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1 Chromatic Homotopy Theory

Some problems in homotopy theory involve studying the interaction between generalized coho-
mology theories. This is usually performed by examining the properties of certain representing
objects called spectra, their homotopy groups, and morphisms between them. In particular, the
setup for most computation in modern algebraic topology, including work with the Adams and
the Adams-Novikov spectral sequences, is carried out in this language. For example, integral K-
theory and singular cohomology are given by the spectrum Z × B U and the Eilenberg-MacLane
spectrum H Z, respectively. Another important spectrum is MU, the spectrum corresponding to
complex cobordism.

As in other areas, integral computations are difficult, and more understanding is looked for by
examining the local or complete cases. At the prime p there is an arrangement of spectra, called
the chromatic filtration, that provides a sequence of approximations of p-adic stable cohomotopy,
the first two stages of which are p-adic rational cohomology and p-adic K-theory. This filtration
reflects the deep connection between underlying structure in algebraic topology and the moduli
space of formal group laws. This connection was first formulated by Novikov and Quillen, who
noticed that the complex cobordism of a point was the Lazard ring L = MU∗(pt), which classifies
formal group laws. A classifying map MU∗(pt) → R to some commutative ring R that satisfies
an additional condition called Landweber exactness can be used to generate a new cohomology
theory from MU with coefficient ring R, at least over finite complexes X; for example, K-theory
can be constructed in this way from the multiplicative formal group law: K∗(X) = K∗(pt)⊗MU∗(pt)

MU∗(X).
Over a separably closed field of characteristic p, formal group laws are classified up to iso-

morphism by their height, with height one corresponding to the multiplicative formal group law,
and height infinity corresponding to the additive formal group law. Lubin-Tate deformation the-
ory studies lifts of a formal group law Hn of height n over a perfect field k of characteristic p to
mixed-characteristic complete local rings with residue field k. In particular, there exists a complete
local ring En, called the Lubin-Tate space, with a formal group law Fn defined over it, which is a
lift of Hn and is universal among all such lifts. The classifying map for this formal group law is
Landweber exact, and can be used to construct a generalized cohomology theory known as the
n-th Morava E-theory, E∗n(X) := E∗n ⊗MU∗(pt) MU

∗(X) (with appropriate grading). A related co-
homology theory, known as Morava K-theory, K(n), with the localized coefficient ring Fp[vn, v−1

n ],
is also obtained in this way. The En’s contain information about the layers in the chromatic tower,
which are usually taken to refer to the K(n)-localization of the sphere spectrum. The first two
Morava E-theories are familiar: E1 is p-adic K-theory and E2 is a form of elliptic cohomology.
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The hope of locally performing computations level-wise, examining transchromatic phenom-
ena, and then iteratively climbing the chromatic tower has helped make the Morava E-theories a
central focus of study in algebraic topology. One of the most well-known attempts to understand
these higher cohomology theories was an endeavor begun by Hopkins, Kuhn, and Ravenel in the
1990s to generalize to higher heights Atiyah’s character theorem, which identifies the K-theory of
the classifying space of a group G with the representation ring of G, completed at the augmenta-
tion ideal of virtual representations. (HKR01) uses concepts of Tate modules and Drinfel’d level
structures to give a theory of higher characters for Morava En’s. A more recent sequence of arti-
cles by Torii constructs a generalized Chern character by defining a transchromatic map from En+1

to an extension of En and proving that this map is rationally an isomorphism. In addition, Torii
shows that the generalized Chern character is compatible with the HKR generalized character
theory, appropriately extended.

There are two points of underlying interest in these results. The first is that both works gain
deeper understanding of cohomology theories by looking not just at the corresponding formal
groups, but at the structure of the associated p-divisible groups, their hom-sets, and their behavior
upon base change. Formal groups correspond exclusively to connected p-divisible groups of a
fixed height. In general, p-divisible groups contain information about formal groups of different
heights and can be disconnected with etale quotients. Thus, passing to the category of p-divisible
groups can be thought of a true extension of the playing field. p-Divisible groups have been well-
studied in their own right in algebraic geomety by Tate, Serre, Manin, among others, in connection
with lifting of homomorphisms of abelian varieties. It should be possible to further harness the
developed framework in examining chromatic phenomena.

The second point of interest is that both results are equivariant in nature: they are compatible
with the action of the Morava stabilizer group Sn of (strict) automorphisms of Hn. Automor-
phisms of objects are important, and the the action of the Morava stabilizer group on the Lubin-
Tate space En is very interesting in particular. For example, knowledge of the action of Sn on En
gives a a spectral sequence computing the homotopy of the K(n)-localization of a spectrum X from
the cohomology of the extended stabilizer group with coefficients in E∗n(X). Other applications in-
clude examining homotopy fixed point spectra of En under the action of all of Sn or just certain
finite subgroups, which give the K(n)-local sphere and higher real K-theory, respectively.

However, right now computations in these realms seem just out of reach because, despite
many efforts, little is known about the action of the stabilizer group explicitly. Getting more infor-
mation about this action is of direct interest and may have immediate tangible resonance in stable
homotopy theory. Now, as will be seen from the height-one case described below, the stabilizer
group action on E1 appears as a certain Galois action on a trivialized p-divisible group. Perhaps
some similar statements can be formulated to hold in general. This would be very exciting, as it
would give a more algebraic, galois-theoretic interpretation of the inherently topological action of
the stabilizer group.

Combining these two observations gives the philosophical basis of the proposed project: we
wish to examine the further information that p-divisible groups, together with an action of the
Morava stabilizer group, can give about the chromatic filtration of stable homotopy theory. A
more tangible and reassuring form of a project statement is given below after presenting the
known case - the computations at height one.
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2 The Picture at Height One. A Problem Statement

Examine height n=1, and work over k = Fp. Morava E∗1 is p-adic K-theory, and the Lubin-Tate
space is the ring of Witt vectors over k, E1 = W(k) = Zp. The associated formal group law G1 is
deduced from the tensor product of vector bundles to be the multiplicative formal group law with
p-series [pr](t) = 1 − tp

r
. Note that in this case the formal power series for [pr](t) coincides with

its Weierstrass polynomial.
HKR character theory gives a map from the En cohomology of classifying spaces of finite

groups to class functions on commuting n-tuples of p-power elements. The HKR character map
becomes an injection over the Drinfel’d ring D1, and an isomorphism over the HKR ring L1 - a
localization ofD1 at the set of Chern classes. At height one,D1 is the direct limit of the cohomology
of p-power cyclic groups of rank one. As in the general case, this rank is determined by the
structure of the abelian group of pr-torsion points, which is of rank equal to the height n. D1 can
be shown to be the extension of the p-adic integers by p-power roots of unity, and L1 = p−1D1 is
the corresponding colimit of cyclotomic field extensions of Qp.

The HKR character map χhkr has been computed for n=1 explicitly. For a finite group G,

χhkr : K(BG) −→ ∏
g∈Gp

L1

ξ 7→ (χcl(g)(ξ))g∈Gp

Here Gp is again the set of p-power elements of G and χcl denotes the classical trace character
from representation theory. Note that we are thinking of ξ both as a vector bundle and as the
corresponding monodromy representation of G.

This map is equivariant with respect to the action of the Morava stabilizer group S1, and the
action of S1 on both sides is known. At n = 1, S1 is the group of units the p-adics, S1 = Z×p .
An element σ ∈ S1 acts on the complex representation ring by sending a representation ξ to the
representation g → ξ(gσ). The same element acts on the right hand side through an action on the
HKR ring L1 by fixing Zp and raising p-power roots of unity to the power σ ∈ Z×p . This statement
is the p-adic form of a familiar theorem from representation theory.

Now, for the p-divisible group side of the story. The p-divisible group associated to E∗1 over
E1 = Zp is the sequence of finite flat group schemes

G = {Gr, ir} = {Spec(Zp[t]/(1− tp
r
)), ir},

where ir is induced by inclusion of torsion points.
The additional structure carried by G is demonstrated by examining its behavior over an ap-

propriate tower-like filtration of the base scheme Spec(E1) = Spec(Zp). The idea here is to filter the
Lubin-Tate space by quotients by increasing invariant ideals, and to branch out each successive
quotient by embedding it into a localization, followed by the quotient field, and then the separable
closure. For n=1, this picture is simple:

E1 = Zp −→ p−1(E1) = Qp↓
E1/(p) = Fp

Over Zp, the rings representing each finite layer Gr are local rings with maximal ideal (p, 1 −

t), in particular, they are connected rings, so each Gr is a connected group scheme, as it should
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be. However, over Qp, a field of characteristic 0, the p-divisible group G becomes etale. It is
represented by a product of cyclotomic unramified extensions of Qp by p-power primitive roots
of unity:

(GQp)r = Spec(
∏
0≤i≤r

Qp(ζpi))

This is a finite group scheme of total rank pr, which is etale over Qp, and which becomes constant
over Qp(ζpr). Taking colimits, G becomes the constant p-divisible group of height 1, Qp/Zp, over
the field extension of the p-adic numbers, obtained by adjoining all p-power roots of unity (i.e.,
the HKR ring, L1). Note that if we did not invert p, the universal place where G becomes constant
is actually the Drinfel’d ring, D1, and L1 = p−1D1.

Now, a result from the theory of finite group schemes states that mapping to geometric points
gives an equivalence of categories between finite group schemes over a field K of characteris-
tic zero and finite Galois modules with an action of the absolute Galois group Gal(K/K). Here
(GQp)r(Qp) is µpr , the group of all pr-th roots of unity, with group action being multiplication in
the field. The Galois group of the intermediate (abelian) extension of Qp by p-power roots of unity,
Z×p , acts on this set by raising a root of unity to the corresponding unit-p-adic power. Note that,
by coincidence or otherwise, this gives exactly the action of the Morava stabilizer group S1 on the
HKR ring L1.

The picture at n=1 is nice enough to warrant further exploration. The proposed project is
to attempt explicit computation to determine what happens at higher heights, beginning with
n=2. That is, the goal is to take the described filtration of En by invariant ideals, embed each
quotient in, successively, localizations, quotient fields, and separable closures, and then examine
the behavior of the p-divisible group Gn upon horizontal and vertical base change (see diagram
below). Particular questions include: what does Gn look like over each complete local ring at the
trunk of the tower? On each branch, when does it become etale? Constant? What is the Galois
action on the etale p-divisible groups, and can it be tied to the action of the Morava stabilizer
group?

These questions were inspired by conversations with, and, to be precise, were in some form
originally due to Ando, Miller, and Morava. Basis in the literature is traced to papers of Hopkins,
Kuhn, Ravenel; Tate; and Torii.

3 First Steps. A Tower.

This section gives a more explicit description of the proposed filtration of En.
Work at height n, at a prime p. Fix a base field k = Fpn . Then En = W(k)[[u1, ..., un−1]]. This

is a complete local ring with maximal ideal I = (p, u1, ..., un−1). Consider the chain of invariant
ideals {Ii = (p, u1, ..., ui−1)}0≤i≤n, where I0 = 0 and I1 = p. Successively modding out by Ii and
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branching out each quotient gives the following filtration of En.

En/I0 = En = W(k)[[u1, ..., un−1]] → p−1(E1) → Quot(E1)sep↓
En/I1 = En/(p) = k[[u1, ..., un−1]] → u−1

1 k[[u1, ..., un−1]] → k((u1))[[u2, ..., un−1]] → Quot(En/I1)sep↓
...↓

En/In−1 = En/(p, u1, ..., un−2) = k[[un−1]] → u−1
n−1k[[un−1]] = k((un−1)) → k((un−1))

sep

↓
En/In = En/(p, u1, ..., un−1) = k

Note that only fields that appear on the first line (En/I0) are of characteristic 0, while all fields
below that are of characteristic p > 0. Also, the local rings starting from the second line (En/I1)
are equicharacteristic local rings, while the local rings on the first line are of mixed characteristic.

The study of p-divisible groups over complete discrete valuation rings with quotient fields
of characteristic 0 is the classical case, as developed by Tate and Serre. Working over complete
discrete valuation rings with quotient fields of characteristic p > 0 involves looking at works of
Gross, who has some results for the equicharacteristic case. Working over more general local rings
might involve expanding the framework used.
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