Skip to main content

Semiconductor Memory Technologies

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Part of the book series: Springer Handbooks ((SHB))

  • 8825 Accesses

Abstract

The aim of this chapter of the Handbook of Semiconductor Devices is to provide an overview on semiconductor-based memory technologies. A preliminary introduction will contextualize the topic considering the actual scenario of the memory ecosystem. Then, the chapter will describe the main volatile memory technologies, in terms of fundamental operating principles and memory array organization. In the following, the principles, the applications, and the roadmap of the main nonvolatile memory technology will be presented. A subsequent section will illustrate the phase-change memory (PCM) technology as example of emerging memory technology among various flavors that will be cited. The chapter will close with a forward looking considering the potential opportunities of emerging memory technologies in the field on in-memory computing and neuromorphic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinsel, D., et al.: Data Age 2025. IDC White Paper. (2018)

    Google Scholar 

  2. Patterson, D.A.: Latency lags bandwidth. Commun. ACM. 47(10), 71–75 (2004)

    Article  Google Scholar 

  3. Fazio, A.: Future directions of non-volatile memory in compute applications. Digest IEDM. 2009, 641–644 (2009)

    Google Scholar 

  4. Freitas, R.F., Wilcke, W.W.: Storage-class memory: the next storage system technology. IBM J. Res. Dev. 52, 439–447 (2008)

    Article  Google Scholar 

  5. Von Neumann, J. (1945). First Draft of a Report on the EDVAC

    Book  MATH  Google Scholar 

  6. Norman, R.: US Patent 3562721

    Google Scholar 

  7. Tyagi, S., others: A 130 nm generation logic technology featuring 70 nm transistors, dual Vt transistors and 6 layers of cu interconnects. Digest IEDM. 2000 (2000)

    Google Scholar 

  8. Thompson, J. & other: A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell. Digest IEDM (2002)

    Google Scholar 

  9. Bai, P., others: A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57um2 SRAM cell. Digest IEDM 2002 (2004)

    Google Scholar 

  10. Mistry, K., others: A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging. Digest IEDM (2007)

    Google Scholar 

  11. Natarajan, S.: A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array. Digest IEDM. 2008 (2008)

    Google Scholar 

  12. Hisamoto, D., others: A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET. International Technical Digest on Electron Devices Meeting (1989)

    Google Scholar 

  13. Song, T., others: A 14 nm FinFET 128 Mb SRAM With VMIN Enhancement Techniques for Low-Power Applications. IEEE J. Solid-State Circuits 50(1) (2015)

    Google Scholar 

  14. Source: wikichip.org

    Google Scholar 

  15. Lage, C., other: Advanced SRAM Technology – The Race Between 4T and 6T Cells. Digest IEDM (1996)

    Google Scholar 

  16. Dennard, R.: US patent 3387286

    Google Scholar 

  17. IC Insight, Future Fab International

    Google Scholar 

  18. Nitayama, A. others: Future Directions for DRAM Memory Cell Technology, IEDM Techn. Digest (1988)

    Google Scholar 

  19. Krautschneider, W.H., other: A Trench DRAM gain cell for high signal charge at reduced cell area. ESSDERC (2001)

    Google Scholar 

  20. Park, J.M., others: 20nm DRAM: A new beginning of another revolution. IEDM Techn. Digest (2015)

    Google Scholar 

  21. Kim, H.S., Song, others: Development of New TiN/ZrO2/Al2O3/ZrO2/TiN Capacitors Extendable to 45 Nm Generation DRAMs Replacing HfO2 Based Dielectrics. VLSI Symposium Technical Digest (2006)

    Google Scholar 

  22. Kim, I.G., others: Overcoming DRAM scaling limitations by employing straight recessed channel array transistors with <100> uni-axial and {100} uni-plane channels. IEDM Technical Digest (2005)

    Google Scholar 

  23. Kang, U., others: 8 Gb 3-D DDR3 DRAM Using Through-Silicon-Via Technology. IEEE J. Solid State Circuit 45(1) (2010)

    Google Scholar 

  24. Lee, J.C., others: High bandwidth memory (HBM) with TSV technique. International SoC Design Conference (2016)

    Google Scholar 

  25. Jeddeloh, J., other: Hybrid memory cube new DRAM architecture increases density and performance. Symposium on VLSI Technology (2012)

    Google Scholar 

  26. Khang, D., Sze, S.M.: A floating gate and its application to memory devices. Bell Syst. Tech. J. 46, 1288 (1967)

    Article  Google Scholar 

  27. Frohman-Bentchkowsky, D.: A fully decoded 2048-bit electrically programmable FAMOS read-only memory. IEEE J. Solid-State Circuits. 6(5), 301–306 (1971)

    Article  Google Scholar 

  28. Harari, E.: Electrically Erasable Non-Volatile Semiconductor Memory. U.S. Patent 4,115,914 (Filed Feb. 22, 1977. Published Sep.26, 1978)

    Google Scholar 

  29. Masuoka, F., et al. (1980)

    Google Scholar 

  30. Masuoka, F., et al.: A new flash E2PROM cell using triple polysilicon technology. IEDM Tech. Dig., 464–467 (1984)

    Google Scholar 

  31. Masuoka, F., et al.: New ultra high density EPROM and flash EEPROM with NAND structure cell. IEDM Tech. Dig., 552–555 (1987)

    Google Scholar 

  32. Kangh, D., et al.: A 512Gb 3-bit/Cell 3D 6th-Generation V-NAND Flash Memory with 82MB/s Write Throughput and 1.2Gb/s Interface, pp. 216–219. IEEE ISSCC (2019)

    Google Scholar 

  33. “SK hynix Starts Mass-Producing World’s First 128-Layer 4D NAND”, SK Hynix press release 2019.06.26

    Google Scholar 

  34. Cappelletti, P., Golla, C., Olivo, P., Zanoni, E. (eds.): Flash Memories. Kluwer Academic Publisher (1999) ISBN 0-7923-8487-3

    Google Scholar 

  35. Suh, K.D., et al.: A 3.3V 32Mb NAND flash memory with incremental step pulse programming scheme, p. 95. Proc. ISSCC

    Google Scholar 

  36. Shibata, N., et al.: A 70 nm 16 Gb 16-Level-Cell NAND Flash Memory. IEEE J. Solid-State Circuits. 43(4) (April 2008)

    Google Scholar 

  37. Trinh, C., et al.: A 5.6MB/s 64Gb 4b/Cell NAND Flash memory in 43nm CMOS, pp. 246–247. IEEE Dig. Tech. Papers, ISSCC (2009)

    Google Scholar 

  38. Shu, L., Costello, D.J.: Error Control Coding, Second Edition. Prentice-Hall Inc. (2004)

    MATH  Google Scholar 

  39. Chan, T.Y., et al.: A true single-transistor oxide-nitride-oxide EEPROM device. IEEE Elect. Dev. Lett. 8, 93 (1987)

    Article  Google Scholar 

  40. Likharev, K.K.: Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. P., 2137 (1998)

    Google Scholar 

  41. Campardo, et al.: Mass memory storage. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  42. Tanaka, H., et al.: Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory. Sympos. VLSI Technol. (2007)

    Google Scholar 

  43. Fukuzumi, Y., et al.: Optimal integration and characteristics of vertical array devices for ultra-high density, bit-cost scalable flash memory. IEDM Tech. Dig., 449–452 (2007)

    Google Scholar 

  44. Jang, J., et al.: Vertical Cell Array Using TCAT (Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory. Sympos. VLSI Technol. (2009)

    Google Scholar 

  45. Mohan, V., et al.: Modeling power consumption of NAND flash memories using flashpower. IEEE Transact. Comput. Aided Design Integrat. Circuits Sys. 32(7) (2013)

    Google Scholar 

  46. J. Choe: Comparison 1Y nanometer NAND architecture and beyond. https://sst.semiconductor-digest.com/2015/08/comparison-1y-nanometer-nand-architecture-and-beyond-samsung-toshibasandisk-micron-and-sk-hynix-16nm-and-15nm-devices/

  47. Park, K.: Three-Dimensional 128 Gb MLC Vertical NAND Flash Memory With 24-WL Stacked Layers and 50 MB/s High-Speed Programming. IEEE J. Solid-State Circuits. 50(1) (2015)

    Google Scholar 

  48. Parat, K., Dennison, C.: A floating gate based 3D NAND technology with CMOS under array. IEDM Tech. Dig., 48–51 (2015)

    Google Scholar 

  49. Kang, D., et al.: 256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 130–132 (2016)

    Google Scholar 

  50. Yamashita, R., et al.: A 512Gb 3b/cell flash memory on 64- word-line-layer BiCS technology. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 196–198 (2017)

    Google Scholar 

  51. C. Siau et al., “13.5 A 512Gb 3-bit/cell 3D flash memory on 128-wordline-layer with 132MB/s write performance featuring circuit-under-array technology,IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2019, pp. 218–220

    Google Scholar 

  52. SKHynix 2019.06.26 press release: https://www.skhynix.com/eng/pr/pressReleaseView.do?seq=2793&offset=1

  53. Lee, S., et al.: A 1Tb 4b/cell 64-stacked-WL 3D NAND flash memory with 12MB/s program throughput. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers. 342, 340–342 (2018)

    Google Scholar 

  54. Transistor count trends continue to track with Moore's Law. IC Insights’ Research Bulletins (2020)

    Google Scholar 

  55. Mikolajick, T., Dehm, C., Hartnerl, W., Kasko, I., Kastner, M.J., Nagel, N., Moert, M., Mazure, C.: FeRAM technology for high density applications. Microelectron. Reliabil. 41(7), 947 (2001)

    Article  Google Scholar 

  56. Mulaosmanovic, H., et al.: Working principles of a DRAM cell based on gated-thyristor bistability. IEEE Electron Device Lett. 35(9), 921–923 (2014)

    Article  Google Scholar 

  57. Zhu, B.J.: Magnetoresistive random access memory: the path to competitiveness and scalability. Proc. IEEE. 96(11), 1786–1798 (2008)

    Article  Google Scholar 

  58. H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y., Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6, pp. 1951–1970, 2012

    Google Scholar 

  59. Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  60. Ovshinsky, S.R., Fritzsche, H.: Amorphous semiconductors for switching, memory, and imaging applications. Tran. El. Dev., 91–105 (1973)

    Google Scholar 

  61. Pellizzer, F., Pirovano, A., Ottogalli, F., Magistretti, M., Scaravaggi, M., Zuliani, P., Tosi, M., Benvenuti, A., Besana, P., Cadeo, S., Marangon, T., Morandi, R., Piva, R., Spandre, A., Zonca, R., Modelli, A., Varesi, E., Lowrey, T., Lacaita, A., Casagrande, G., Cappelletti, P., Bez, R.: Proc. Symp. VLSI technology. Novel μ-trench phase-change memory cell for embedded and stand-alone non-volatile memory applications, pp. 18–19. Proc. VLSI Tech. (2004)

    Google Scholar 

  62. Pellizzer, F., et al.: A 90 nm phase change memory technology for stand-alone non-volatile memory applications. Proc. VLSIT. 2006, 122–123 (2006)

    Google Scholar 

  63. Oh, J.H., Park, J.H., Lim, Y.S., Lim, H.S., Oh, Y.T., Kim, J.S., Shin, J.M., Park, J.H., Song, Y.J., Ryoo, K.C., Lim, D.W., Park, S.S., Kim, J.I., Kim, J.H., Yu, J., Yeung, F., Jeong, C.W., Kong, J.H., Kang, D.H., Koh, G.H., Jeong, G.T., Jeong, H.S., Kim, K.: Full integration of highly Manufacturable 512Mb PRAM based on 90nm. IEEE International Electron Devices Meeting. (2006), 1–4 (2006)

    Google Scholar 

  64. Servalli, G.: A 45 nm generation phase change memory technology. IEDM Tech. Dig. 2009, 1–4 (2009)

    Google Scholar 

  65. Xiong, F., Liao, D.A., Estrada, D., Pop, E.: Low-power switching of phase-change materials with carbon nanotube electrodes. Science. 332, 268–270 (2011)

    Article  Google Scholar 

  66. Redaelli, A., Boniardi, M., Ghetti, A., Russo, U., Cupeta, C., Lavizzari, S., Pirovano, A., Servalli, G.: Interface engineering for thermal disturb immune phase change memory technology. IEDM Tech. Dig. 2014, 29.1.1–29.1.4 (2014)

    Google Scholar 

  67. Cheng, H.Y., et al.: A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTez phase change material. IEDM Tech. Dig. 2012, 31.1–31.4 (2012)

    Google Scholar 

  68. Cheng, H.Y., et al.: Novel fast-switching and high-data retention phase change memory based on new Ga-Sb-Ge material. IEDM Tech. Dig., 3.5.1–3.5.4 (2015)

    Google Scholar 

  69. Lee, J., et al.: Scalable high-performance phase-change memory employing CVD GeBiTe. IEEE El Dev. Lett. 32, 1113–1115 (2011)

    Article  Google Scholar 

  70. Athmanathan, A., Stanisavljevic, M., Papandreou, N., Pozidis, H., Eleftheriou, E.: Multilevel-cell phase-change memory: a viable technology. IEEE J. Emerging Selected Topics Circuits Systems. 6, 87–100 (2016)

    Article  Google Scholar 

  71. Villa, C., Mills, D., Barkley, G., Giduturi, H., Schippers, S., Vimercati, D.: A 45 nm 1 Gb 1.8 V phase-change memory. Proc. ISSCC Tech. Dig., 270–271 (2010)

    Google Scholar 

  72. Kau, D., et al.: A stackable cross point phase change memory. IEDM Tech. Dig. 2009, 617–620 (2009)

    Google Scholar 

  73. https://www.micron.com/products/advanced-solutions/3d-xpoint-technology

  74. https://www.techinsights.com/about-techinsights/overview/blog/intel-3D-xpoint-memory-die-removed-from-intel-optane-pcm/

  75. Hamdioui, S., et al.: Design, Automation & Test in Europe Conf. & Exhibition. IEEE, Piscataway, NJ (2019)

    Google Scholar 

  76. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Nature. 464, 873 (2010)

    Article  Google Scholar 

  77. Gallo, L., et al.: Mixed precision in-memory computing. Nat. Elect. 1, 246–253 (2018)

    Article  Google Scholar 

  78. Hu, M., et al.: Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. Proceedings of the 53rd, annual design automation conference, pp. 1–6. ACM, New York (2016)

    Google Scholar 

  79. Sun, Z., Pedretti, G., Ambrosi, E., Bricalli, A., Wang, W., Ielmini, D.: Solving matrix equations in one step with cross-point resistive array. PNAS. 116, 4123–4128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  80. Kuzum, D., Jeyasingh, R.G.D., Lee, B., Wong, H.-S.P.: Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179 (2011)

    Article  Google Scholar 

  81. Li, Y., Zhong, Y., Xu, L., Zhang, J., Xu, X., Sun, H., Miao, X.: Ultrafast synaptic events in a chalcogenide Memristor. Sci. Rep. 3, 1619 (2013)

    Article  Google Scholar 

  82. Burr, G.W., et al.: Neuromorphic computing using non-volatile memory. Adv. Physics. 2, 89–124 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Fantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fantini, P., Servalli, G., Tessariol, P. (2023). Semiconductor Memory Technologies. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics