Skip to main content

Stromal Lenticule Addition Keratoplasty (SLAK)

  • Chapter
  • First Online:
Modern Keratoplasty

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 132 Accesses

Abstract

In the past decades, femtosecond laser (FSL) became a valuable ophthalmic surgical tool for the refractive surgeon. Thanks to the capability of dissecting transparent tissues and creating complex cut geometry, FSL leads to the introduction of a new type of refractive surgery procedure called refractive lenticule extraction. The nondestructive approach of lenticule subtraction rather than photoablation of these techniques has made it possible to obtain a whole new source of stromal tissues not available before. Extracted lenticules maintain the vitality and transparency and can be stored and reused for further procedures. The use of these FSL-dissected lenticules has renewed the old additive approach of “stromal keratophakia” for the correction of refractive errors. Recent studies showed that lenticules maintain their structure after implantation into the recipient corneal stroma and effectively change the corneal curvature with sufficient predictability. Despite the possible use of lenticules for correcting refractive errors, the interest in remodeling the cornea in ectatic disorders is of particular interest. The progressive stromal thinning and corneal protrusion in keratoconus leading to severe irregular astigmatism occur in the majority of cases maintaining the corneal transparency. Therefore, the surgical management of keratoconus with keratoplasty, in which the whole stroma is replaced, may become unnecessary by borrowing the principles of novel stromal keratophakia concept, such as lenticule implantations by the aid of FSL. Stromal lenticule addition keratoplasty has been proposed as an additive keratoplasty approach by using negative meniscus lenticule to reduce central corneal curvature and in the meantime increase corneal thickness in cases of moderate ectasia. The first ex vivo study proved good predictability of curvature changes in normal donor cornea, while the subsequent human case series in advanced keratoconus showed that lenticules induce central corneal flattening, integrate into the corneal stroma, and maintain transparency over time. Future perspectives include customization of lenticules to be implanted and the possibility of banking cryo-preserved lenticules for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomes JAP, Tan D, Rapuano CJ, Belin MW, Ambrósio R, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–69.

    Article  Google Scholar 

  2. Belin MW, Duncan JK. Keratoconus: the ABCD grading system. Klin Monatsbl Augenheilkd. 2016;233(6):701–7.

    Article  CAS  Google Scholar 

  3. Parker JS, van Dijk K, Melles GRJ. Treatment options for advanced keratoconus: a review. Surv Ophthalmol. 2015;60(5):459–80.

    Article  Google Scholar 

  4. Olivares Jiménez JL, Guerrero Jurado JC, Bermudez Rodriguez FJ, Serrano Laborda D. Keratoconus: age of onset and natural history. Optom Vis Sci. 1997;74(3):147–51.

    Article  Google Scholar 

  5. Yoshida J, Murata H, Miyai T, Shirakawa R, Toyono T, Yamagami S, et al. Characteristics and risk factors of recurrent keratoconus over the long term after penetrating keratoplasty. Graefes Arch Clin Exp Ophthalmol. 2018;256(12):2377–83.

    Article  Google Scholar 

  6. Han DCY, Mehta JS, Por YM, Htoon HM, Tan DTH. Comparison of outcomes of lamellar keratoplasty and penetrating keratoplasty in keratoconus. Am J Ophthalmol. 2009;148(5):744–751.e1.

    Article  Google Scholar 

  7. Yu AC, Franco E, Caruso L, Myerscough J, Spena R, Fusco F, et al. Ten-year outcomes of microkeratome-assisted lamellar keratoplasty for keratoconus. Br J Ophthalmol. 2020;105:1651.

    Article  Google Scholar 

  8. Myerscough J, Roberts H, Yu AC, Elkadim M, Bovone C, Busin M. Five-year outcomes of converted mushroom keratoplasty from intended Deep Anterior Lamellar Keratoplasty (DALK) mandate 9-mm diameter DALK as the optimal approach to keratoconus. Am J Ophthalmol. 2020;220:9–18.

    Article  Google Scholar 

  9. Liu H, Chen Y, Wang P, Li B, Wang W, Su Y, et al. Efficacy and safety of deep anterior lamellar keratoplasty vs. penetrating keratoplasty for keratoconus: a meta-analysis. PLoS One. 2015;10(1):e0113332.

    Article  Google Scholar 

  10. Smiddy WE, Hamburg TR, Kracher GP, Stark WJ. Keratoconus. Contact lens or keratoplasty? Ophthalmology. 1988;95(4):487–92.

