Skip to main content

MAC-Based Symmetric Key Protocol for Secure Traffic Forwarding in Drones

  • Conference paper
  • First Online:
Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS 2022)

Abstract

Unmanned aerial vehicles have been deployed for surveillance in highly sensitive domains such as in the military. As such, the data exchanged between the operators and these aerial vehicles must be protected as any malicious access may lead to leakages and adversarial control of the drones. To achieve this, many schemes have been developed based on techniques such as blockchains, elliptic curve cryptography, dynamic keys, physically unclonable function, asymmetric and symmetric cryptography among others. However, majority of these protocols have been shown to be inefficient for deployment in this environment, while others have security holes that be exploited by attackers to cause mayhem in these networks. In this paper, a protocol that leverages on quadratic residues and Chinese remainder theorem is developed. Its security analysis shows that it offers mutual authentication, non-repudiation, unlinkability, identity privacy and traceability for misbehaving drones. It is also resilient against impersonation, forgery and replay attacks. In terms of performance, this protocol has the least execution time and relatively lower bandwidth requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozmen, M.O., Attila Yavuz, A.: Dronecrypt-an efficient cryptographic framework for small aerial drones. In: Prooceedings of IEEE Military Communications Conference (MILCOM), pp. 1–6. IEEE (2018)

    Google Scholar 

  2. Sun, J., et al.: A data authentication scheme for UAV ad hoc network communication. J. Supercomput. 76(6), 4041–4056 (2017). https://doi.org/10.1007/s11227-017-2179-3

    Article  Google Scholar 

  3. Giordan, D., et al.: The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull. Eng. Geol. Env. 79(7), 3437–3481 (2020). https://doi.org/10.1007/s10064-020-01766-2

    Article  Google Scholar 

  4. Nyangaresi, V. O., Morsy, M.A.: Towards privacy preservation in internet of drones. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 306–311. IEEE (2021)

    Google Scholar 

  5. Kwon, Y.M., Yu, J., Cho, B.M., Eun, Y., Park, K.J.: Empirical analysis of MAVLink protocol vulnerability for attacking unmanned aerial vehicles. IEEE Access 6, 43203–43212 (2018)

    Article  Google Scholar 

  6. Teng, L., et al.: Lightweight security authentication mechanism towards UAV networks. In: 2019 International Conference on Networking and Network Applications (NaNA), pp. 379–384. IEEE (2019)

    Google Scholar 

  7. Hooper, M., et al.: Securing commercial Wifi based UAVs from common security attacks. In: Military Communications Conference (MILCOM), pp. 1213–1218. IEEE (2016)

    Google Scholar 

  8. Rodday, N.M., Schmidt, R.D.O., Pras, A.: Exploring security vulnerabilities of unmanned aerial vehicles. In: Network Operations and Management Symposium (NOMS), pp. 993–994. IEEE (2016)

    Google Scholar 

  9. Nyangaresi, V.O., Ogundoyin, S.O.: Certificate based authentication scheme for smart homes. In: 2021 3rd Global Power, Energy and Communication Conference (GPECOM), pp. 202–207. IEEE (2021)

    Google Scholar 

  10. Bansal, G., Sikdar, B.: S-MAPS: Scalable mutual authentication protocol for dynamic UAV swarms. IEEE Trans. Veh. Technol. 70(11), 12088–12100 (2021)

    Article  Google Scholar 

  11. Srinivas, J., Das, A.K., Kumar, N., Rodrigues, J.J.: Tcalas: temporal credential-based anonymous lightweight authentication scheme for Internet of drones environment. IEEE Trans. Veh. Technol. 68(7), 6903–6916 (2019)

    Article  Google Scholar 

  12. Lei, Y., Zeng, L., Li, Y.X., Wang, M.X., Qin, H.: A lightweight authentication protocol for UAV networks based on security and computational resource optimization. IEEE Access 9, 53769–53785 (2021)

    Article  Google Scholar 

  13. Yahuza, M., Idris, M.Y.I., Wahab, A.W.A., Nandy, T., Ahmedy, I.B., Ramli, R.: An edge assisted secure lightweight authentication technique for safe communication on the Internet of drones network. IEEE Access 9, 31420–31440 (2021)

    Article  Google Scholar 

  14. Ever, Y.K.: A secure authentication scheme framework for mobile-sinks used in the Internet of drones applications. Comput. Commun. 155, 143–149 (2020)

    Article  Google Scholar 

  15. Lin, C., He, D., Kumar, N., Choo, K.K.R., Vinel, A., Huang, X.: Security and privacy for the Internet of drones: challenges and solutions. IEEE Commun. Mag. 56(1), 64–69 (2018)

    Google Scholar 

  16. Nyangaresi, V.O., Petrovic, N.: Efficient PUF based authentication protocol for internet of drones. In: 2021 International Telecommunications Conference (ITC), pp. 1–4. IEEE (2021)

    Google Scholar 

  17. Yoon, K., Park, D., Yim, Y., Kim, K., Yang, S.K., Robinson, M.: Security authentication system using encrypted channel on UAV network. In: 2017 First IEEE International Conference on Robotic Computing (IRC), pp. 393–398. IEEE (2017)

    Google Scholar 

  18. Fang, D., Qian, Y., Hu, R.Q.: Security for 5g mobile wireless networks. IEEE Access 6, 4850–4874 (2017)

    Article  Google Scholar 

  19. Nyangaresi, V.O.: ECC based authentication scheme for smart homes. In: 2021 International Symposium ELMAR, pp. 5–10. IEEE (2021)

    Google Scholar 

  20. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design of a PUF-based privacy preserving authentication protocol. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_28

    Chapter  Google Scholar 

  21. Gope, P., Lee, J., Quek, T.Q.S.: Lightweight and practical anonymous authentication protocol for RFID systems using physically unclonable functions. IEEE Trans. Inf. Forensics Secur. 13(11), 2831–2843 (2018)

    Article  Google Scholar 

  22. Wazid, M., Das, A.K., Kumar, N., Vasilakos, A.V., Rodrigues, J.J.P.C.: Design and analysis of secure lightweight remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet Things J. 6(2), 3572–3584 (2019)

    Article  Google Scholar 

  23. Ali, Z., Chaudhry, S.A., Ramzan, M.S., Al-Turjman, F.: Securing smart city surveillance: a lightweight authentication mechanism for unmanned vehicles. IEEE Access 8, 43711–43724 (2020)

    Article  Google Scholar 

  24. Nyangaresi, V.O.: Hardware assisted protocol for attacks prevention in ad hoc networks. In: Miraz, M.H., Southall, G., Ali, M., Ware, A., Soomro, S. (eds.) iCETiC 2021. LNICSSITE, vol. 395, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90016-8_1

    Chapter  Google Scholar 

  25. Dammak, M., Boudia, O.R.M., Messous, M.A., Senouci, S.M., Gransart, C.: Token-based lightweight authentication to secure IoT networks. In: Proceedings of 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4. IEEE (2019)

    Google Scholar 

  26. Li, T., Ma, J., Ma, X., Gao, C., Zhang, J.: Lightweight secure communication mechanism towards UAV networks. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2019)

    Google Scholar 

  27. Shi, X., Xiao, D.: A reversible watermarking authentication scheme for wireless sensor networks. Inf. Sci. 240(11), 173–183 (2013)

    Article  MathSciNet  Google Scholar 

  28. Nicanfar, H., Jokar, P., Leung, V.C.: Smart grid authentication and key management for unicast and multicast communications. In: 2011 IEEE PES Innovative Smart Grid Technologies, pp. 1–8. IEEE (2011)

    Google Scholar 

  29. Nyangaresi, V.O., Rodrigues, A.J., Taha, N.K.: Mutual authentication protocol for secure VANET data exchanges. In: Perakovic, D., Knapcikova, L. (eds.) FABULOUS 2021. LNICSSITE, vol. 382, pp. 58–76. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78459-1_5

    Chapter  Google Scholar 

  30. Pu, C., Li, Y.: Lightweight authentication protocol for unmanned aerial vehicles using physical unclonable function and chaotic system. In: Proceedings of EEE International Symposium on Local and Metropolitan Area Networks (LANMAN), pp. 1–6. IEEE (2020)

    Google Scholar 

  31. Chen, L., Qian, S., Lim, M., Wang, S.: An enhanced direct anonymous attestation scheme with mutual authentication for network connected UAV communication systems. China Commun. 15(5), 61–76 (2018)

    Article  Google Scholar 

  32. Asokan, N., et al.: Seda: scalable embedded device attestation. In: Proceedings of the 22nd SIGSAC Conference on Computer and Communications Security, pp. 964–975. ACM (2015)

    Google Scholar 

  33. Ibrahim, A., Sadeghi, A.R., Tsudik, G., Zeitouni, S.: Darpa: device attestation resilient to physical attacks. In: Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pp. 171–182. ACM (2016)

    Google Scholar 

  34. Zhang, Y., He, D., Li, L., Chen, B.: A lightweight authentication and key agreement scheme for Internet of drones. Comput. Commun. 154, 455–464 (2020)

    Google Scholar 

  35. Lee, K., Nieto, J.G., Boyd, C.: A state-aware RFID privacy model with reader corruption. In: Xiang, Y., Lopez, J., Kuo, C.-C. J., Zhou, W. (eds.) CSS 2012. LNCS, vol. 7672, pp. 324–338. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35362-8_25

    Chapter  Google Scholar 

  36. Nyangaresi, V.O., Abduljabbar, Z.A., Al Sibahee, M.A., Abduljaleel, I.Q., Abood, E.W.: Towards security and privacy preservation in 5G networks. In: 2021 29th Telecommunications Forum (TELFOR), pp. 1–4. IEEE (2021)

    Google Scholar 

  37. Guan, T., Chen, Y.: A node clone attack detection scheme based on digital watermark in WSNs. In: IEEE International Conference on Computer Communication and the Internet, pp. 257–260. IEEE (2016)

    Google Scholar 

  38. Liang, W., Xie, S., Long, J., Li, K.C., Zhang, D., Li, K.: A double PUF based RFID identity authentication protocol in service-centric internet of things environments. Inf. Sci. 503, 129–147 (2019)

    Article  Google Scholar 

  39. Chamola, V., Hassija, V., Gupta, V., Guizani, M.: A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. IEEE Access 8, 90225–90265 (2020)

    Article  Google Scholar 

  40. Pandey, S., Deyati, S., Singh, A., Chatterjee, A.: Noise-resilient SRAM physically unclonable function design for security. In: IEEE 25th Asian Test Symposium, ATS, pp. 55–60. IEEE (2016)

    Google Scholar 

  41. Nyangaresi, V.O., Moundounga, A.R.A.: Secure data exchange scheme for smart grids. In: 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), pp. 312–316. IEEE (2021)

    Google Scholar 

  42. Challa, S., et al.: Secure signature-based authenticated key establishment scheme for future IoT applications. IEEE Access 5, 3028–3043 (2017)

    Article  Google Scholar 

  43. Tai, W.L., Chang, Y.F., Li, W.H.: An IoT notion-based authentication and key agreement scheme ensuring user anonymity for heterogeneous ad hoc wireless sensor networks. J. Inf. Secur. Appl. 34, 133–141 (2017)

    Google Scholar 

  44. Yan, Q., Gong, Q., Deng, F.A.: Detection of DDoS attacks against wireless SDN controllers based on the fuzzy synthetic evaluation decision making model. Adhoc Sens. Wirel. Netw. 33, 275–299 (2016)

    Google Scholar 

  45. Benzarti, S., Triki, B., Korbaa, O.: Privacy preservation and drone authentication using id-based signcryption. In: SoMeT, pp. 226–239 (2018)

    Google Scholar 

  46. Rupa, C., Srivastava, G., Gadekallu, T.R., Maddikunta, P.K.R., Bhattacharya, S.: Security and privacy of UAV data using blockchain technology. J. Inf. Secur. Appl. 55, 102670 (2020)

    Google Scholar 

  47. Nyangaresi, V.O.: Lightweight key agreement and authentication protocol for smart homes. In: 2021 IEEE AFRICON, pp. 1–6. IEEE (2021)

    Google Scholar 

  48. Püllen, D., Anagnostopoulos, N.A., Arul, T., Katzenbeisser, S.: Using implicit certification to efficiently establish authenticated group keys for in-vehicle networks. In: Proceedings of IEEE Vehicular Networking Conference (VNC), pp. 1–8. IEEE (2019)

    Google Scholar 

  49. Bansal, G., Naren, N., Chamola, V.: Rama: real-time automobile mutual authentication protocol using puf. In: Proceedings of IEEE International Conference on Information Networking (ICOIN), pp. 265–270. IEEE 2020

    Google Scholar 

  50. Bansal, G., Naren, N., Chamola, V., Sikdar, B., Kumar, N., Guizani, M.: Lightweight mutual authentication protocol for v2g using puf. IEEE Trans. Veh. Technol. 69(7), 7234–7246 (2020)

    Article  Google Scholar 

  51. Barman, S., Shum, H.P.H., Chattopadhyay, S., Samanta, D.: A secure authentication protocol for multi-server-based e-healthcare using a fuzzy commitment scheme. IEEE Access 7, 12557–12574 (2019)

    Article  Google Scholar 

  52. Ali, Z., et al.: Itssaka-ms: an improved three-factor symmetric key based secure aka scheme for multi-server environments. IEEE Access 8, 107993–108003 (2020)

    Article  Google Scholar 

  53. Semal, B., Markantonakis, K., Akram, R.N.: A certificateless group authenticated key agreement protocol for secure communication in untrusted UAV networks. In: 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), pp. 1–8. IEEE (2018)

    Google Scholar 

  54. Nyangaresi, V.O., Rodrigues, A.J., Abeka, S.O.: Machine learning protocol for secure 5G handovers. Int. J. Wirel. Inf. Netw.29, 1–22 (2022)

    Google Scholar 

  55. Tian, Y., Yuan, J., Song, H.: Efficient privacy-preserving authentication framework for edge-assisted internet of drones. J. Inf. Secur. Appl. 48, 102354 (2019)

    Google Scholar 

  56. Turkanovi´c, M., Brumen, B., Hölbl, M.: A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad. Hoc Netw. 20, 96–112 (2014)

    Google Scholar 

  57. Farash, M.S., Turkanovi´c, M., Kumari, S., Hölbl, M.: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Netw. 36, 152–176 (2016)

    Google Scholar 

  58. Bringer, J., Chabanne, H., Icart, T.: Improved privacy of the tree-based hash protocols using physically unclonable function. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 77–91. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_6

    Chapter  Google Scholar 

  59. Amin, R., Islam, S.H., Biswas, G.P., Khan, M.K., Leng, L., Kumar, N.: Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Comput. Netw. 101, 42–62 (2016)

    Google Scholar 

  60. Jiang, Q., Zeadally, S., Ma, J., He, D.: Lightweight three-factor authentication and key agreement protocol for Internet-integrated wireless sensor networks. IEEE Access 5, 3376–3392 (2017)

    Article  Google Scholar 

  61. Yao, X., Han, X., Du, X.: A light-weight certificate-less public key cryptography scheme based on ECC. In: Proceedings of 23rd International Conference on Computer Communications and Networks (ICCCN), pp. 1–8. IEEE (2014)

    Google Scholar 

  62. Nyangaresi, V.O., Rodrigues, A.J.: Efficient handover protocol for 5G and beyond networks. Comput. Secur. 113, 102546 (2022)

    Article  Google Scholar 

  63. Seo, S.H., Won, J., Bertino, E.: pCLSC-TKEM: a pairing free certificateless signcryption-tag key encapsulation mechanism for a privacy-preserving IoT. Trans. Data Priv. 9(2), 101–130 (2016)

    Google Scholar 

  64. Das, A.K.: A secure and robust temporal credential-based three-factor user authentication scheme for wireless sensor networks. Peer-to-Peer Netw. Appl. 9(1), 223–244 (2014). https://doi.org/10.1007/s12083-014-0324-9

    Article  Google Scholar 

  65. Guo, C., Chang, C.C., Chang, S.C.: A secure and efficient mutual authentication and key agreement protocol with smart cards for wireless communications. I.J Netw. Secur. 20(2), 323–331 (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Natural Science Foundation of Top Talent of SZTU (Grant number: 20211061010016) and National Natural Science Foundation of China under Grant 62072064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abduljabbar, Z.A., Nyangaresi, V.O., Ma, J., Al Sibahee, M.A., Khalefa, M.S., Honi, D.G. (2022). MAC-Based Symmetric Key Protocol for Secure Traffic Forwarding in Drones. In: Perakovic, D., Knapcikova, L. (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-15101-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15101-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15100-2

  • Online ISBN: 978-3-031-15101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics