6.5.1). A second approach sought to
produce a higher fidelity model utilizing isolated propulsion data in concert with powered-
airframe data to improve characterization of aero-propulsive interaction effects and enhance
prediction of propulsion forces and moments (see Section 6.5.2). The latter, more complex
model was used to perform flight simulations for this study.

9.3 eVTOL Aircraft Modeling Approach Using Flight

Data

As explained in Sections 6.2 and 6.5, aero-propulsive modeling for eVTOL aircraft re-
quires a different approach compared to conventional fixed-wing and rotary-wing aircraft
modeling approaches. The modeling approach defined here applies relevant aspects from
both fixed-wing and rotary-wing system identification and incorporates strategies specific
to eVTOL aircraft. The proposed eVTOL aircraft system identification method focuses
on developing a model of the aero-propulsive forces and moments exerted on the aircraft
as a function of vehicle state and control variables. The approach is informed by vehi-
cle attributes, as well as experience gained from the work presented in Chapters 6 and 8
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(References [28, 30]). Note that the approach in this chapter applies when most or all of
the distributed propulsors are operational on the aircraft. Certain vehicles, such as the
lift+cruise configuration type [12], disable most propulsion elements when operating in a
high-speed forward flight condition. For that aircraft type and flight regime, for example, a
fixed-wing system identification approach would be applicable, as was used in Reference [39].

Following the rotorcraft modeling convention, the aero-propulsive models are developed
and estimated in a dimensional form. The response variables are defined as the dimensional
body-axis applied aero-propulsive forces and moments X, Y , Z, L, M , and N . A generally
nonlinear multivariate polynomial modeling approach adopted from fixed-wing applications
has been used in previous studies to characterize the nonlinear aero-propulsive effects [28,
39]. Significant airframe-propulsion interactions and rapid aerodynamic variation with flight
condition for eVTOL vehicles suggests that a linear aero-propulsive model will have a small
region of local validity. For many applications, identification of a nonlinear aero-propulsive
model will be required; however, for this chapter, a linear aero-propulsive model structure
used with the nonlinear aircraft equations of motion was found to produce adequate modeling
results for small perturbations from a reference flight condition. For this reason, a linear aero-
propulsive model was used as the local model structure and linear model parameters were
identified at numerous flight conditions across the LA-8 flight envelope to develop a nominal
model for the purpose of illustrating system identification applied to eVTOL aircraft. This
approach is similar to previous work that identified and combined linear models to produce
a global model [131, 140]. The method used for this chapter can be readily extended to
using nonlinear aero-propulsive models in future studies which, for example, might require
two-factor interaction or quadratic model terms.

Although the dimensional forces and moments are defined as the responses to be mod-
eled, these quantities cannot be measured directly in flight and must be inferred from other
measurements. The dimensional applied forces are calculated as the vehicle mass multiplied
by the body-axis translational accelerometer measurements corrected to the aircraft center
of gravity:

X = max, Y = may, Z = maz (9.6)

The applied moments are calculated using the rotational dynamic equations accounting for
propulsor gyroscopic effects [cf. Equations (9.1)-(9.3)] as:

L = Ixṗ− Ixz ṙ + (Iz − Iy)qr − Ixzpq + ḣx + qhz − rhy (9.7)

M = Iy q̇ + (Ix − Iz)pr + Ixz(p
2 − r2) + ḣy + rhx − phz (9.8)

N = Iz ṙ − Ixzṗ+ (Iy − Ix)pq + Ixzqr + ḣz + phy − qhx (9.9)

It is important to include propulsor gyroscopic effects in these equations because the propul-
sors will be dynamically commanded and asymmetrically operated during maneuvers used
for system identification. Note that the moments of inertia and center of gravity will change
through transition for eVTOL vehicles that rotate components for conversion (e.g., the tilting
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wings on the LA-8), and must be bookkept for model identification. Because the nonlinear
translational and rotational dynamics equations are used to model the aircraft dynamics,
the resulting models can be used to predict vehicle motion at different loading conditions.

The vehicle states defined as explanatory variables for modeling include the body-axis
translational velocity components u, v, w in ft/s and angular velocity components p, q, r in
rad/s, following the convention used in rotorcraft system identification. The longitudinal
force and moment components (X, Z, M) use only the longitudinal states (u,w, q) as ex-
planatory variables, and the lateral-directional force and moment components (Y , L, N)
use only the lateral-directional states (v, p, r) as explanatory variables. The vehicle control
surface deflection angles in radians are also defined as explanatory variables, as is commonly
done for fixed-wing aircraft system identification. To complete the definition of modeling
variables, the rotational speeds of each propulsor in revolutions/s are defined as explanatory
variables, which applies for modeling vehicles with fixed-pitch propellers. If the vehicle had
variable-pitch propellers, the propulsion explanatory variables for each propulsor would be
both rotational speed and blade pitch angle. This formulation deviates from fixed-wing air-
craft modeling where propulsion aerodynamics are generally not characterized in flight, as
well as rotary-wing aircraft modeling which generally includes more rotor states.

For this work, the forward airspeed component u is treated as a flight condition variable,
where local models are identified at a set of reference airspeed conditions uo. Density altitude
h, or atmospheric density ρ, could be included as another flight condition variable, but the
approach taken here is to develop modeling techniques at a single altitude. Additionally,
wing tilt angles for the LA-8 vehicle are treated as flight condition variables scheduled with
airspeed, as opposed to being defined as explanatory variables, which assumes an existing
wing angle schedule. Including wing tilt angles as explanatory variables would introduce
additional complications because the propellers, wings, and wing-fixed control surfaces all
change orientation with respect to the body-axes. Also, the assumption that the aircraft
is operating as a single rigid body would be violated. The aircraft moments of inertia are
computed based on wing angle and are held constant at each reference flight condition.

The flight condition variables, explanatory variables, and response variables defined for
the LA-8 aircraft used in this work are summarized in Table 9.1. As mentioned above, a
fixed linear aero-propulsive model structure was used for developing a local model for each
reference flight condition and several linear models were developed throughout the nominal
flight envelope. For example, the local model structure for Z is:

Z = Zuu+ Zww + Zqq + Zδe1
δe1 + Zδe2

δe2 + Zδe3
δe3 + Zδe4

δe4

+ Zδf1
δf1 + Zδf2

δf2 + Zδf3
δf3 + Zδf4

δf4 + Zδr1
δr1 + Zδr2

δr2

+ Zn1n1 + Zn2n2 + Zn3n3 + Zn4n4 + Zn5n5 + Zn6n6 + Zn7n7 + Zn8n8 + Zo

(9.10)

Here, Zo contains the aerodynamic bias as well as contributions related to the regressor
reference values [19]. The model structures for X and M include the same explanatory
variables. The model structures for Y , L, and N are similar, with the only difference being
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that v, p, and r are included as explanatory variables, as opposed to u, w, and q. The
next section discusses an experiment design methodology which ensures the effects of all the
explanatory variables on the responses can be adequately characterized.

Table 9.1: Summary of modeling variables for the LA-8 aircraft

Variable Type Variable Symbol
flight condition variables uo, δw1 , δw2 , h
explanatory variables u, v, w, p, q, r, δe1 , δe2 , δe3 , δe4 , δf1 , δf2 , δf3 , δf4 , δr1 , δr2 ,

n1, n2, n3, n4, n5, n6, n7, n8

response variables X, Y, Z, L,M,N

9.4 Flight Experiment Design

A flight experiment must be properly executed to generate informative data from which
a useful model can be identified using the approach outlined in the previous section. This
includes the flight-test instrumentation and excitation input design strategies, discussed next.

9.4.1 Flight-Test Instrumentation

The instrumentation requirements for eVTOL aircraft system identification largely follow
what is used for research-quality fixed-wing and rotary-wing aircraft testing [19–21]. The
desired measurements for LA-8 include body-axis translational acceleration, body-axis an-
gular rates, Euler orientation angles, air-data parameters, control surface deflection angles,
wing tilt angles, and propulsor rotational speeds. The inertial navigation system should
have the built-in capability to provide reconstructed body-axis velocity components through
use of a state estimator, such as an extended Kalman filter. This is important for system
identification at low airspeed where air data will likely have low signal-to-noise ratios. A
sample eVTOL aircraft system identification measurement list for the LA-8 aircraft is sum-
marized in Table 9.2. Note that different eVTOL aircraft configurations might require other
measurements, such as propulsor blade pitch angle and propulsor tilt angle.

Additional aircraft configuration data are required prior to flight testing. The vehicle
mass and moments of inertia should be accurately measured or estimated for use with the
aircraft dynamics equations. The moment of inertia of the rotating portion of each propulsor
is also needed to properly account for gyroscopic effects. A preliminary estimate of the
aircraft dynamic modes and control bandwidth (particularly propulsion control bandwidth)
is useful for excitation input design.
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Table 9.2: Sample eVTOL aircraft system identification measurement list for the LA-8
aircraft

Measurement Name Notes
body-axis translational — —
acceleration (ax, ay, az)
body-axis angular velocity (p, q, r) — —
Euler orientation angles (ϕ, θ, ψ) reconstructed via state estimation
true airspeed (V ) — —
body-axis velocity (u, v, w) reconstructed via state estimation
airflow angles (α, β) airflow angles are not reliable at low airspeed
static pressure used to compute air density and density altitude
ambient temperature used to compute air density and density altitude
control surface deflection angles — —
propulsor rotational speeds — —
wing tilt angles — —

9.4.2 Input Design

Orthogonal phase-optimized multisine inputs [19, 82–85], described in Section 2.3.2, are
the excitation input type used for this work. Individual multisine signals were generated for
each of the LA-8 control surfaces and propulsors, for a total of 18 different excitation signals.
The overall frequency range was set in accordance with frequencies where the rigid-body
dynamics of interest were expected to manifest and the propulsion harmonic components
were focused into lower frequencies to adhere to the lower bandwidth of the propulsors [37].
The multisine design process followed similar steps to the process followed in Section 8.2.2
(Reference [30]) for LA-8 wind-tunnel experiments using multisine inputs. The difference in
the design process for this chapter is that the design evaluation focuses on the linear control
effector model terms, whereas pure quadratic and two-factor interaction model terms among
control effectors were also considered in Chapter 8. The same six sets of multisine input
designs with different fundamental periods using 30 optimization runs with randomly chosen
starting phase angles were evaluated for the input design in this chapter. The best design
was determined using the pairwise correlation coefficient rij [Equation (2.80)] between linear
input signals ξi = ui and ξj = uj. The multisine design with the quickest time to decrease
all pairwise correlation coefficient values to 0.5 or lower was selected to compare to signals
developed with different fundamental periods. The relative peak factor for the design with
the quickest time to decrease pairwise correlation values to below 0.5 for each fundamental
period T is shown in Figure 9.1. A similar RPF is obtained for each control effector signal
for different values of T , with a slight general decreasing trend in RPF as T increases. The
propulsor signals also generally have a lower RPF value compared to the control surface
signals.
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Figure 9.1: Relative peak factor of candidate LA-8 aircraft multisine designs.

Following an approach similar to Reference [85] and Chapter 8 (Reference [30]), input
correlation metrics were used as criteria to assess the quality of each multisine design as
maneuver time progresses. The progression of correlation metrics over time for each multisine
design with a different fundamental period is shown in Figure 9.2. Figure 9.2a shows the

(a) Maximum pairwise correlation coefficient
(180 seconds)

(b) Maximum pairwise correlation coefficient
(60 seconds)

(c) Condition number of UTU (180 seconds) (d) Condition number of UTU (30 seconds)

Figure 9.2: Input signal correlation metrics against time.

maximum absolute pairwise correlation value |rij|max for each multisine design as a function
of time, with Figure 9.2b displaying the same plot over a shorter time interval. Figure 9.2c
shows the condition number κ of UTU for each multisine design as a function of time, with
Figure 9.2d displaying the same plot over a shorter time interval. Here, U is a matrix
composed of column vectors of the input signals, U = [u1,u2, ...,um]. The interpretation of
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Figure 9.2 is similar to the explanation given Section 8.2.2 for the linear model. Figures 9.2a-
9.2b show that the design with the greatest fundamental period (T = 180 seconds) generally
has the lowest maximum pairwise correlation for the first 10 seconds. After 10 seconds,
each design has reasonably close |rij|max values until approaching the fundamental period
for each design, where the signals converge to zero correlation. As was also observed in
Chapter 8, Figure 9.2 shows that multisine designs with different fundamental periods obtain
low correlation metrics in a similar maneuver time. In view of these findings and previous
research showing the benefits of increased frequency resolution [251], the multisine design
with the largest fundamental period (T = 180 seconds) was selected to be used for the system
identification experiments.

The input spectra for the final set of orthogonal phase-optimized multisine signals with
a fundamental period of T = 180 seconds were identical to those shown in Figure 8.7.
The only frequency-domain difference for this chapter is that the excitations are applied to
the rotational speed commands n1, n2, ..., n8 as opposed to the throttle PWM commands
η1, η2, ..., η8. Figure 9.3 shows the first 20 seconds of the input excitation signals normalized
to have a maximum absolute value of one. This reflects how the signals are injected into the
flight controller, where a gain is applied to scale each input signal to a sufficient amplitude to
obtain a good signal-to-noise ratio, while not deviating far from the trimmed flight condition
or perturbing the aircraft to an unsafe flight condition. Although the time-domain signals
shown in Figure 9.3 and Figure 8.8 are different due a different set of optimized phased
angles for each design, the spectral content for each is identical. Note that the maneuver
length used for system identification is generally different than the 20-second input signal
duration shown for demonstration purposes in Figure 9.3.

Figure 9.3: LA-8 aircraft normalized multisine inputs used for system identification.
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9.4.3 Input Strategy with Feedback Control

eVTOL aircraft dynamics are generally unstable over a large portion of their flight en-
velopes, which requires the feedback control system to be active when operating at these
conditions. Although necessary for safety, flight control systems can create deficiencies in
the data information content available for system identification. Control systems act to
suppress the natural aircraft motions that system identification maneuvers are designed to
excite, distort optimally designed control inputs, and lead to correlation between explana-
tory variables, making their independent effects more difficult to distinguish. Strategies
used for modeling aircraft with feedback control include using a priori information to better
condition the modeling problem, lowering the feedback gains, and/or injecting the input ex-
citations downstream of the control laws. Using preliminary information can result in biased
estimates if the parameters are not a good representation for actual aircraft characteristics.
Also, tampering with the control system is generally not advisable from a risk-mitigation
standpoint, particularly for unstable aircraft. Hence, the strategy used here for handling
the presence of the flight controller is to sum each input excitation signal with the control
effector command from the control system just before the commanded actuator position and
rate limits [19]. An early demonstration of the effectiveness of direct single control surface
excitation for unstable aircraft system identification was shown in Reference [261]. Extend-
ing this direct control surface excitation approach to multiple inputs allows characterizing
the influence of each control effector on the aircraft open-loop dynamic response simultane-
ously [19, 82, 83, 85, 251], as well as characterization of control interaction effects [19, 85].
This input excitation framework is depicted in Figure 9.4.
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Figure 9.4: Proper application of excitation inputs relative to the control system [19].

9.5 Results

As described in Section 9.3, the modeling approach used for this chapter is to identify
several linear aero-propulsive models across the nominal flight envelope for the LA-8 aircraft.
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The parameters withing each model equation were estimated using the equation-error method
formulated in the frequency domain [19, 100] (see Section 2.6.1.2). The frequency range was
selected to match the excitation input design with a fundamental period of T = 180 s (see
Section 9.4.2), as was also done in Chapter 8; i.e., the Fourier transform frequencies were set
between fmin = 0.05 Hz and fmax = 1.756 Hz with a frequency resolution of ∆f = 0.00556 Hz.
After identification of local model parameters, the parameters are blended together to form
a global aero-propulsive model. Sample local and global modeling results obtained from
simulated LA-8 flight tests are provided in this section.

9.5.1 Local Modeling Results

Simulated LA-8 flight data for a level maneuver at a reference forward airspeed of
uo = 45 ft/s and wing angles fixed at δw1 = δw2 = 25 deg with orthogonal phase-optimized
multisine inputs active on all control surfaces and propulsors are shown in Figures 9.5-9.6.
As mentioned previously, the simulated flight data used for modeling were corrupted with
measurement error using noise levels consistent with a previous simulation-based aircraft
system identification study [87]. The control effector signal waveform shown in Figure 9.5
is different than the designed signals shown in Figure 8.8 due to distortion from the ac-
tive flight control system. Even with this distortion, modeling variables are still sufficiently
decorrelated for model identification as a result of injecting the excitation inputs as shown
in Figure 9.4 [19]. A total maneuver length of 60 seconds was selected by investigating the
parameter estimation results and the RMSE [Equation (2.84)] for validation data as a func-
tion of maneuver time used for modeling, as will be demonstrated below. All of the following
analysis in this subsection uses the simulated flight data shown in Figures 9.5-9.6.
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Figure 9.5: Control surface deflection angles and propulsor rotational speeds during a simu-
lated LA-8 system identification maneuver at uo = 45 ft/s.
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Figure 9.6: Simulated LA-8 flight data at uo = 45 ft/s with multisine inputs active on all
control effectors.

Figure 9.7 shows the Z parameter estimates and error bars of ±2s(θ̂) computed using
complex least-squares regression against the amount of maneuver time used for modeling.
Parameter estimates were computed in a batch manner for the various different maneuver
lengths used for modeling, as opposed to implementing real-time calculations. The plot also
shows the linearized parameters computed directly from the nonlinear LA-8 simulation using
central finite differences, for comparison. The parameters appear to converge to reasonably
consistent values by the time 40 seconds has elapsed and show good concurrence with the
linearized LA-8 simulation parameters. Similar results were obtained for the parameters
corresponding to the other aero-propulsive forces and moments and at different flight con-
ditions throughout the LA-8 flight envelope. Note that the parameter estimates contain
asymmetries that are not apparent from the LA-8 vehicle configuration. This is a result
of manufacturing differences between the clockwise and counterclockwise propellers, which
resulted in a significant difference in thrust production between the propeller variants [36].
Because the propulsion-only and propulsion-airframe interaction effects are significant, this
propulsion asymmetry is manifested in many control effector model terms (see Chapter 6
and Reference [28]).
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Figure 9.7: Variation of Z parameter estimates with maneuver time used for modeling at
uo = 45 ft/s.

Figure 9.8 shows the validation RMSE (RMSEv) in the time domain for each response
variable against the amount of maneuver time used for model identification. The last 20
seconds of data from the maneuver shown in Figures 9.5-9.6 were withheld from model
identification and used to compute the RMSEv metric at each modeling time length. The
amount of time for RMSEv to nearly level off is different for each response, but all responses
appear to have a small RMSEv reduction rate by the time 40 seconds has elapsed, indicating
that a longer maneuver would provide little additional benefit. Similar results were obtained
at other flight conditions.
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Figure 9.8: Variation of validation RMSE with maneuver time used for modeling at uo = 45
ft/s.

In view of Figures 9.7-9.8, and also with the knowledge that 40 seconds is the amount
of time needed to complete two full periods of the lowest frequency sinusoidal component
of the multisine maneuver (fmin = 0.05 Hz), 40 seconds was selected as the amount of
maneuver time to use for modeling at each flight condition. The same data collection time
was selected in Chapter 8 for LA-8 wind-tunnel experiments using multisine inputs following
similar reasoning. A 60-second maneuver was executed at each reference flight condition
used for model identification, where the first 40 seconds were used to identify the local aero-
propulsive model, and the last 20 seconds of the maneuver were used as validation data to
test the model prediction capability. This maneuver time length worked well across the LA-8
flight envelope, as will be shown in Section 9.5.2.

Figure 9.9 shows the model fit in the frequency domain using the first 40 seconds of the
maneuver shown in Figures 9.5-9.6. A good model fit is observed for each response. The
R2 metric shown on the plot for each response is high, indicating that most of the variation
of the response variable about its mean is characterized by the model. Figure 9.10 shows
the model fit and model prediction compared to the smoothed aero-propulsive forces and
moments in the time domain using the same maneuver. The model fit and model predictions
are close to the responses calculated from the simulated flight data, indicating that the model
is able to characterize a large amount of the variation in each response. The local model
fit and prediction capability were similar for the other reference flight conditions across the
LA-8 flight envelope.
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Figure 9.9: Comparison of modeling response data and model fit in the frequency domain
at uo = 45 ft/s.

Figure 9.10: Model fit and model prediction in the time domain for a simulated LA-8 ma-
neuver at uo = 45 ft/s.
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9.5.2 Global Modeling Results

Similar execution of a 60-second multisine maneuver and the subsequent analysis shown
in the previous subsection were used to develop a local model at several flight conditions
throughout the LA-8 flight envelope listed in Table 9.3. The same input design and input
injection amplitudes were applied at each flight condition. The model fit and model predic-
tions in the time domain for seven different flight conditions through the LA-8 transition
envelope are shown in Figure 9.11. The corresponding time-domain R2 values computed for
each response using the modeling and validation data at each reference flight condition are
shown in Table 9.4. A good model fit and good model predictions are generally observed for
the dominant responses at each flight condition. Figure 9.12 shows the RMSE value for each
response for both modeling data and validation data. Observing that the RMSEm value for
each response holds a similar value to the corresponding RMSEv value, the RMSEm val-
ues are an accurate representation of prediction performance suggesting that modeling was
successful.

Table 9.3: Reference flight conditions for simulated LA-8 flight-test system identification
experiments

u [ft/s] δw1 [deg] δw2 [deg]
0 83.9 82.0
9 78.2 75.3
18 65.2 62.5
27 54.3 53.8
36 39.6 39.9
45 25.1 25.0
54 16.0 15.4

Table 9.4: Time-domain R2 values computed for the model identified at each reference flight
condition (expressed as a percentage)

(a) Modeling data

uo X Y Z L M N

0 ft/s 54.7 40.7 98.6 99.8 99.8 99.4
9 ft/s 91.1 43.7 98.6 99.6 99.8 99.1
18 ft/s 94.4 76.2 98.1 99.5 99.8 98.8
27 ft/s 97.5 82.7 98.0 99.4 99.8 98.9
36 ft/s 97.8 80.3 97.9 99.2 99.7 98.1
45 ft/s 97.7 86.1 99.0 99.2 99.6 98.9
54 ft/s 97.8 92.4 99.5 98.9 99.4 99.0

(b) Validation data

uo X Y Z L M N

0 ft/s 41.9 37.2 98.9 99.6 99.9 98.7
9 ft/s 89.0 39.4 98.6 99.3 99.8 98.7
18 ft/s 91.4 65.2 97.6 99.5 99.8 98.3
27 ft/s 97.1 66.8 98.3 99.4 99.8 98.8
36 ft/s 98.1 64.0 97.3 99.0 99.8 97.5
45 ft/s 98.3 78.5 98.3 99.1 99.6 98.4
54 ft/s 97.2 90.3 99.3 98.5 99.4 98.5
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Figure 9.11: Model fit and model prediction for the aero-propulsive forces and moments at
several reference conditions throughout the LA-8 transition envelope.

Although maneuvering between flight conditions is not shown in Figure 9.11, the plots still
reflect how a practical flight test for the LA-8 aircraft would occur. The testing would start
in a hover flight condition to develop an initial model and then testing would move gradually
through transition to eventually develop models through the nominal flight envelope. This
could occur in a single flight, could involve the aircraft returning to the ground between test
points, or could be some combination of the two strategies. This approach would work well
alongside safe envelope expansion flight testing and could be used to aid in tuning a flight
controller to achieve a safe transition. Note that the forward airspeed conditions tested for
this study ranged from 0 to 54 ft/s and the wing angles ranged from approximately 83 deg
(the trimmed hover setting) to 15 deg. For an actual system identification flight test of the
LA-8 vehicle, modeling would be performed through wing angles of 0 deg (forward flight);
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Figure 9.12: Modeling and validation RMSE for each response variable against reference
forward speed.

however, for this simulated study, the possible flight conditions were limited by the range
of validity of the wind-tunnel-derived aero-propulsive models currently implemented in the
LA-8 simulation.

Figure 9.13 shows the Z parameter estimates and error bars of ±2s(θ̂) computed using
complex least-squares regression for each tested flight condition. The solid line connecting
the parameters is computed using shape-preserving piecewise cubic interpolation [92, 93] with
the pchip MATLAB® function [90]; this interpolation method is preferred over cubic spline
interpolation for blending parameter estimates because of its tendency to avoid overshoot
and oscillatory behavior. Blending local model parameter estimates using this method shows
how a continuous simulation can be formed using local models identified at several different
reference conditions. The linearized parameters computed directly from the nonlinear LA-8
simulation at each condition are also shown for comparison. The identified Z parameters
show good concurrence with the linearized LA-8 simulation parameters across the flight
envelope. Similar results were obtained for the parameters corresponding to the other aero-
propulsive forces and moments.

Acknowledgment of Collaborative Research

The research presented in this chapter was primarily conducted by the author, but in-
cluded important collaborative contributions with other individuals. Eugene Morelli pro-
vided technical guidance on the eVTOL aircraft system identification approach and offered
many helpful suggestions during manuscript preparation. Jacob Cook developed the LA-8
aircraft flight controller and integrated the controller into the simulation used for this work.
Vehicle simulation development support was provided by Thomas Britton. The author grate-
fully acknowledges and appreciates these contributions which made the research described



9.5. Results 213

in this chapter possible.

Figure 9.13: Variation of Z parameter estimates with forward speed across the LA-8 transi-
tion flight envelope.



Chapter 10

Part II Conclusions

Electric vertical takeoff and landing (eVTOL) vehicle configurations present new chal-
lenges for aircraft modeling and are currently an important area of research. Attributes
of eVTOL vehicles overlap with both fixed-wing and rotary-wing aircraft, but also include
complex vehicle-specific phenomena, such as many available control effectors and complex
propulsion-airframe interaction effects. The mathematical models developed to describe eV-
TOL vehicle aerodynamics must be able to characterize many control effectors and complex
aero-propulsive interactions, while also being amendable to drastically changing aerodynam-
ics at numerous different flight conditions across a wide flight envelope. The result is a large
nonlinear modeling problem that must be accomplished within cost and time constraints.

Aero-propulsive modeling for eVTOL vehicles is a crucial area of research because of a
high demand for accurate vehicle simulations and the fact that existing system identification
methods for conventional aircraft must be applied differently for modeling these unique,
complex aircraft configurations. To address these challenges, Part II of this dissertation
presented several aircraft system identification advancements for accurate and efficient aero-
propulsive modeling for eVTOL vehicles. The LA-8 tandem tilt-wing eVTOL aircraft was
used as a research testbed for this work in wind-tunnel testing and simulated flight-test
experiments.

Chapter 6 developed and evaluated aero-propulsive modeling approaches for eVTOL air-
craft using wind-tunnel data to support flight dynamics simulation development. Established
model identification strategies for fixed-wing and rotary-wing aircraft were summarized and
used to postulate new eVTOL aircraft modeling strategies. Powered-airframe wind-tunnel
data were acquired at multiple dynamic pressure settings using design of experiments and
response surface methodology techniques facilitating efficient, statistically-rigorous data col-
lection that enabled accurate characterization of the LA-8 aircraft. One model identification
approach used the powered-airframe wind-tunnel data to develop a model of the dimensional
forces and moments exerted on the aircraft. A second approach used wind-tunnel-derived
isolated propulsion models in concert with a full-airframe model identified using the same
powered-airframe wind-tunnel data. Both approaches proposed a set of modeling explana-
tory variables and response variables tailored to tilt-wing eVTOL aircraft. Many control
effectors and complex vehicle interactions result in a large number of potential model terms
and challenges in identifying an adequate model structure. A practical and efficient model
structure identification strategy was proposed and shown to be effective. Final models were
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shown to have good predictive capability and small normalized model fit error.

In Chapter 7, several experiment designs were described and evaluated for modeling the
aerodynamics of distributed propulsion aircraft in the form of a response surface model in-
cluding linear, two-factor interaction, and pure quadratic model terms. Evaluation of single
block foundational experiment designs revealed that I-optimal and A-optimal designs gen-
erally have the highest statistical power, lowest correlation among candidate model terms,
lowest prediction variance across the design space, and yield the most precise parameter esti-
mates. However, the single block designs were noted to place most of the design points near
the exterior of the design space, which can result in model bias errors in the interior of the de-
sign space. To resolve this shortcoming, two sequential experiment designs containing nested
designs that provide more coverage of the interior of the design space were investigated. The
first sequential design approach used ordinary and nested minimum run resolution V, face-
centered central composite designs as its base and represents a legacy design approach that
has been applied previously to characterize complex aircraft. The second sequential design
approach used a regular I-optimal design and a nested I-optimal design as its base with the
same number of test points as the central composite designs. The nested I-optimal design
was a new experiment design approach proposed for complex aircraft aero-propulsive char-
acterization. Design evaluation metrics available prior to conducting an experiment were
used to compare the two design approaches and revealed that the I-optimal base design had
better statistical power for the candidate model terms, lower correlation among candidate
model terms, and was expected to yield models with better prediction capability and more
precise parameter estimates. Each set of sequential test matrices was applied in simulated
LA-8 wind-tunnel experiments to develop a model of the dimensional forces and moments
exerted on the aircraft at a reference airspeed condition. Modeling results obtained from the
simulated wind-tunnel data suggested that the I-optimal based design provides improved
prediction capability for data not used in the modeling process compared to the design
blocks built on the face-centered central composite design. The results also indicated that
an adequate model was obtained earlier in the block design sequence for the I-optimal base
design. Based on the design evaluation metrics and modeling results, the nested I-optimal
design approach is recommended for future aero-propulsive characterization experiments for
complex distributed propulsion aircraft.

A novel, hybrid wind-tunnel testing and model identification strategy was developed in
Chapter 8 and applied for eVTOL aircraft aero-propulsive modeling to enable rapid flight
dynamics simulation development. A wind-tunnel experiment was developed in two parts.
A four-factor static experiment was designed in a set of test blocks allowing identification of
response surface models of increasing complexity for slow-moving airflow and wing angle test
variables. A dynamic experiment composed of 18 simultaneous orthogonal phase-optimized
multisine signals was designed for the propulsors and control surfaces, and executed at each
set point. Several multisine designs were compared varying the fundamental period, which
indicated that maneuvers with a longer fundamental period would be beneficial for model
identification. A cubic I-optimal response surface design for the static test factors executed
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simultaneously with dynamic excitations running for 40 seconds at each static test point
was found to be a good testing strategy for model development, balancing test time and
model prediction capability. Using this approach, all data collection at a reference airspeed
condition can be completed in under 48 minutes, which is significantly faster than previous
eVTOL aircraft modeling efforts using purely static test techniques. The model identification
approach consisted of two parts in accordance with the data collection strategy. First,
a local model was identified at each set point as a function of the dynamically changing
explanatory variables using multivariate orthogonal function modeling and ordinary least-
squares regression in the frequency domain. The model structure for each force and moment
component was chosen to be identical for each set point based on the model terms deemed
significant for a majority of the set points. Second, response surface models were developed
for each model parameter associated with the dynamic test variables identified in the first
stage of modeling as a function of the static test variables, using multivariate orthogonal
function modeling and weighted least-squares regression with available uncertainty estimates.
The identified models were shown to have good predictive capability and small normalized
model fit error. Additionally, the model form supports parameterization of nonlinear aero-
propulsive effects that cannot be captured in alternative modeling approaches.

Chapter 9 developed a flight-test system identification methodology for eVTOL aircraft
leveraging system identification techniques for fixed-wing and rotary-wing aircraft, as well as
previous eVTOL aircraft aero-propulsive characterization studies based on wind-tunnel data.
The proposed method was evaluated using a high-fidelity LA-8 flight dynamics simulation. A
flight-test experiment design for the LA-8 was developed using orthogonal phase-optimized
multisine signals designed for each individual control surface and propulsor. Because the
aircraft is unstable, system identification maneuvers were executed with the flight control
system active, but the strategy still effectively excited the LA-8 aircraft dynamics allow-
ing accurate modeling throughout the flight envelope. A 40-second modeling maneuver was
shown to be an adequate length for accurate local model identification for the investigated
vehicle and demonstrates the utility of using multiple-input orthogonal optimized multisine
maneuvers for efficient eVTOL aircraft system identification. Model parameters in a linear
aero-propulsive model structure used with the nonlinear aircraft equations of motion were
estimated at several different flight conditions throughout the LA-8 flight envelope. The
model structure is appropriate for capturing eVTOL aircraft characteristics in small pertur-
bation maneuvers from a trimmed flight condition; however, the approach can also be readily
extended to develop nonlinear aero-propulsive models that can expand the region of model
validity. The identified models were shown to have good predictive capability, small model
fit error, and good agreement with linearized simulation parameters. A blending method
was shown which allows development of a global aero-propulsive model through the nom-
inal flight envelope of the vehicle. Model development flight-test strategies were discussed
allowing safe envelope expansion and sequential flight controller tuning for a new vehicle.

The work described in Part II of this dissertation provides progress in eVTOL aircraft
modeling research using experimental techniques that can be applied for many current and
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future vehicles. The methods allow accurate identification of dynamic models for complex
eVTOL aircraft configurations with significant aero-propulsive coupling and many control
effectors using a short amount of wind-tunnel and/or flight-test time. The methods were
developed using a tandem tilt-wing eVTOL vehicle but can be readily applied to many other
transitioning eVTOL vehicles, such as tilt-rotor and lift+cruise configurations, with straight-
forward modifications. The methods are also readily scalable to vehicles with more control
effectors than the LA-8 aircraft studied in this dissertation, which had 20 independent control
effectors. The accurate aero-propulsive models developed using the techniques described in
this dissertation enable development of high-fidelity eVTOL aircraft flight dynamics simula-
tions that can be used to foster advancement of many other pertinent Advanced Air Mobility
technology areas. The research advancements presented in this dissertation support revolu-
tionary eVTOL vehicle technology development, enabling progress towards realizing future
Urban Air Mobility and Regional Air Mobility transportation missions.
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