Skip to main content

Retinal Hard Exudates

  • Chapter
  • First Online:
Ophthalmic Signs in Practice of Medicine
  • 149 Accesses

Abstract

Deposition of hard exudates in the retina indicates a breakdown in the blood-retinal barrier with the leakage of plasma and macromolecules. The presence of retinal hard exudates may be the only easily discernible retinal sign of an underlying systemic disease, the most common of which are diabetes of at least 5 years and hypertension. The severity of hard exudates in diabetes correlates with plasma low-density lipoproteins and triglycerides. The presence of retinal hard exudates may be a surrogate for atherosclerosis in diabetics. The use of statins in patients with diabetes may dramatically reduce the severity of retinal hard exudates. It may serve as a biomarker for the efficacy of statins.

Several sight-threatening retinal disorders, including retinal vascular occlusions, retinal vascular inflammations, and retina tumours, may also result in the deposition of hard exudates. These must be differentiated from cotton wool spots (soft exudates) and retinal drusen. The availability of optical coherence tomography has enabled us to see the forme fruste of hard exudates as hyperreflective foci (HF) in various retina layers. These represent the phagocytosis of the leaked lipoproteins by the retinal microglia, the resident phagocytic cells. HF migrate through the retina, but the fats are deposited as irregular shiny aggregates once they rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding X, Patel M, Chan CC. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res. 2009;28(1):1–18. https://doi.org/10.1016/j.preteyeres.2008.10.001. Epub 2008 Nov 6. PMID: 19026761; PMCID: PMC2715284.

    Article  CAS  PubMed  Google Scholar 

  2. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic colour fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology. 1991;98(5 Suppl):786–806. PMID: 2062513.

    Google Scholar 

  3. Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abràmoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48(5):2260–7. https://doi.org/10.1167/iovs.06-0996. PMID: 17460289; PMCID: PMC2739583.

    Article  PubMed  Google Scholar 

  4. Marupally AG, Vupparaboina KK, Peguda HK, Richhariya A, Jana S, Chhablani J. Semi-automated quantification of hard exudates in colour fundus photographs diagnosed with diabetic retinopathy. BMC Ophthalmol. 2017;17(1):172. https://doi.org/10.1186/s12886-017-0563-7. PMID: 28931389; PMCID: PMC5607622.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Loganadane P, Delbosc B, Saleh M. Short-term progression of diabetic hard exudates monitored with high-resolution camera. Ophthalmic Res. 2019;61(1):3–9. https://doi.org/10.1159/000493858. Epub 2018 Nov 22. PMID: 30466082.

    Article  PubMed  Google Scholar 

  6. Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, Diabetic Retinopathy Research Group Vienna. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116(5):914–20. https://doi.org/10.1016/j.ophtha.2008.12.039. PMID: 19410950.

    Article  PubMed  Google Scholar 

  7. Cusick M, Chew EY, Chan CC, Kruth HS, Murphy RP, Ferris FL 3rd. Histopathology and regression of retinal hard exudates in diabetic retinopathy after reduction of elevated serum lipid levels. Ophthalmology. 2003;110(11):2126–33. https://doi.org/10.1016/j.ophtha.2003.01.001. PMID: 14597519.

    Article  PubMed  Google Scholar 

  8. Yamaguchi M, Nakao S, Kaizu Y, Kobayashi Y, Nakama T, Arima M, Yoshida S, Oshima Y, Takeda A, Ikeda Y, Mukai S, Ishibashi T, Sonoda KH. High-resolution imaging by adaptive optics scanning laser ophthalmoscopy reveals two morphologically distinct types of retinal hard exudates. Sci Rep. 2016;6:33574. https://doi.org/10.1038/srep33574. Erratum in: Sci Rep 2016;6:35127. PMID: 27641223; PMCID: PMC5027520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina. 2015;35(3):449–53. https://doi.org/10.1097/IAE.0000000000000336. PMID: 25170862.

    Article  PubMed  Google Scholar 

  10. Framme C, Schweizer P, Imesch M, Wolf S, Wolf-Schnurrbusch U. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53(9):5814–8. https://doi.org/10.1167/iovs.12-9950. PMID: 22836760.

    Article  CAS  PubMed  Google Scholar 

  11. Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, Muraoka Y, Ellabban AA, Yoshimura N. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153(4):710–7, 717.e1. Epub 2011 Dec 3. PMID: 22137207. https://doi.org/10.1016/j.ajo.2011.08.041.

    Article  PubMed  Google Scholar 

  12. Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A, International Retina Group. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology. 2018;125(2):267–75. https://doi.org/10.1016/j.ophtha.2017.08.031. Epub 2017 Sep 19. PMID: 28935399.

    Article  PubMed  Google Scholar 

  13. Schreur V, Altay L, van Asten F, Groenewoud JMM, Fauser S, Klevering BJ, Hoyng CB, de Jong EK. Hyperreflective foci on optical coherence tomography associate with treatment outcome for anti-VEGF in patients with diabetic macular edema. PLoS One. 2018;13(10):e0206482. https://doi.org/10.1371/journal.pone.0206482. PMID: 30379920; PMCID: PMC6209345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rübsam A, Wernecke L, Rau S, Pohlmann D, Müller B, Zeitz O, Joussen AM. Behavior of SD-OCT detectable hyperreflective foci in diabetic macular edema patients after therapy with anti-VEGF agents and dexamethasone implants. J Diabetes Res. 2021;2021:8820216. https://doi.org/10.1155/2021/8820216. PMID: 33937416; PMCID: PMC8060103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murakami T, Yoshimura N. Structural changes in individual retinal layers in diabetic macular edema. J Diabetes Res. 2013;2013:920713. https://doi.org/10.1155/2013/920713. Epub 2013 Aug 29. PMID: 24073417; PMCID: PMC3773460.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ota M, Nishijima K, Sakamoto A, Murakami T, Takayama K, Horii T, Yoshimura N. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology. 2010;117(10):1996–2002. https://doi.org/10.1016/j.ophtha.2010.06.019. Epub 2010 Aug 17. PMID: 20723993.

    Article  PubMed  Google Scholar 

  17. Gelman SK, Freund KB, Shah VP, Sarraf D. The pearl necklace sign: a novel spectral domain optical coherence tomography finding in exudative macular disease. Retina. 2014;34(10):2088–95. https://doi.org/10.1097/IAE.0000000000000207. PMID: 25020214.

    Article  PubMed  Google Scholar 

  18. Couturier A, Mane V, Lavia CA, Tadayoni R. Hyperreflective cystoid spaces in diabetic macular oedema: prevalence and clinical implications. Br J Ophthalmol. 2022;106(4):540–6. https://doi.org/10.1136/bjophthalmol-2020-317191. Epub 2020 Dec 1. PMID: 33262106.

    Article  PubMed  Google Scholar 

  19. Ahn J, Han S, Ahn SM, Kim SW, Oh J. Clinical implications of suspended scattering particles in motion observed by optical coherence tomography angiography. Sci Rep. 2020;10(1):15. https://doi.org/10.1038/s41598-019-55606-9. PMID: 31913306; PMCID: PMC6949280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kashani AH, Green KM, Kwon J, Chu Z, Zhang Q, Wang RK, Garrity S, Sarraf D, Rebhun CB, Waheed NK, Schaal KB, Munk MR, Gattoussi S, Freund KB, Zheng F, Liu G, Rosenfeld PJ. Suspended scattering particles in motion: a novel feature of OCT angiography in exudative maculopathies. Ophthalmol Retina. 2018;2(7):694–702. https://doi.org/10.1016/j.oret.2017.11.004. Epub 2017 Dec 15. PMID: 30221214; PMCID: PMC6133252.

    Article  PubMed  Google Scholar 

  21. Murakami T, Suzuma K, Dodo Y, Yoshitake T, Yasukura S, Nakanishi H, Fujimoto M, Oishi M, Tsujikawa A. Decorrelation signal of diabetic hyperreflective foci on optical coherence tomography angiography. Sci Rep. 2018;8(1):8798. https://doi.org/10.1038/s41598-018-27192-9. PMID: 29892079; PMCID: PMC5995832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu S, Yu C, Chen Q, Yuan S, Lin J, Fan W, Liu Q. Multimodality analysis of hyper-reflective foci and hard exudates in patients with diabetic retinopathy. Sci Rep. 2017;7(1):1568. https://doi.org/10.1038/s41598-017-01733-0. PMID: 28484225; PMCID: PMC5431476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta A, Gupta V, Thapar S, Bhansali A. Lipid-lowering drug atorvastatin as an adjunct in the management of diabetic macular edema. Am J Ophthalmol. 2004;137(4):675–82. https://doi.org/10.1016/j.ajo.2003.11.017. PMID: 15059707.

    Article  CAS  PubMed  Google Scholar 

  24. Waller S, Thyagarajan S, Kaplan F, Viljoen A. Dramatic resolution of massive retinal hard exudates after correction of extreme dyslipidaemia. Eye (Lond). 2009;23(3):738. https://doi.org/10.1038/eye.2008.109. PMID: 18437181.

    Article  CAS  PubMed  Google Scholar 

  25. Wu M, Chen Y, Wilson K, Chirindel A, Ihnat MA, Yu Y, Boulton ME, Szweda LI, Ma JX, Lyons TJ. Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49(6):2679–85. https://doi.org/10.1167/iovs.07-1440. Epub 2008 Mar 24. PMID: 18362112.

    Article  PubMed  Google Scholar 

  26. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–67. https://doi.org/10.1161/CIRCRESAHA.115.306256. PMID: 26892964; PMCID: PMC4762068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: focusing on polarization. Pharmacol Res. 2021;167:105576. https://doi.org/10.1016/j.phrs.2021.105576. Epub 2021 Mar 24. PMID: 33771700.

    Article  CAS  PubMed  Google Scholar 

  28. Wolman M, Gaton E. Reappraisal of the role of macrophages in the pathogenesis of atherosclerosis. Pathobiology. 1991;59(2):92–5. https://doi.org/10.1159/000163622. PMID: 1863356.

    Article  CAS  PubMed  Google Scholar 

  29. Lim LS, Wong TY. Lipids and diabetic retinopathy. Expert Opin Biol Ther. 2012;12(1):93–105. https://doi.org/10.1517/14712598.2012.641531.

    Article  CAS  PubMed  Google Scholar 

  30. Chang YC, Wu WC. Dyslipidemia and diabetic retinopathy. Rev Diabet Stud. 2013;10(2–3):121–32. https://doi.org/10.1900/RDS.2013.10.121. Epub 2013 Aug 10. PMID: 24380088; PMCID: PMC4063092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crosby-Nwaobi R, Chatziralli I, Sergentanis T, Dew T, Forbes A, Sivaprasad S. Cross talk between lipid metabolism and inflammatory markers in patients with diabetic retinopathy. J Diabetes Res. 2015;2015:191382. https://doi.org/10.1155/2015/191382. Epub 2015 Jul 29. PMID: 26295054; PMCID: PMC4532932.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vincent AM, Hinder LM, Pop-Busui R, Feldman EL. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst. 2009;14(4):257–67. https://doi.org/10.1111/j.1529-8027.2009.00237.x. PMID: 20021567; PMCID: PMC4239691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeng CJ, Hsieh YT, Yang CM, Yang CH, Lin CL, Wang IJ. Diabetic retinopathy in patients with dyslipidemia: development and progression. Ophthalmol Retina. 2018;2(1):38–45. https://doi.org/10.1016/j.oret.2017.05.010. Epub 2017 Aug 9. PMID: 31047300.

    Article  PubMed  Google Scholar 

  34. Klein BE, Klein R, Moss SE. Is serum cholesterol associated with progression of diabetic retinopathy or macular edema in persons with younger-onset diabetes of long duration? Am J Ophthalmol. 1999;128(5):652–4. https://doi.org/10.1016/s0002-9394(99)00222-6. PMID: 10577544.

    Article  CAS  PubMed  Google Scholar 

  35. Klein BE, Moss SE, Klein R, Surawicz TS. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology. 1991;98(8):1261–5. https://doi.org/10.1016/s0161-6420(91)32145-6. PMID: 1923364.

    Article  CAS  PubMed  Google Scholar 

  36. Chew EY, Klein ML, Ferris FL 3rd, Remaley NA, Murphy RP, Chantry K, Hoogwerf BJ, Miller D. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol. 1996;114(9):1079–84. https://doi.org/10.1001/archopht.1996.01100140281004. PMID: 8790092.

    Article  CAS  PubMed  Google Scholar 

  37. Ferris FL 3rd, Chew EY, Hoogwerf BJ. Serum lipids and diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Research Group. Diabetes Care. 1996;19(11):1291–3. https://doi.org/10.2337/diacare.19.11.1291. PMID: 8908399.

    Article  PubMed  Google Scholar 

  38. Papavasileiou E, Davoudi S, Roohipoor R, Cho H, Kudrimoti S, Hancock H, Wilson JG, Andreoli C, Husain D, James M, Penman A, Chen CJ, Sobrin L. Association of serum lipid levels with retinal hard exudate area in African Americans with type 2 diabetes. Graefes Arch Clin Exp Ophthalmol. 2017;255(3):509–17. https://doi.org/10.1007/s00417-016-3493-9. Epub 2016 Sep 15. PMID: 27632216.

    Article  CAS  PubMed  Google Scholar 

  39. Klein R, Sharrett AR, Klein BE, Moss SE, Folsom AR, Wong TY, Brancati FL, Hubbard LD, Couper D, ARIC Group. The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes: the atherosclerosis risk in communities study. Ophthalmology. 2002;109(7):1225–34. https://doi.org/10.1016/s0161-6420(02)01074-6. PMID: 12093643.

    Article  PubMed  Google Scholar 

  40. Gong R, Han R, Guo J, Liu W, Xu G. Quantitative evaluation of hard exudates in diabetic macular edema by multicolor imaging and their associations with serum lipid levels. Acta Diabetol. 2021;58(9):1161–7. https://doi.org/10.1007/s00592-021-01697-8. Epub ahead of print. PMID: 33811294.

    Article  CAS  PubMed  Google Scholar 

  41. Sen K, Misra A, Kumar A, Pandey RM. Simvastatin retards progression of retinopathy in diabetic patients with hypercholesterolemia. Diabetes Res Clin Pract. 2002;56(1):1–11. https://doi.org/10.1016/s0168-8227(01)00341-2. PMID: 11879715.

    Article  CAS  PubMed  Google Scholar 

  42. Kang EY, Chen TH, Garg SJ, Sun CC, Kang JH, Wu WC, Hung MJ, Lai CC, Cherng WJ, Hwang YS. Association of statin therapy with prevention of vision-threatening diabetic retinopathy. JAMA Ophthalmol. 2019;137(4):363–71. https://doi.org/10.1001/jamaophthalmol.2018.6399. PMID: 30629109; PMCID: PMC6459113.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pranata R, Vania R, Victor AA. Statin reduces the incidence of diabetic retinopathy and its need for intervention: a systematic review and meta-analysis. Eur J Ophthalmol. 2021;31(3):1216–24. https://doi.org/10.1177/1120672120922444. Epub ahead of print. PMID: 32530705.

    Article  PubMed  Google Scholar 

  44. ACCORD Study Group; ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, Hubbard L, Esser BA, Lovato JF, Perdue LH, Goff DC Jr, Cushman WC, Ginsberg HN, Elam MB, Genuth S, Gerstein HC, Schubart U, Fine LJ. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44. https://doi.org/10.1056/NEJMoa1001288. Epub 2010 Jun 29. Erratum in: N Engl J Med. 2011 Jan 13;364(2):190. Erratum in: N Engl J Med. 2012 Dec 20;367(25):2458. PMID: 20587587; PMCID: PMC4026164.

    Article  CAS  Google Scholar 

  45. Kawasaki R, Konta T, Nishida K. Lipid-lowering medication is associated with decreased risk of diabetic retinopathy and the need for treatment in patients with type 2 diabetes: a real-world observational analysis of a health claims database. Diabetes Obes Metab. 2018;20(10):2351–60. https://doi.org/10.1111/dom.13372. Epub 2018 Jun 21. PMID: 29790265.

    Article  CAS  PubMed  Google Scholar 

  46. Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TM, Moffitt MS, Taskinen MR, Simes RJ, Tse D, Williamson E, Merrifield A, Laatikainen LT, d’Emden MC, Crimet DC, O’Connell RL, Colman PG, FIELD Study Investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97. https://doi.org/10.1016/S0140-6736(07)61607-9. Epub 2007 Nov 7. PMID: 17988728.

    Article  CAS  PubMed  Google Scholar 

  47. Muni RH, Kohly RP, Lee EQ, Manson JE, Semba RD, Schaumberg DA. Prospective study of inflammatory biomarkers and risk of diabetic retinopathy in the diabetes control and complications trial. JAMA Ophthalmol. 2013;131(4):514–21. https://doi.org/10.1001/jamaophthalmol.2013.2299. PMID: 23392399; PMCID: PMC3625475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diamantis E, Kyriakos G, Quiles-Sanchez LV, Farmaki P, Troupis T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev. 2017;13(3):209–16. https://doi.org/10.2174/1573403X13666170426104611. PMID: 28462692; PMCID: PMC5633715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miljanovic B, Glynn RJ, Nathan DM, Manson JE, Schaumberg DA. A prospective study of serum lipids and risk of diabetic macular edema in type 1 diabetes. Diabetes. 2004;53(11):2883–92. https://doi.org/10.2337/diabetes.53.11.2883. PMID: 15504969.

    Article  CAS  PubMed  Google Scholar 

  50. Mehta H, Fraser-Bell S, Yeung A, Campain A, Lim LL, Quin GJ, McAllister IL, Keane PA, Gillies MC. Efficacy of dexamethasone versus bevacizumab on regression of hard exudates in diabetic maculopathy: data from the BEVORDEX randomised clinical trial. Br J Ophthalmol. 2016;100(7):1000–4. https://doi.org/10.1136/bjophthalmol-2015-307797. Epub 2015 Nov 4. PMID: 26537156.

    Article  PubMed  Google Scholar 

  51. Chaikitmongkol V, Bressler NM. Intraretinal fibrosis in exudative diabetic macular edema after ranibizumab treatments. Retin Cases Brief Rep 2014;8(4):336-339. doi: https://doi.org/10.1097/ICB.0000000000000063. PMID: 25372542.

  52. Fong DS, Segal PP, Myers F, Ferris FL, Hubbard LD, Davis MD. Subretinal fibrosis in diabetic macular edema. ETDRS report 23. Early Treatment Diabetic Retinopathy Study Research Group. Arch Ophthalmol. 1997;115(7):873–7. https://doi.org/10.1001/archopht.1997.01100160043006. PMID: 9230827.

    Article  CAS  PubMed  Google Scholar 

  53. Begg IS, Rootman J. Clinico-pathological study of an organized plaque in exudative diabetic maculopathy. Can J Ophthalmol. 1976;11(3):197–202. PMID: 949627.

    CAS  PubMed  Google Scholar 

  54. Sigurdsson R, Begg IS. Organised macular plaques in exudative diabetic maculopathy. Br J Ophthalmol. 1980;64(6):392–7. https://doi.org/10.1136/bjo.64.6.392. PMID: 7190023; PMCID: PMC1043715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumagai K, Ogino N, Fukami M, Furukawa M. Removal of foveal hard exudates by subretinal balanced salt solution injection using 38-gauge needle in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 2020;258(9):1893–9. https://doi.org/10.1007/s00417-020-04756-y. Epub 2020 May 25. PMID: 32451607.

    Article  PubMed  Google Scholar 

  56. Avci R, Inan UU, Kaderli B. Long-term results of excision of plaque-like foveal hard exudates in patients with chronic diabetic macular oedema. Eye (Lond). 2008;22(9):1099–104. https://doi.org/10.1038/sj.eye.6702877. Epub 2007 Jul 20. PMID: 17641680.

    Article  CAS  PubMed  Google Scholar 

  57. Srinivas S, Verma A, Nittala MG, Alagorie AR, Nassisi M, Gasperini J, Sadda SR. Effect of intravitreal Ranibizumab on Intraretinal hard exudates in eyes with diabetic macular edema. Am J Ophthalmol. 2020;211:183–90. https://doi.org/10.1016/j.ajo.2019.11.014. Epub 2019 Nov 20. PMID: 31758926.

    Article  CAS  PubMed  Google Scholar 

  58. Larsson J, Kifley A, Zhu M, Wang JJ, Mitchell P, Sutter FK, Gillies MC. Rapid reduction of hard exudates in eyes with diabetic retinopathy after intravitreal triamcinolone: data from a randomized, placebo-controlled, clinical trial. Acta Ophthalmol. 2009;87(3):275–80. https://doi.org/10.1111/j.1755-3768.2008.01245.x. Epub 2008 Sep 10. PMID: 18785964.

    Article  CAS  PubMed  Google Scholar 

  59. Domalpally A, Ip MS, Ehrlich JS. Effects of intravitreal ranibizumab on retinal hard exudate in diabetic macular edema: findings from the RIDE and RISE phase III clinical trials. Ophthalmology. 2015;122(4):779–86. https://doi.org/10.1016/j.ophtha.2014.10.028. Epub 2015 Jan 17. PMID: 25601535.

    Article  PubMed  Google Scholar 

  60. Klein R, Klein BE, Moss SE, Meuer SM. The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study. Trans Am Ophthalmol Soc. 2000;98:133–41; discussion 141–3. PMID: 11190017; PMCID: PMC1298220.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. The Eye Disease Case-control Study Group. Risk factors for branch retinal vein occlusion. Am J Ophthalmol. 1993;116(3):286–96. PMID: 8357052.

    Article  Google Scholar 

  62. Christoffersen NL, Larsen M. Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology. 1999;106(11):2054–62. https://doi.org/10.1016/S0161-6420(99)90483-9. PMID: 10571337.

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki N, Hirano Y, Tomiyasu T, Kurobe R, Yasuda Y, Esaki Y, Yasukawa T, Yoshida M, Ogura Y. Collateral vessels on optical coherence tomography angiography in eyes with branch retinal vein occlusion. Br J Ophthalmol. 2019;103(10):1373–9. https://doi.org/10.1136/bjophthalmol-2018-313322. Epub 2018 Nov 22. PMID: 30467130.

    Article  PubMed  Google Scholar 

  64. Freund KB, Sarraf D, Leong BCS, Garrity ST, Vupparaboina KK, Dansingani KK. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex. JAMA Ophthalmol. 2018;136(11):1262–70. https://doi.org/10.1001/jamaophthalmol.2018.3586. PMID: 30352115; PMCID: PMC6248171.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tomiyasu T, Hirano Y, Yoshida M, Suzuki N, Nishiyama T, Uemura A, Yasukawa T, Ogura Y. Microaneurysms cause refractory macular edema in branch retinal vein occlusion. Sci Rep. 2016;6:29445. https://doi.org/10.1038/srep29445. PMID: 27389770; PMCID: PMC4937381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shields CL, Udyaver S, Dalvin LA, Lim LS, Atalay HT, Khoo CTL, Mazloumi M, Shields JA. Coats disease in 351 eyes: analysis of features and outcomes over 45 years (by decade) at a single center. Indian J Ophthalmol. 2019;67(6):772–83. https://doi.org/10.4103/ijo.IJO_449_19. PMID: 31124485; PMCID: PMC6552575.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sigler EJ, Randolph JC, Calzada JI, Wilson MW, Haik BG. Current management of Coats disease. Surv Ophthalmol. 2014;59(1):30–46. https://doi.org/10.1016/j.survophthal.2013.03.007. Epub 2013 Oct 15. PMID: 24138893.

    Article  PubMed  Google Scholar 

  68. Rishi E, Rishi P, Appukuttan B, Uparkar M, Sharma T, Gopal L. Coats’ disease of adult-onset in 48 eyes. Indian J Ophthalmol. 2016;64(7):518–23. https://doi.org/10.4103/0301-4738.190141. PMID: 27609165; PMCID: PMC5026078.

    Article  PubMed  PubMed Central  Google Scholar 

  69. He YG, Wang H, Zhao B, Lee J, Bahl D, McCluskey J. Elevated vascular endothelial growth factor level in Coats’ disease and possible therapeutic role of bevacizumab. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1519–21. https://doi.org/10.1007/s00417-010-1366-1. Epub 2010 Apr 9. PMID: 20379736.

    Article  CAS  PubMed  Google Scholar 

  70. Goel N, Kumar V, Seth A, Raina UK, Ghosh B. Role of intravitreal bevacizumab in adult onset Coats’ disease. Int Ophthalmol. 2011;31(3):183–90. https://doi.org/10.1007/s10792-011-9436-x. Epub 2011 Mar 25. PMID: 21437759.

    Article  PubMed  Google Scholar 

  71. Feng J, Zheng X, Li B, Jiang Y. Differences in aqueous concentrations of cytokines in paediatric and adult patients with Coats’ disease. Acta Ophthalmol. 2017;95(6):608–12. https://doi.org/10.1111/aos.13151. Epub 2016 Jun 30. PMID: 27364629.

    Article  CAS  PubMed  Google Scholar 

  72. Yang X, Wang C, Su G. Recent advances in the diagnosis and treatment of Coats’ disease. Int Ophthalmol. 2019;39(4):957–70. https://doi.org/10.1007/s10792-019-01095-8. Epub 2019 Mar 20. PMID: 30895419.

    Article  PubMed  Google Scholar 

  73. Bajgai P, Katoch D, Dogra MR, Singh R. Idiopathic retinal vasculitis, aneurysms, and neuroretinitis (IRVAN) syndrome: clinical perspectives. Clin Ophthalmol. 2017;11:1805–17. https://doi.org/10.2147/OPTH.S128506. PMID: 29062224; PMCID: PMC5640394.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Parchand S, Bhalekar S, Gupta A, Singh R. Primary branch retinal artery occlusion in idiopathic retinal vasculitis, aneurysms, and neuroretinitis syndrome associated with hyperhomocysteinemia. Retin Cases Brief Rep. 2012;6(4):349–52. https://doi.org/10.1097/ICB.0b013e31823c1289. PMID: 25389928.

    Article  PubMed  Google Scholar 

  75. Zina S, Ksiaa I, Abdelhedi C, Ben Amor H, Attia S, Khochtali S, Khairallah M. Multimodal imaging in IRVAN syndrome presenting with branch retinal artery occlusion. Eur J Ophthalmol. 2020:1120672120965492. https://doi.org/10.1177/1120672120965492. Epub ahead of print. PMID: 33092394.

  76. Singh AD, Nouri M, Shields CL, Shields JA, Smith AF. Retinal capillary hemangioma: a comparison of sporadic cases and cases associated with von Hippel-Lindau disease. Ophthalmology. 2001;108(10):1907–11. https://doi.org/10.1016/s0161-6420(01)00758-8. PMID: 11581072.

    Article  CAS  PubMed  Google Scholar 

  77. Los M, Aarsman CJ, Terpstra L, Wittebol-Post D, Lips CJ, Blijham GH, Voest EE. Elevated ocular levels of vascular endothelial growth factor in patients with von Hippel-Lindau disease. Ann Oncol. 1997;8(10):1015–22. https://doi.org/10.1023/a:1008213320642. PMID: 9402176.

    Article  CAS  PubMed  Google Scholar 

  78. Chan CC, Vortmeyer AO, Chew EY, Green WR, Matteson DM, Shen DF, Linehan WM, Lubensky IA, Zhuang Z. VHL gene deletion and enhanced VEGF gene expression detected in the stromal cells of retinal angioma. Arch Ophthalmol. 1999;117(5):625–30. https://doi.org/10.1001/archopht.117.5.625. PMID: 10326959.

    Article  CAS  PubMed  Google Scholar 

  79. Di Nicola M, Williams BK Jr, Hua J, Bekerman VP, Mashayekhi A, Shields JA, Shields CL. Photodynamic therapy for retinal hemangioblastoma: treatment outcomes of 17 consecutive patients. Ophthalmol Retina. 2022;6(1):80–8. https://doi.org/10.1016/j.oret.2021.04.007. S2468-6530(21)00124-X. Epub ahead of print. PMID: 33892136.

    Article  PubMed  Google Scholar 

  80. Aronow ME, Wiley HE, Gaudric A, Krivosic V, Gorin MB, Shields CL, Shields JA, Jonasch EW, Singh AD, Chew EY. Von Hippel-Lindau disease: update on pathogenesis and systemic aspects. Retina. 2019;39(12):2243–53. https://doi.org/10.1097/IAE.0000000000002555. PMID: 31095066.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Bansal, R., Sharma, A., Kapil, A. (2023). Retinal Hard Exudates. In: Ophthalmic Signs in Practice of Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-99-7923-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7923-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7922-6

  • Online ISBN: 978-981-99-7923-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics