Skip to main content
Log in

Prompt emission calculations for 252Cf(SF) focused on post-neutron fragment distributions and different correlations between pre- and post-neutron fragment quantities

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The present investigation answers to the international request of updating fission yields data for applications, by revisiting the calculations for 252Cf(SF) performed by the deterministic prompt emission model code DSE (Deterministic Sequential Emission) with focus on different distributions of post-neutron fragments, different correlations between pre- and post-neutron fragment quantities and distributions related to pre-neutron fragments in correlation with the sequential prompt neutron emission. The influence of both the energy partition in fission and the pre-neutron fragment distribution Y(A,TKE) on different distributions of post-neutron fragments (independent FPY, isotonic yield Y(Np) and kinetic energy distributions of post-neutron fragments KEp(Z), KEp(Ap)) and on different correlations between pre- and post-neutron fragment quantities is investigated by using: a) two methods of TXE partition, one based on the modeling at scission implemented in the DSE model code and another based on a parameterization of the temperature ratio of complementary fully accelerated fragments RT(AH) and b) three reliable experimental Y(A,TKE) data. The DSE results of independent FPY (Y(Z,Ap), Y(Ap)) are obtained in good agreement with the existing experimental data of 252Cf(SF). Both the energy partition in fission and the Y(A,TKE) distribution influence the Y(Ap) structure. Again the most pronounced peaks in the Y(Ap) structure are due to even-Z fragments while the odd Z fragments contribute to pronounced dips. But the role of the even–odd effect is less important than in the previous studied case of 235U(nth,f) because the global even–odd effect in Y(Z) is almost 10 times lower in the case of 252Cf(SF) compared to 235U(nth,f). The correlation between the excitation energy of pre-neutron fragments E* and KEp, consisting of a well delineated sawtooth shape (looking as a reflection in mirror of the well known sawtooth shape of ν(A)) is maintained in the case of 252Cf(SF), too. The large number of (A,Z,TKE) configurations taken into account in the DSE treatment allows the investigation of neutron excesses of pre- and post-neutron fragments. This reveals an interesting behaviour consisting of oscillations with a periodicity of about 5 mass units of both neutron excesses of pre- and post-neutron fragments as a function of A (in the asymmetric fission region). The oscillation amplitudes of neutron excesses are significantly higher and clearly visible in the case of 235U(nth,f) compared to 252Cf(SF) for which they are less visible. This behaviour is a consequence of the charge polarization ΔZ(A) and rms(A) of the isobaric charge distribution (entering the deterministic construction of the fragmentation range of DSE model) which always exhibit oscillations with a periodicity of about 5 mass units, due to the periodicity of nuclear properties. The magnitude of the global even–odd effect in fragment charge is reflected in the magnitude of oscillation amplitudes in ΔZ(A) and rms(A) and, as consequence, in the magnitude of oscillation amplitudes of neutron excesses of pre- and post-neutron fragments. The almost linear decrease of neutron excess of post-neutron fragments as a function of TKE as well as the behaviour of excitation energy distributions of pre-neutron fragments leading to each number “n” of emission sequences are explained, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this work are included in the published paper].

References

  1. IAEA – Coordinated Research Project “Updating Fission Yield Data for Applications”, CRP code F42007 (https://www.iaea.org/projects/crp/f42007)

  2. A.Tudora, EPJ Web of conferences vol. 284 (2023) 04023 (15-th Int. Conf. Nucl Data for Sci. Tech. ND-2022, USA, July 21–29, 2022)

  3. A. Tudora, Eur. Phys. J. A 58, 126 (2022)

    Article  ADS  Google Scholar 

  4. A. Tudora, Eur. Phys. J. A 58, 258 (2022)

    Article  ADS  Google Scholar 

  5. S. Okumura, T. Kawano, P. Jaffe, P. Talou, S. Chiba, J. Nucl. Sci. Tech. 55(9), 1009–1023 (2018)

    Article  Google Scholar 

  6. P. Talou, I. Stetcu, P. Jaffke, M.E. Rising, A.E. Lovell, T. Kawano, Comp. Phys. Communic. 269, 108087 (2021)

    Article  Google Scholar 

  7. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107–221 (2016)

    Article  ADS  Google Scholar 

  8. F.-H.Hambsch and S.Oberstedt Nucl.Phys.A 617 (1997) 347–355

  9. A. Göök, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)

    Article  ADS  Google Scholar 

  10. M. Travar, V. Piau, A. Göök, O. Litaize, J. Nikolov, A. Oberstedt, S. Oberstedt, J. Enders, M. Peck, W. Geerts, M. Vidali, Phys. Rev. B 817, 136293 (2021)

    Google Scholar 

  11. R.Capote, Chen Y.J., F.-J. Hambsch, N. Kornilov, J.P. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, N. Otuka, V.G. Pronyaev, A. Saxena, O. Serot, O.A. Scherbakov, Shu N.C., D.L. Smith, P. Talou, A. Trkov, A.C. Tudora, R. Vogt and A.S. Vorobyev, Nucl.Data Sheets 131 (2016) 1–106

  12. A. Tudora, F.-J. Hambsch, Eur. Phys. J. A 53(8), 159 (2017)

    Article  ADS  Google Scholar 

  13. A. Tudora, F.-J. Hambsch, V. Tobosaru, Eur. Phys. J. A 54(5), 87 (2018)

    Article  ADS  Google Scholar 

  14. A. Tudora, Eur. Phys. J. A 55(6), 98 (2019)

    Article  ADS  Google Scholar 

  15. A. Tudora, Eur. Phys. J. A 56(5), 128 (2020)

    Article  ADS  Google Scholar 

  16. A. Tudora, Eur. Phys. J. A 56(3), 84 (2020)

    Article  ADS  Google Scholar 

  17. A.C.Wahl Atomic Data Nucl.Data Tables 38 (1988) 1–156

  18. V.Piau, private communication (Y(A,TKE) data of 252Cf(SF) from the VESPA experiment)

  19. EXFOR Experimental Nuclear Data Library (available online at https://www-nds.iaea.org) nucleus Cf-252, reaction (0,f), quantity FY, entries: 13346005 (Reisdorf), 14539005 (Nifenecker), 33120022, 33120021 (Rao), 1454002 (Lipinski), 33028017 (Naik), 21743006 (Mariopolus)

  20. AME2020: https://www-nds.iaea.org/amdc/ (the file ‘mass_1.mas20.txt’ dated Mars 3, 2021)

  21. C.Morariu, A.Tudora, F.-J.Hambsch, S.Oberstedt, J.Phys.G: Nucl.Part.Phys. 39 (2012) 055103

  22. A. Tudora, F.-J. Hambsch, I. Visan, G. Giubega, Nucl. Phys. A 940, 242–263 (2015)

    Article  ADS  Google Scholar 

  23. T. von Egidy and D.Bucurescu Phys.Rev.C 80 (2009) 054310

  24. L. Thulliez, O. Litaize, O. Serot, A. Chebboubi, Phys. Rev. C 100(4), 044616 (2019)

    Article  ADS  Google Scholar 

  25. J. Randrup, P. Talou, R. Vogt, Phys. Rev. C 99(5), 051619 (2019)

    Article  Google Scholar 

  26. A. Lovell, T. Kawano, S. Okumura, I. Stetcu, M.R. Mumpower, P. Talou, J. Nucl. Sci. Tech. 59, 96–109 (2022)

    Article  Google Scholar 

  27. EXFOR Experimental Nuclear Data Library (available online at https://www-nds.iaea.org) nucleus Cf-252, reaction (0,f), quantity MFQ, Prompt Nu.

  28. V. Piau, O. Litaize, A. Chebboubi, S. Oberstedt, A. Göök, A. Oberstedt, Phys. Rev. B 837, 137648 (2023)

    Google Scholar 

  29. A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan, Nucl. Sci. Eng. 181(3), 289–301 (2015)

    Article  ADS  Google Scholar 

  30. A. Tudora, F.-J. Hambsch, V. Tobosaru, Phys. Rev. C 94, 044601 (2016)

    Article  ADS  Google Scholar 

  31. A. Tudora, F.-J. Hambsch, V. Tobosaru, Nucl. Sci. Eng. 192(1), 52–69 (2018)

    Article  ADS  Google Scholar 

  32. D.G. Madland, J.R. Nix, Nucl. Sci. Eng. 81, 213–271 (1982)

    Article  ADS  Google Scholar 

  33. D.G.Madland, A.C.Kahler, Nucl. Phys. A 957 (2017) 216, 217289–311 and corrigeum Nucl.Phys.A 961 (2017) 216–217

  34. A. Tudora, Eur. Phys. J. A 56(6), 168 (2020)

    Article  ADS  Google Scholar 

  35. A. Tudora, Eur. Phys. J. A 56(9), 225 (2020)

    Article  ADS  Google Scholar 

  36. EXFOR Experimental Nuclear Data Library (available online at https://www-nds.iaea.org) nucleus Cf-252, reaction (0,f), quantity FY, entries: 21531 (Thierens), 30691002 (Li Ze), 33158004, 33158005, 33158009 (Naik), 21592 (Blachot), 13283 (Harbour), 13081002 (Schmitt), 13067002 (Fraser).

  37. Ch. Straede, C. Budtz-Jorgensen, H.H. Knitter, Nucl. Phys. A 462, 85–108 (1987)

    Article  ADS  Google Scholar 

  38. A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 86(5), 054601 (2012)

    Article  ADS  Google Scholar 

  39. A. Tudora, F.-J. Hambsch, G. Giubega, Eur. Phys. J. A 52(6), 182 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This investigation was done in the frame of the IAEA-CRP “Updating Fission Yield Data for Applications” (contract No. 24008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabella Tudora.

Additional information

Communicated by Cedric Simenel

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudora, A. Prompt emission calculations for 252Cf(SF) focused on post-neutron fragment distributions and different correlations between pre- and post-neutron fragment quantities. Eur. Phys. J. A 59, 283 (2023). https://doi.org/10.1140/epja/s10050-023-01165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01165-7

Navigation