Skip to main content

Oocyte Denuding

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

The term oocyte denuding refers to the removal of the somatic cell layers that surround the oocytes. During the preovulatory growth, within the follicle, the oocyte is surrounded by two different cell layers: granulosa and thecal cells that sustain oocyte nutrition and maturation providing essential metabolites, hormones, and growth factors. However, the oocentric perspective of folliculogenesis highlights the central role of the oocyte itself in directing its own development as well as the follicle differentiation. In this regard, the oocyte is deemed capable of modulating the follicular environment in order to guarantee correct preantral, antral, and preovulatory development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58(2):560–7.

    Article  PubMed  CAS  Google Scholar 

  2. Donahue RP, Stern S. Follicular cell support of oocyte maturation: production of pyruvate in vitro. J Reprod Fertil. 1968;17(2):395–8.

    Article  PubMed  CAS  Google Scholar 

  3. Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol. 1982;90(1):144–53.

    Article  PubMed  CAS  Google Scholar 

  4. Haghighat N, Van Winkle LJ. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool. 1990;253(1):71–82.

    Article  PubMed  CAS  Google Scholar 

  5. Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol. 1990;138:16–25.

    Article  PubMed  CAS  Google Scholar 

  6. Salustri A, Ulisse S, Yanagishita M, Hascall VC. Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-beta. J Biol Chem. 1990;265(32):19517–23.

    PubMed  CAS  Google Scholar 

  7. Canipari R, Epifano O, Siracusa G, Salustri A. Mouse oocytes inhibit plasminogen activator production by ovarian cumulus and granulosa cells. Dev Biol. 1995;167(1):371–8.

    Article  PubMed  CAS  Google Scholar 

  8. Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99(5):2890–4.

    Article  PubMed  CAS  Google Scholar 

  9. Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(Pt 22):5257–68.

    Article  PubMed  CAS  Google Scholar 

  10. Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5.

    Article  PubMed  CAS  Google Scholar 

  11. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.

    Article  PubMed  CAS  Google Scholar 

  12. Testart J, Lassalle B, Frydman R, Belaisch JC. A study of factors affecting the success of human fertilization in vitro. II. Influence of semen quality and oocyte maturity on fertilization and cleavage. Biol Reprod. 1983;28:425–31.

    Article  PubMed  CAS  Google Scholar 

  13. Laufer N, Tarlatzis BC, DeCherney AH, et al. Asynchrony between human cumulus–corona cell complex and oocyte maturation after human menopausal gonadotropin treatment for in vitro fertilization. Fertil Steril. 1984;42:366–72.

    PubMed  CAS  Google Scholar 

  14. Bar-Ami S, Gitay-Goren H, Brandes JM. Different morphological and steroidogenic patterns in oocyte/cumulus–corona cell complexes aspirated at in vitro fertilization. Biol Reprod. 1989;41:761–70.

    Article  PubMed  CAS  Google Scholar 

  15. McKenzie LJ, Pangas SA, Carson SA, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  PubMed  CAS  Google Scholar 

  16. Fatehi AN, Roelen BA, Colenbrander B, et al. Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote. 2005;13:177–85.

    Article  PubMed  CAS  Google Scholar 

  17. Edwards RG, Steptoe PC, Fowler RE, Baillie J. Observations on preovulatory human ovarian follicles and their aspirates. Br J Obstet Gynaecol. 1980;87(9):69–79.

    Google Scholar 

  18. Khamsi F, Roberge S, Lacanna IC, Wong J, Yavas Y. Effects of granulosa cells, cumulus cells, and oocyte density on in vitro fertilization in women. Endocrine. 1999;10:161–6.

    Article  PubMed  CAS  Google Scholar 

  19. Rattanachaiyanont M, Leader A, Léveillé MC. Lack of correlation between oocyte-corona-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril. 1999;71(5):937–40.

    Article  PubMed  CAS  Google Scholar 

  20. Khamsi F, Roberge S. Granulosa cells of the cumulus oophorus are different from mural granulosa cells in their response to gonadotropins and IGF-I. J Endocrinol. 2001;170(3):565–73.

    Article  PubMed  CAS  Google Scholar 

  21. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  PubMed  CAS  Google Scholar 

  22. ESHRE. Intracytoplasmic sperm injection (ICSI) in 2006: evidence and evolution. Hum Reprod Update. 2007;13:515–26.

    Article  Google Scholar 

  23. Mahadevan MM, Trounson AO. Removal of the cumulus oophorus from the human oocyte for in vitro fertilization. Fertil Steril. 1985;43(2):263–7.

    PubMed  CAS  Google Scholar 

  24. Van de Velde H, Nagy ZP, Joris H, De Vos A, Van Steirteghem AC. Effects of different hyaluronidase concentrations and mechanical procedures for cumulus cell removal on the outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12(10):2246–50.

    Article  PubMed  Google Scholar 

  25. Trounson AO, Mohr LR, Wood C, Leeton JF. Effect of delayed insemination on in-vitro fertilization, culture and transfer of human embryos. J Reprod Fertil. 1982;64(2):285–9.

    Article  PubMed  CAS  Google Scholar 

  26. Van de Velde H, De Vos A, Joris H, Nagy ZP, Van Steirteghem AC. Effect of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13(11):3160–4.

    Article  PubMed  Google Scholar 

  27. Rienzi L, Ubaldi F, Anniballo R, Cerulo G, Greco E. Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13(4):1014–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ho JY, Chen MJ, Yi YC, Guu HF, Ho ES. The effect of preincubation period of oocytes on nuclear maturity, fertilization rate, embryo quality, and pregnancy outcome in IVF and ICSI. J Assist Reprod Genet. 2003;20(9):358–64.

    Article  PubMed  Google Scholar 

  29. Yanagida K, Yazawa H, Katayose H, Suzuki K, Hoshi K, Sato A. Influence of oocyte preincubation time on fertilization after intracytoplasmic sperm injection. Hum Reprod. 1998;13(8):2223–6.

    Article  PubMed  CAS  Google Scholar 

  30. Veeck LL. The morphologic estimation of mature oocytes and their preparation for insemination. In: Jones Jr HW, Jones GS, et al., editors. In-vitro fertilization—Norfolk. Baltimore: Williams and Wilkins; 1986. p. 81.

    Google Scholar 

  31. Wolf DP. Oocyte quality and fertilization. In: Wolf DP, editor. In-vitro fertilization and embryo transfer. New York: Plenum; 1988. p. 129–38.

    Chapter  Google Scholar 

  32. Daya S, Kohut J, Gunby J, et al. Influence of blood clots in the cumulus complex on oocyte fertilization and cleavage. Hum Reprod. 1990;5:744–6.

    PubMed  CAS  Google Scholar 

  33. Veeck LL. The morphological assessment of human oocytes and early conception. In: Keel BA, Webster BW, editors. Handbook of the laboratory diagnosis and treatment of infertility. Boca Raton: CRC Press; 1990. p. 353–69.

    Google Scholar 

  34. Ng ST, Chang TH, Wu TC. Prediction of the rates of fertilization, cleavage, and pregnancy success by cumulus-coronal morphology in an in vitro fertilization program. Fertil Steril. 1999;72:412–7.

    Article  PubMed  CAS  Google Scholar 

  35. Lin YC, Chang SY, Lan KC, et al. Human oocyte maturity in vivo determines the outcome of blastocyst development in vitro. J Assist Reprod Genet. 2003;20:506–12.

    Article  PubMed  Google Scholar 

  36. Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online. 2006;12:608–15.

    Article  PubMed  Google Scholar 

  37. Motta PM, Nottola SA, Pereda J, et al. Ultrastructure of human cumulus oophorus: a transmission electron microscopic study on oviductal oocytes and fertilized eggs. Hum Reprod. 1995;10:2361–7.

    PubMed  CAS  Google Scholar 

  38. Ebner T, Moser M, Shebl O, Sommergruber M, Yaman C, Tews G. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reprod Biomed Online. 2008;16(6):801–7.

    Article  PubMed  CAS  Google Scholar 

  39. Kahraman S, Yakin K, Donmez E, et al. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod. 2000;15:2390–3.

    Article  PubMed  CAS  Google Scholar 

  40. Goud PT, Goud AP, Qian C, et al. In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Hum Reprod. 1998;13:1638–44.

    Article  PubMed  CAS  Google Scholar 

  41. Yamazaki Y, Wakayama T, Yanagimachi R. Contribution of cumulus cells and serum to the maturation of oocyte cytoplasm as revealed by intracytoplasmic sperm injection (ICSI). Zygote. 2001;9:277–82.

    Article  PubMed  CAS  Google Scholar 

  42. Canipari R, Camaioni A, Scarchilli L, Barberi M, Salustri A. Oocyte maturation and ovulation: mechanism of control. 2PN Attual Scient Biol Reprod. 2004;1:62–8.

    Google Scholar 

  43. Alikani M, Palermo G, Adler A, Bertoli M, Blake M, Cohen J. Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote. 1995;3:283–8.

    Article  PubMed  CAS  Google Scholar 

  44. De Sutter P, Dozortsev D, Qian C, Dhont M. Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1996;11:595–7.

    Article  PubMed  Google Scholar 

  45. Xia P. Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod. 1997;12:1750–5.

    Article  PubMed  CAS  Google Scholar 

  46. Balaban B, Urman B, Sertac A, Alatas C, Aksoy S, Mercan R. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum Reprod. 1998;13(12):3431–3.

    Article  PubMed  CAS  Google Scholar 

  47. Ebner T, Yaman C, Moser M, Sommergruber M, Feichtinger O, Tews G. Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.

    Article  PubMed  CAS  Google Scholar 

  48. Ebner T, Moser M, Tews G. Is oocyte morphology prognostic of embryo developmental potential after ICSI? Reprod Biomed Online. 2006;12:507–12.

    Article  PubMed  Google Scholar 

  49. Mikkelsen AL, Lindenberg S. Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality. Hum Reprod. 2001;16:1714–8.

    Article  PubMed  CAS  Google Scholar 

  50. Rienzi L, Ubaldi FM, Iacobelli M, Minasi MG, Romano S, Ferrero S, Sapienza F, Baroni E, Litwicka K, Greco E. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril. 2008;90(5):1692–700.

    Article  PubMed  Google Scholar 

  51. Ten T, Mendiola J, Vioque J, de Juan J, Bernabeu R. Donor oocyte dysmorphism and their influence on fertilization and embryo quality. Reprod Biomed Online. 2006;14:40–8.

    Article  Google Scholar 

  52. Longo FJ, Chen DY. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol. 1985;107:382–94.

    Article  PubMed  CAS  Google Scholar 

  53. Szollosi D, Czolowska R, Soltynska MS, et al. Ultrastructure of cell fusion and premature chromosome condensation (PCC) of thymocyte nuclei in metaphase II mouse oocytes. Biol Cell. 1986;56:239–49.

    Article  PubMed  CAS  Google Scholar 

  54. Eichenlaub-Ritter U, Shen Y, Tinneberg HR. Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod Biomed Online. 2002;5:117–24.

    Article  PubMed  Google Scholar 

  55. Ursula E-R, Vogt E, Yin H, Gosden R. Symposium: mitochondria and human conception spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2004;8:45–58.

    Article  Google Scholar 

  56. Rienzi L, Ubaldi F, Iacobelli M, Minasi MG, Romano S, Greco E. Meiotic spindle visualization in living human oocytes. Reprod Biomed Online. 2005;10(2):192–8.

    Article  PubMed  Google Scholar 

  57. Battaglia DE, Goodwin P, Klein NA, et al. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11:2217–22.

    Article  PubMed  CAS  Google Scholar 

  58. Bernard A, Fuller BJ. Cryopreservation of human oocytes: a review of current problems and perspectives. Hum Reprod Update. 1996;2:193–207.

    Article  PubMed  CAS  Google Scholar 

  59. Oldenbourg R, Mei G. New polarized light microscope with precision universal compensator. J Microsc. 1995;180:140–7.

    Article  PubMed  CAS  Google Scholar 

  60. Oldenbourg R. Polarized light microscopy of spindles. Methods Cell Biol. 1999;61:175–208.

    Article  PubMed  CAS  Google Scholar 

  61. Liu L, Trimarchi JR, Oldenbourg R, Keefe DL. Increased birefringence in the meiotic spindle provides a new marker for the onset of activation in living oocytes. Biol Reprod. 2000;63(1):251–8.

    Article  PubMed  CAS  Google Scholar 

  62. Braga D, Madaschi C, Bonetti TC, Iaconelli A, Rodrigues D, Borges E. Meiotic spindle imaging with Octax ICSI guard in in vitro matured human oocytes. Fertil Steril. 2006;86(3):129.

    Article  Google Scholar 

  63. Pelletier C, Keefe DL, Trimarchi JR. Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril. 2004;81 Suppl 1:850–6.

    Article  PubMed  Google Scholar 

  64. Shen Y, Stalf T, Mehnert C, Eichenlaub-Ritter U, Tinneberg HR. High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum Reprod. 2005;20(6):1596–606.

    Article  PubMed  CAS  Google Scholar 

  65. Rienzi L, Martinez F, Ubaldi F, et al. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod. 2004;19:655–9.

    Article  PubMed  CAS  Google Scholar 

  66. De Santis L, Cino I, Rabellotti E, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11(1):36–42.

    Article  PubMed  Google Scholar 

  67. Montag M, Schimming T, van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online. 2006;12:442–6.

    Article  PubMed  Google Scholar 

  68. Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. Limited recovery of meiotic spindles in living human oocytes after cooling–rewarming observed using polarized light microscopy. Hum Reprod. 2001;16:2374–8.

    PubMed  CAS  Google Scholar 

  69. Moon JH, Hyun CS, Lee SW, et al. Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod. 2003;18:817–20.

    Article  PubMed  CAS  Google Scholar 

  70. Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod. 2003;18:1289–93.

    Article  PubMed  CAS  Google Scholar 

  71. Cooke S, Tyler JP, Driscoll GL. Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Hum Reprod. 2003;18:2397–405.

    Article  PubMed  CAS  Google Scholar 

  72. Cohen Y, Malcov M, Schwartz T, et al. Spindle imaging: a new marker for optimal timing of ICSI? Hum Reprod. 2004;19:649–54.

    Article  PubMed  CAS  Google Scholar 

  73. Rama Raju GA, Prakash GJ, Krishna KM, Madan K. Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using PolScope imaging. Reprod Biomed Online. 2007;14:166–74.

    Article  PubMed  CAS  Google Scholar 

  74. Zeng HT, Ren Z, Yeung WS, Shu YM, Xu YW, Zhuang GL, Liang XY. Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro matured human oocytes. Hum Reprod. 2007;22(6):1681–6.

    Article  PubMed  CAS  Google Scholar 

  75. Petersen CG, Oliveira JB, Mauri AL, Massaro FC, Baruffi RL, Pontes A, Franco Jr JG. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: a meta-analysis. Reprod Biomed Online. 2009;18(2):235–43.

    Article  PubMed  CAS  Google Scholar 

  76. Casciani V, Rienzi L. Meiotic spindle visualization prior to ICSI procedure. Alpha Newslett. 2007;37:4–8.

    Google Scholar 

  77. Wang WH, Meng L, Hackett RJ, Oldenbourg R, Keefe DL. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77:1274–7.

    Article  PubMed  Google Scholar 

  78. Van Santbrink EJ, Hop WC, Van Dessel TJ, de Jong FH, Fauser BC. Decremental follicle-stimulating hormone and dominant follicle development during the normal menstrual cycle. Fertil Steril. 1995;64:37–43.

    PubMed  Google Scholar 

  79. Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril. 2001;75:348–53.

    Article  PubMed  CAS  Google Scholar 

  80. Coticchio G, Sciajno R, Hutt K, Bromfield J, Borini A, Albertini DF. Comparative analysis of the metaphase II spindle of human oocytes through polarized light and high-performance confocal microscopy. Fertil Steril. 2010;93(6):2056–64.

    Article  PubMed  Google Scholar 

  81. Eichenlaub-Ritter U, Schmiady H, Kentenich H, Soewarto D. Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod. 1995;10:2343–9.

    PubMed  CAS  Google Scholar 

  82. Hassan-Ali H, Hisham-Saleh A, El-Gezeiry D, et al. Perivitelline space granularity: a sign of human menopausal gonadotropin overdose in intracytoplasmic sperm injection. Hum Reprod. 1998;13:3425–30.

    Article  PubMed  CAS  Google Scholar 

  83. Loutradis D, Drakakis P, Kallianidis K, et al. Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertil Steril. 1999;72:240–4.

    Article  PubMed  CAS  Google Scholar 

  84. Kahraman S, Yakin K, Donmez E, et al. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod. 2000;15:2390–3.

    Article  PubMed  CAS  Google Scholar 

  85. Scott LA, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13:1003–13.

    Article  PubMed  CAS  Google Scholar 

  86. Scott L. Pronuclear scoring as a predictor of embryo development. Reprod Biomed Online. 2003;6:201–14.

    Article  PubMed  Google Scholar 

  87. Serhal PF, Ranieri DM, Kinis A, Marchant S, Davies M, Khadum IM. Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12:1267–70.

    Article  PubMed  CAS  Google Scholar 

  88. Ebner T, Moser M, Sommergruber M, Gaiswinkler U, Shebl O, Jesacher K, Tews G. Occurrence and developmental consequences of vacuoles throughout preimplantation development. Fertil Steril. 2005;83(6):1635–40.

    Article  PubMed  Google Scholar 

  89. Van Blerkom J. Occurrence and developmental consequences of aberrant cellular organization in meiotically mature human oocytes after exogenous ovarian hyperstimulation. J Electron Microsc Tech. 1990;16(4):324–46.

    Article  PubMed  Google Scholar 

  90. El Shafie M, Sousa M, Windt ML, Kruger TF. Ultrastructure of human oocytes: a transmission electron microscopy view. In: El Shafie M, Sousa M, Windt ML, Kruger TF, editors. An atlas of the ultrastructure of human oocyte. A guide for assisted reproduction. New York: Parthenon; 2000. p. 151–71.

    Google Scholar 

  91. Meriano JS, Alexis J, Visram-Zaver S, Cruz M, Casper RF. Tracking of oocyte dysmorphisms for ICSI patients may prove relevant to the outcome in subsequent patient cycles. Hum Reprod. 2001;16:2118–23.

    Article  PubMed  CAS  Google Scholar 

  92. Otsuki J, Okada A, Morimoto K, Nagai Y, Kubo H. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004;19:1591–7.

    Article  PubMed  CAS  Google Scholar 

  93. Ebner T, Moser M, Yaman C, Feichtinger O, Hartl J, Tews G. Elective transfer of embryos selected on the basis of first polar body morphology is associated with increased rates of implantation and pregnancy. Fertil Steril. 1999;72:599–603.

    Article  PubMed  CAS  Google Scholar 

  94. Ciotti PM, Notarangelo L, Morselli-Labate AM, Felletti V, Porcu E, Venturosi V. First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Hum Reprod. 2004;19:2334–9.

    Article  PubMed  CAS  Google Scholar 

  95. De Santis L, Cino I, Rabellotti E, Calzi F, Persico P, Borini A, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11:36–42.

    Article  PubMed  Google Scholar 

  96. Verlinsky Y, Lerner S, Illkevitch N, Kuznetsov V, Kuznetsov I, Cieslak J, et al. Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reprod Biomed Online. 2003;7:336–41.

    Article  PubMed  Google Scholar 

  97. Verlhac MH, Lefebvre C, Guillaud P, Rassinier P, Maro B. Asymmetric division in mouse oocytes: with or without MOS. Curr Biol. 2000;10:1303–6.

    Article  PubMed  CAS  Google Scholar 

  98. Balakier H, Bouman D, Sojecki A, Librach C, Squire JA. Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod. 2002;17:2394–401.

    Article  PubMed  Google Scholar 

  99. Muechler EK, Graham MC, Huang KE, et al. Parthenogenesis of human oocytes as a function of vacuum pressure. J In Vitro Fert Embryo Transf. 1989;6:335–7.

    Article  PubMed  CAS  Google Scholar 

  100. Palermo G, Joris H, Devoroey P, et al. Sperm characteristics and outcome of human assisted fertilization by subzonal insemination and intracytoplasmic sperm injection. Fertil Steril. 1993;59:826–35.

    PubMed  CAS  Google Scholar 

  101. Van Steirteghem AC, Nagy ZP, Joris H, et al. High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod. 1993;8:1061–6.

    PubMed  Google Scholar 

  102. Joris H, Nagy Z, Van de Velde H, et al. Intracytoplasmic sperm injection: laboratory set-up and injection procedure. Hum Reprod. 1998;13(Suppl 1):76–86. Review.

    Google Scholar 

  103. Maro B, Verlhac MH. Polar body formation: new rules for asymmetric divisions. Nat Cell Biol. 2002;4:E281–3.

    Article  PubMed  CAS  Google Scholar 

  104. Sathananthan AH, Trounson A, Freemann L, Brady T. The effects of cooling human oocytes. Hum Reprod. 1988;3:968–77.

    PubMed  CAS  Google Scholar 

  105. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  106. Almeida PA, Bolton VN. The effect of temperature fluctuations on the cytoskeletal organisation and chromosomal constitution of the human oocyte. Zygote. 1995;3:357–65.

    Article  PubMed  CAS  Google Scholar 

  107. Zenzes MT, Bielecki R, Casper RF, Leibo SP. Effects of chilling to 0°C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil Steril. 2001;75:769–77.

    Article  PubMed  CAS  Google Scholar 

  108. Truyen U, Parrish CR, Harder TC, Kaaden OR. There is nothing permanent except change. The emergence of new virus diseases. Vet Microbiol. 1995;43:103–22.

    Article  PubMed  CAS  Google Scholar 

  109. Parinaud J, Vieitez G, Milhet P, Richoilley G. Use of a plant enzyme preparation (Coronase) instead of hyaluronidase for cumulus cell removal before intracytoplasmic sperm injection. Hum Reprod. 1998;13(7):1933–5.

    Article  PubMed  CAS  Google Scholar 

  110. De Vos A, Van Landuyt L, Van Ranst H, Vandermonde A, D’Haese V, Sterckx J, Haentjens P, Devroey P, Van der Elst J. Randomized sibling-oocyte study using recombinant human hyaluronidase versus bovine-derived Sigma hyaluronidase in ICSI patients. Hum Reprod. 2008;23(8):1815–9.

    Article  PubMed  CAS  Google Scholar 

  111. Evison M, Pretty C, Taylor E, Franklin C. Human recombinant hyaluronidase (Cumulase) improves intracytoplasmic sperm injection survival and fertilization rates. Reprod Biomed Online. 2009;18(6):811–4.

    Article  PubMed  Google Scholar 

  112. Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.

    Article  PubMed  CAS  Google Scholar 

  113. FitzHarris G, Baltz JM. Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction. 2009;138(4):619–27.

    Article  PubMed  CAS  Google Scholar 

  114. Heinecke JW, Shapiro BM. The respiratory burst oxidase of fertilization. A physiological target for regulation by protein kinase C. J Biol Chem. 1992;267(12):7959–62.

    PubMed  CAS  Google Scholar 

  115. Schomer B, Epel D. Redox changes during fertilization and maturation of marine invertebrate eggs. Dev Biol. 1998;203(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  116. Schomer Miller B, Epel D. The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg. Dev Biol. 1999;216(1):394–405.

    Article  PubMed  CAS  Google Scholar 

  117. Dumoulin J, Meijers C, Bras M, Coonen E, Geraedts JP, Evers JL. Effect of oxygen concentration on human in-vitro fertilization and embryo transfer. Hum Reprod. 1999;14:465–9.

    Article  PubMed  CAS  Google Scholar 

  118. Kovacic B, Vlaisavljević V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17(2):229–36.

    Article  PubMed  CAS  Google Scholar 

  119. Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertil Steril. 2009;91(4 Suppl):1459–61.

    Article  PubMed  Google Scholar 

  120. Nanassy L, Peterson CA, Wilcox AL, Peterson CM, Hammoud A, Carrell DT. Comparison of 5% and ambient oxygen during days 3-5 of in vitro culture of human embryos. Fertil Steril. 2010;93(2):579–85.

    Article  PubMed  Google Scholar 

  121. McKenzie LJ, Pangas SA, Carson SA, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  PubMed  CAS  Google Scholar 

  122. Fatehi AN, Roelen BA, Colenbrander B, et al. Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote. 2005;13:177–85.

    Article  PubMed  CAS  Google Scholar 

  123. Ebner T, Moser M, Sommergruber M, et al. Incomplete denudation of oocytes prior to ICSI enhances embryo quality and blastocyst development. Hum Reprod. 2006;21(11):2972–7.

    Article  PubMed  CAS  Google Scholar 

  124. Goud PT, Goud AP, Qian C, Laverge H, Van der Elst J, De Sutter P, Dhont M. In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Hum Reprod. 1998;13:1638–44.

    Article  PubMed  CAS  Google Scholar 

  125. Yamazaki Y, Wakayama T, Yanagimachi R. Contribution of cumulus cells and serum to the maturation of oocyte cytoplasm as revealed by intracytoplasmic sperm injection (ICSI). Zygote. 2001;9:277–82.

    Article  PubMed  CAS  Google Scholar 

  126. Zeringue HC, Beebe DJ. Microfluidic removal of cumulus cells from Mammalian zygotes. Methods Mol Biol. 2004;254:365–74.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Maggiulli PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maggiulli, R., Ubaldi, F., Rienzi, L. (2012). Oocyte Denuding. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics