Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

Solid–liquid separation of biomaterials is still a problem that has not sufficiently been solved on the technical scale. Most biological compounds like cells and biopolymers exhibit comparatively high electrical surface charges. These allow for the application of electrical forces strong enough to overcome hydrodynamical forces. The contribution given here describes an innovative filter chamber, which makes use of this property. In this so-called press electrofiltration, an electrical field is superimposed onto a conventional dead-end filtration with membranes on both sides of the filtration chamber. The electrical field induces an electrophoretic flux of charged biomaterials towards the oppositely charged electrode. Thus, a big filter cake can be built up on the membrane at this side, while dewatering happens at the membrane next to the other electrode. Here only a thin surface layer is formed. One special feature of this newly designed filter chamber is the separation of the electrodes by flushing chambers. These allow for the removal of electrolysis gases, as well as for pH and temperature control. After reviewing the mathematical description of electrofiltration, the chapter highlights the advantages of this approach by describing different application examples. These range from dewatering of biopolymers, namely polysaccharides and proteins, to removal of cells from product up to fractionation of different polymer colloids from each other. Each example is extensively discussed on the basis of given data for model systems and for real fermentation suspensions. It is outlined that press electrofiltration is especially worthwhile for fine, highly charged particles as being present in biosuspensions. One unique selling point is the high final biopolymer concentration, which can be reached. For transfer of these examples to processes in fermentation or food industries useful general guidelines are given at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bargeman G, Houwing J, Recio I, Koops GH, van der Horst C. (2002a) Electro-membrane filtration for the selective isolation of bioactive peptides from an alpha(s2)-casein hydrolysate. Biotechnology and Bioengineering 80, 599–609.

    Article  CAS  Google Scholar 

  • Bargeman G, Koops GH, Houwing J, Breebaart I, van der Horst C, Wesselingh JA. (2002b) The Development of Electro-Membrane Filtration for the Isolation of Valuable Charged Components. Chemie Ingenieur Technik 74, 639–640.

    Article  CAS  Google Scholar 

  • Bargeman G, Koops GH, Houwing J, Breebaart I, van der Horst HC, Wessling M. (2002c) The development of electro-membrane filtration for the isolation of bioactive peptides: the effect of membrane selection and operating parameters on the transport rate. Desalination 149, 369–374.

    Article  CAS  Google Scholar 

  • Bellara SR, Cui ZF, Pepper DS. (1997) Fractionation of BSA and lysozyme using gas-sparged ultrafiltration in hollow fiber membrane modules. Biotechnology Progress 13, 869–872.

    Article  CAS  Google Scholar 

  • Ghosh R. (2003) Protein Bioseparation using ultrafiltration: Theory, Application and New Develpments. Imperial College Press, London.

    Google Scholar 

  • Ghosh R, Cui ZF. (1998) Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment. Journal of Membrane Science 139, 17–28.

    Article  CAS  Google Scholar 

  • Ghosh R, Li QY, Cui ZF. (1998) Fractionation of BSA and lysozyme using ultrafiltration: Effect of gas sparging. Aiche Journal 44, 61–67.

    Article  CAS  Google Scholar 

  • Hofmann R. (2005) Prozesstechnische Entwicklung der Presselektrofiltration als innovatives Verfahren zur Abtrennung von Biopolymeren. VDI-Verlage, Düsseldorf.

    Google Scholar 

  • Hofmann R, Kaeppler T, Posten C. (2006) Pilot-scale press electrofiltration of biopolymers. Separation Purification Technology 51, 303–309.

    Article  CAS  Google Scholar 

  • Hofmann R, Posten, C. (2002) Biopolymer Recovery with Pressure Electrofiltration and Determination of the Biopolymer Quality by MAS-NMR and FT-IR Techniques. Engineering in Life Sciences 2, 304–311.

    Article  CAS  Google Scholar 

  • Hofmann R, Posten C. (2003) Improvement of dead-end filtration of biopolymers with pressure electrofiltration. Chemical Engineering Science 58, 3847–3858.

    Article  CAS  Google Scholar 

  • Iritani E, Ohashi K, Murase T. (1992) Analysis of Filtration Mechanism of Dead-End Electroultrafiltration for Proteinaceous Solutions. Journal of Chemical Engineering of Japan 25, 383–388.

    Article  CAS  Google Scholar 

  • Käppler T, Hofmann R, Posten C. (2006) Elektrofiltration – Einsatzgebiet Enzymproduktion. Chemie Ingenieur Technik 78, 261–266.

    Article  Google Scholar 

  • Käppler T, Posten C. (2007) Fractionation of proteins with two-sided electro-ultrafiltration. Journal of Biotechnology 128, 895–907.

    Article  Google Scholar 

  • Kaufmann M. (1997) Unstable proteins: how to subject them to chromatographic separations for purification procedures. Journal of Chromatography B 699, 347–369.

    Article  CAS  Google Scholar 

  • Lecourtier J, Chauveteau G. (1984) Xanthan Fractionation by Surface Exclusion Chromatography. Macromolecules 17, 1340–1343.

    Article  CAS  Google Scholar 

  • Mehta A, Zydney AL. (2006) Effect of membrane charge on flow and protein transport during ultrafiltration. Biotechnology Progress 22, 484–492.

    Article  CAS  Google Scholar 

  • Paradossi G, Brant DA. (1982) Light-Scattering Study of a Series of Xanthan Fractions in Aqueous-Solution. Macromolecules 15, 874–879.

    Article  CAS  Google Scholar 

  • Rumpf H, Gupte AR. (1971) Einflüsse der Porosität und Korngrößenverteilung im Widerstandgesetz der Porenströmung. Chemie Ingenieur Technik 43, 367–375.

    Article  CAS  Google Scholar 

  • Schwuger MJ. (1996) Lehrbuch der Grenzflächenchemie. Thieme, Stuttgart.

    Google Scholar 

  • Steinbüchel A. (2003) Biopolymers. Wiley-VCH Verlag, Weinheim.

    Google Scholar 

  • Takac S, Elmas S, Calik P, Ozdamar TH. (2000) Separation of the protease enzymes of Bacillus licheniformis from the fermentation medium by crossflow ultrafiltration. Journal of Chemical Technology and Biotechnology 75, 491–499.

    Article  CAS  Google Scholar 

  • Vaneijndhoven RHCM, Saksena S, Zydney AL. (1995) Protein Fractionation Using Electrostatic Interactions in Membrane Filtration. Biotechnology and Bioengineering 48, 406–414.

    Google Scholar 

  • Wakeman R . (1986) Electrofiltration – Microfiltration Plus Electrophoresis. Chemical Engineering London 426, 65.

    Google Scholar 

  • Wakeman RJ. (1998) Electrically enhanced microfiltration of albumin suspensions. Food and Bioproducts Processing 76, 53–59.

    Article  CAS  Google Scholar 

  • Yukawa H, Kobayashi K, Tsukui Y, Yamano S, Iwata M. (1976) Analysis of Batch Electrokinetic Filtration. Journal of chemical Engineering of Japan 9, 396–401.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hofmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hofmann, R., Käppler, T., Posten, C. (2009). Electrofiltration of Biomaterials. In: Electrotechnologies for Extraction from Food Plants and Biomaterials. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79374-0_6

Download citation

Publish with us

Policies and ethics