    Article  CAS  Google Scholar 

  11. Arnalich-Montiel F, Alió Del Barrio JL, Alió JL. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis. 2016;3:2.

    Article  Google Scholar 

  12. Mastropasqua L. Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives. Eye Vis. 2015;2:19.

    Article  Google Scholar 

  13. Doss JD, Hutson RL, Rowsey JJ, Brown DR. Method for calculation of corneal profile and power distribution. Arch Ophthalmol. 1981;99(7):1261–5.

    Article  CAS  Google Scholar 

  14. Olsen T. On the calculation of power from curvature of the cornea. Br J Ophthalmol. 1986;70(2):152–4.

    Article  CAS  Google Scholar 

  15. Nordan LT. Barraquer lecture. José Barraquer: father of modern refractive keratoplasty. Refract Corneal Surg. 1989;5(3):177–8.

    Article  CAS  Google Scholar 

  16. Swinger CA, Barraquer JI. Keratophakia and keratomileusis--clinical results. Ophthalmology. 1981;88(8):709–15.

    Article  CAS  Google Scholar 

  17. Barraquer JI. Keratomileusis. Int Surg. 1967;48(2):103–17.

    CAS  Google Scholar 

  18. Ainslie D. The surgical correction of refractive errors by keratomileusis and keratophakia. Ann Ophthalmol. 1976;8(3):349–67.

    CAS  Google Scholar 

  19. Troutman RC, Swinger C, Goldstein M. Keratophakia update. Ophthalmology. 1981;88(1):36–8.

    Article  CAS  Google Scholar 

  20. Friedlander MH, Safir A, McDonald MB, Kaufman HE, Granet N. Update on keratophakia. Ophthalmology. 1983;90(4):365–8.

    Article  CAS  Google Scholar 

  21. Friedlander MH, Rich LF, Werblin TP, Kaufman HE, Granet N. Keratophakia using preserved lenticules. Ophthalmology. 1980;87(7):687–92.

    Article  CAS  Google Scholar 

  22. Maguen E, Pinhas S, Verity SM, Nesburn AB. Keratophakia with lyophilized cornea lathed at room temperature: new techniques and experimental surgical results. Ophthalmic Surg. 1983;14(9):759–62.

    CAS  Google Scholar 

  23. Kaufman HE. The correction of aphakia. XXXVI Edward Jackson Memorial Lecture. Am J Ophthalmol. 1980;89(1):1–10.

    Article  CAS  Google Scholar 

  24. Busin M, Cusumano A, Spitznas M. Epithelial interface cysts after epikeratophakia. Ophthalmology. 1993;100(8):1225–9.

    Article  CAS  Google Scholar 

  25. Riau AK, Liu Y-C, Yam GHF, Mehta JS. Stromal keratophakia: corneal inlay implantation. Prog Retin Eye Res. 2020;75:100780.

    Article  Google Scholar 

  26. Sekundo W, Kunert K, Russmann C, Gille A, Bissmann W, Stobrawa G, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg. 2008;34(9):1513–20.

    Article  Google Scholar 

  27. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3):335–9.

    Article  Google Scholar 

  28. Mohamed-Noriega K, Toh K-P, Poh R, Balehosur D, Riau A, Htoon HM, et al. Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation. Mol Vis. 2011;17:3437–49.

    CAS  Google Scholar 

  29. Angunawela RI, Riau AK, Chaurasia SS, Tan DT, Mehta JS. Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2012;53(8):4975–85.

    Article  Google Scholar 

  30. Riau AK, Angunawela RI, Chaurasia SS, Lee WS, Tan DT, Mehta JS. Reversible femtosecond laser-assisted myopia correction: a non-human primate study of lenticule re-implantation after refractive lenticule extraction. PLoS One. 2013;8(6):e67058.

    Article  CAS  Google Scholar 

  31. Liu H, Zhu W, Jiang AC, Sprecher AJ, Zhou X. Femtosecond laser lenticule transplantation in rabbit cornea: experimental study. J Refract Surg. 2012;28(12):907–11.

    Article  Google Scholar 

  32. Zhang T, Sun Y, Liu M, Zhou Y, Wang D, Chen Y, et al. Femtosecond laser-assisted endokeratophakia using allogeneic corneal lenticule in a rabbit model. J Refract Surg. 2015;31(11):775–82.

    Article  Google Scholar 

  33. Liu R, Zhao J, Xu Y, Li M, Niu L, Liu H, et al. Femtosecond laser-assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: a pilot study. Invest Ophthalmol Vis Sci. 2015;56(6):3715–20.

    Article  CAS  Google Scholar 

  34. Pradhan KR, Reinstein DZ, Carp GI, Archer TJ, Gobbe M, Gurung R. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013;29(11):777–82.

    Article  Google Scholar 

  35. Williams GP, Wu B, Liu YC, Teo E, Nyein CL, Peh G, et al. Hyperopic refractive correction by LASIK, SMILE or lenticule reimplantation in a non-human primate model. PLoS One. 2018;13(3):e0194209.

    Article  Google Scholar 

  36. Jacob S, Kumar DA, Agarwal A, Agarwal A, Aravind R, Saijimol AI. Preliminary evidence of successful near vision enhancement with a new technique: presbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg. 2017;33(4):224–9.

    Article  Google Scholar 

  37. Liu Y-C, Teo EPW, Ang HP, Seah XY, Lwin NC, Yam GHF, et al. Biological corneal inlay for presbyopia derived from small incision lenticule extraction (SMILE). Sci Rep. 2018;8(1):1831.

    Article  Google Scholar 

  38. Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014;33(12):1355–62.

    Article  Google Scholar 

  39. Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus--initial clinical result in 6 eyes. Cornea. 2015;34(10):1331–9.

    Article  Google Scholar 

  40. Mastropasqua L, Nubile M. Corneal thickening and central flattening induced by femtosecond laser hyperopic-shaped intrastromal lenticule implantation. Int Ophthalmol. 2017;37(4):893–904.

    Article  Google Scholar 

  41. Liu Y-C, Ang HP, Teo EPW, Lwin NC, Yam GHF, Mehta JS. Wound healing profiles of hyperopic-small incision lenticule extraction (SMILE). Sci Rep. 2016;6:29802.

    Article  CAS  Google Scholar 

  42. Mastropasqua L, Nubile M, Salgari N, Mastropasqua R. Femtosecond laser-assisted stromal lenticule addition keratoplasty for the treatment of advanced keratoconus: a preliminary study. J Refract Surg. 2018;34(1):36–44.

    Article  Google Scholar 

  43. Konstantopoulos A, Liu Y-C, Teo EPW, Lwin NC, Yam GHF, Mehta JS. Early wound healing and refractive response of different pocket configurations following presbyopic inlay implantation. PLoS One. 2017;12(2):e0172014.

    Article  Google Scholar 

  44. Slade SG. Applications for the femtosecond laser in corneal surgery. Curr Opin Ophthalmol. 2007;18(4):338–41.

    Article  Google Scholar 

  45. Reinstein DZ, Archer TJ, Gobbe M. Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes. Eye Vis. 2014;1:3.

    Article  Google Scholar 

  46. Vestergaard AH, Grønbech KT, Grauslund J, Ivarsen AR, Hjortdal JØ. Subbasal nerve morphology, corneal sensation, and tear film evaluation after refractive femtosecond laser lenticule extraction. Graefes Arch Clin Exp Ophthalmol. 2013;251(11):2591–600.

    Article  Google Scholar 

  47. Li M, Niu L, Qin B, Zhou Z, Ni K, Le Q, et al. Confocal comparison of corneal reinnervation after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). PLoS One. 2013;8(12):e81435.

    Article  Google Scholar 

  48. Mohamed-Noriega K, Riau AK, Lwin NC, Chaurasia SS, Tan DT, Mehta JS. Early corneal nerve damage and recovery following small incision lenticule extraction (SMILE) and laser in situ keratomileusis (LASIK). Invest Ophthalmol Vis Sci. 2014;55(3):1823–34.

    Article  Google Scholar 

  49. Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg. 2013;29(7):454–60.

    Article  Google Scholar 

  50. Riau AK, Angunawela RI, Chaurasia SS, Tan DT, Mehta JS. Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction. J Cataract Refract Surg. 2012;38(8):1467–75.

    Article  Google Scholar 

  51. Ivarsen A, Asp S, Hjortdal J. Safety and complications of more than 1500 small-incision lenticule extraction procedures. Ophthalmology. 2014;121(4):822–8.

    Article  Google Scholar 

  52. Yang W, Li M, Fu D, Wei R, Cui C, Zhou X. A comparison of the effects of different cap thicknesses on corneal nerve destruction after small incision lenticule extraction. Int Ophthalmol. 2020;40(8):1905–11.

    Article  Google Scholar 

  53. Mastropasqua L, Salgari N, D’Ugo E, Lanzini M, Alió Del Barrio JL, Alió JL, et al. In vivo confocal microscopy of stromal lenticule addition keratoplasty for advanced keratoconus. J Refract Surg. 2020;36(8):544–50.

    Article  Google Scholar 

  54. Vega-Estrada A, Mimouni M, Espla E, Alió Del Barrio J, Alio JL. Corneal epithelial thickness intrasubject repeatability and its relation with visual limitation in keratoconus. Am J Ophthalmol. 2019;200:255–62.

    Article  Google Scholar 

  55. Franco J, White CA, Kruh JN. Analysis of compensatory corneal epithelial thickness changes in keratoconus using corneal tomography. Cornea. 2020;39(3):298–302.

    Article  Google Scholar 

  56. Luft N, Ring MH, Dirisamer M, Mursch-Edlmayr AS, Kreutzer TC, Pretzl J, et al. Corneal epithelial remodeling induced by small incision lenticule extraction (SMILE). Invest Ophthalmol Vis Sci. 2016;57(9):OCT176–83.

    Article  Google Scholar 

  57. Hwang ES, Schallhorn JM, Randleman JB. Utility of regional epithelial thickness measurements in corneal evaluations. Surv Ophthalmol. 2020;65(2):187–204.

    Article  Google Scholar 

  58. Reinstein DZ, Silverman RH, Rondeau MJ, Coleman DJ. Epithelial and corneal thickness measurements by high-frequency ultrasound digital signal processing. Ophthalmology. 1994;101(1):140–6.

    Article  CAS  Google Scholar 

  59. Reinstein DZ, Archer TJ, Gobbe M. Refractive and topographic errors in topography-guided ablation produced by epithelial compensation predicted by 3D Artemis VHF digital ultrasound stromal and epithelial thickness mapping. J Refract Surg. 2012;28(9):657–63.

    Article  Google Scholar 

  60. Kanellopoulos AJ. Comparison of corneal epithelial remodeling over 2 years in LASIK versus SMILE: a contralateral eye study. Cornea. 2019;38(3):290–6.

    Article  Google Scholar 

  61. Nubile M, Salgari N, Mehta JS, Calienno R, Erroi E, Bondì J, et al. Epithelial and stromal remodelling following femtosecond laser-assisted stromal lenticule addition keratoplasty (SLAK) for keratoconus. Sci Rep. 2021;11(1):2293.

    Article  CAS  Google Scholar 

  62. Damgaard IB, Ivarsen A, Hjortdal J. Biological lenticule implantation for correction of hyperopia: an ex vivo study in human corneas. J Refract Surg. 2018;34(4):245–52.

    Article  Google Scholar 

  63. Lazaridis A, Messerschmidt-Roth A, Sekundo W, Schulze S. Refractive lenticule implantation for correction of ametropia: case reports and literature review. Klin Monatsbl Augenheilkd. 2017;234(1):77–89.

    CAS  Google Scholar 

  64. Vega-Estrada A, Alio JL. The use of intracorneal ring segments in keratoconus. Eye Vis. 2016;3:8.

    Article  Google Scholar 

  65. Kamiya K, Shimizu K, Ohmoto F. Time course of corneal biomechanical parameters after laser in situ keratomileusis. Ophthalmic Res. 2009;42(3):167–71.

    Article  Google Scholar 

  66. Sorbara L, Lopez JCL, Gorbet M, Bizheva K, Lamarca JM, Pastor J-C, et al. Impact of contact lens wear on epithelial alterations in keratoconus. J Opt. 2021;14(1):37–43.

    Article  Google Scholar 

  67. Alio JL, Abdelghany AA, Barraquer R, Hammouda LM, Sabry AM. Femtosecond laser assisted deep anterior lamellar keratoplasty outcomes and healing patterns compared to manual technique. Biomed Res Int. 2015;2015:397891.

    Article  Google Scholar 

  68. Warrak EL, Serhan HA, Ayash JG, Wahab CH, Baban TA, Daoud RC, et al. Long-term follow up of intracorneal ring segment implantation in 932 keratoconus eyes. J Fr Ophtalmol. 2020;43(10):1020–4.

    Article  CAS  Google Scholar 

  69. Abreu AC, Malheiro L, Coelho J, Neves MM, Gomes M, Oliveira L, et al. Implantation of intracorneal ring segments in pediatric patients: long-term follow-up. Int Med Case Rep J. 2018;11:23–7.

    Article  Google Scholar 

  70. Mastropasqua L, Nubile M, Lanzini M, Carpineto P, Ciancaglini M, Pannellini T, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol. 2006;142(5):736–44.

    Article  Google Scholar 

  71. Wang D, Song P, Wang S, Sun D, Wang Y, Zhang Y, et al. Laser scanning in vivo confocal microscopy of clear grafts after penetrating keratoplasty. Biomed Res Int. 2016;2016:5159746.

    Google Scholar 

  72. Chirapapaisan C, Abbouda A, Jamali A, Müller RT, Cavalcanti BM, Colon C, et al. In vivo confocal microscopy demonstrates increased immune cell densities in corneal graft rejection correlating with signs and symptoms. Am J Ophthalmol. 2019;203:26–36.

    Article  Google Scholar 

  73. Kocaba V, Colica C, Rabilloud M, Burillon C. Predicting corneal graft rejection by confocal microscopy. Cornea. 2015;34(Suppl 10):S61–4.

    Article  Google Scholar 

  74. Giannaccare G, Weiss JS, Sapigni L, Bovone C, Mattioli L, Campos EC, et al. Immunologic stromal rejection after deep anterior lamellar keratoplasty with grafts of a larger size (9 mm) for various stromal diseases. Cornea. 2018;37(8):967–72.

    Article  Google Scholar 

  75. Al-Aqaba MA, Otri AM, Fares U, Miri A, Dua HS. Organization of the regenerated nerves in human corneal grafts. Am J Ophthalmol. 2012;153(1):29–37.e4.

    Article  Google Scholar 

  76. Pang A, Mohamed-Noriega K, Chan AS, Mehta JS. Confocal microscopy findings in deep anterior lamellar keratoplasty performed after Descemet’s stripping automated endothelial keratoplasty. Clin Ophthalmol. 2014;8:243–9.

    Article  Google Scholar 

  77. Fontana L, Parente G, Sincich A, Tassinari G. Influence of graft-host interface on the quality of vision after deep anterior lamellar keratoplasty in patients with keratoconus. Cornea. 2011;30(5):497–502.

    Article  Google Scholar 

  78. Schiano-Lomoriello D, Colabelli-Gisoldi RA, Nubile M, Oddone F, Ducoli G, Villani CM, et al. Descemetic and predescemetic DALK in keratoconus patients: a clinical and confocal perspective study. Biomed Res Int. 2014;2014:123156.

    Article  Google Scholar 

  79. Bhatt UK, Fares U, Rahman I, Said DG, Maharajan SV, Dua HS. Outcomes of deep anterior lamellar keratoplasty following successful and failed “big bubble”. Br J Ophthalmol. 2012;96(4):564–9.

    Article  Google Scholar 

  80. Abdelkader A, Kaufman HE. Descemetic versus pre-descemetic lamellar keratoplasty: clinical and confocal study. Cornea. 2011;30(11):1244–52.

    Article  Google Scholar 

  81. Ganesh S, Brar S, Pandey R, Pawar A. Interface healing and its correlation with visual recovery and quality of vision following small incision lenticule extraction. Indian J Ophthalmol. 2018;66:212.

    Article  Google Scholar 

  82. Riau AK, Angunawela RI, Chaurasia SS, Lee WS, Tan DT, Mehta JS. Early corneal wound healing and inflammatory responses after refractive lenticule extraction (ReLEx). Invest Ophthalmol Vis Sci. 2011;52(9):6213–21.

    Article  Google Scholar 

  83. Doroodgar F, Jabbarvand M, Niazi S, Karimian F, Niazi F, Sanginabadi A, Ghoreishi M, Alinia C, Hashemi H, Alió JL. Customized stromal lenticule implantation for keratoconus. J Refract Surg. 2020;36(12):786–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

The surgical procedure starts with the creation of the donor lenticule and the intra-stromal pocket into the recipient cornea by means of femtosecond laser. After dissection, lenticule is transferred to the recipient cornea and inserted through the incision and spread out with a dedicated forceps. Final position and distention are achieved by gentle manipulation of the corneal surface (MP4 21,956 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mastropasqua, L., Salgari, N., Lanzini, M., Nubile, M. (2023). Stromal Lenticule Addition Keratoplasty (SLAK). In: Alió, J.L., del Barrio, J.L.A. (eds) Modern Keratoplasty. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-031-32408-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32408-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32407-9

  • Online ISBN: 978-3-031-32408-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics