Skip to main content
Log in

Dependence of the Breakdown Potential on the Voltage Rise Rate in a Long Discharge Tube at Low Pressure

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have measured the dynamic breakdown voltage in a long (80 cm) discharge tube in neon, argon, their mixture, and in argon with mercury vapor at pressures of 80–400 Pa in a wide range of anode voltage rise rates (dU/dt ~ 10–4–102 kV/ms). We have detected a nonmonotonic dependence of the breakdown voltage on dU/dt with a minimum in the region 0.1–10 kV/ms. The breakdown voltage rise in the range of low voltage growth rate can probably be explained by the specific features of breakdown in long tubes and is associated with the accumulation of a surface charge on the tube walls. The charge reduces the potential difference between the anode and the wall and complicates the primary breakdown between them. The results of additional experiments with pulses superimposed on a constant bias voltage confirm the admissibility of such an explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Nedospasov and A. E. Novik, Sov. Phys.-Tech. Phys. 5, 1261 (1961).

  2. A. V. Meshchanov, D. O. Ivanov, Y. Z. Ionikh, and A. I. Shishpanov, J. Phys. D: Appl. Phys. 51, 335202 (2018).

    Article  Google Scholar 

  3. L. M. Vasilyak, E. I. Asinovskii, and I. S. Samoilov, in Low-Temperature Plasma Encyclopedia. Introductory Volume. Book II, Ed. by V. E. Fortov (Nauka, Moscow, 2000), p. 225.

    Google Scholar 

  4. R. E. Horstman and F. M. O. Lansink, J. Phys. D: Appl. Phys. 21, 1130 (1988).

    Article  ADS  Google Scholar 

  5. M. F. Gendre, M. Haverlag, and G. M. W. Kroesen, J. Phys. D: Appl. Phys. 43, 234004 (2010).

    Article  ADS  Google Scholar 

  6. M. F. Gendre, M. D. Bowden, H. C. M. van den Nieuwenhuizen, M. Haverlag, J. W. A. M. Gielen, and G. M. W. Kroesen, IEEE Trans. Plasma Sci. 33, 262 (2005).

    Article  ADS  Google Scholar 

  7. M. F. Gendre, M. D. Bowden, H. C. M. van den Nieuwenhuizen, M. Haverlag, J. W. A. M. Gielen, and G. M. W. Kroesen, in Proc. V Workshop on Frontiers in Low Temperature Plasma Diagnostics, Specchia, Italy, 2003, p. 295.

  8. S. A. Kalinin, M. A. Kapitonova, R. M. Matveev, A. V. Meshchanov, and Yu. Z. Ionikh, Plasma Phys. Rep. 44, 1009 (2018).

    Article  ADS  Google Scholar 

  9. L. N. Tunitskii and A. I. Ignashev, Svetotekhnika, No. 2, 23 (1955).

  10. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992).

    Google Scholar 

  11. M. M. Pejović, G. S. Ristić, and J. P. Karamarković, J. Phys. D: Appl. Phys. 35, R91 (2002).

    Article  ADS  Google Scholar 

  12. M. M. Pejović and R. D. Filipović, Int. J. Electron. 67, 251 (1989).

    Article  Google Scholar 

  13. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon, 1953).

    MATH  Google Scholar 

  14. M. von Laue, Ann. Phys. 76, 261 (1925).

    Article  Google Scholar 

  15. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed-Discharge Breakdown of Gases (Nauka, Moscow, 1991).

    Google Scholar 

  16. A. I. Shishpanov, A. V. Meshchanov, S. A. Kalinin, and Y. Z. Ionikh, Plasma Sources Sci. Technol. 26, 065017 (2017).

    Article  ADS  Google Scholar 

  17. L. Nie, Y. Xian, X. Lu, and K. Ostrikov, Phys. Plasmas 24, 043502 (2017).

    Article  ADS  Google Scholar 

  18. V. Lj. Marković, S. R. Gocić, S. N. Stamenković, and Z. Lj. Petrović, Eur. Phys. J. Appl. Phys. 30, 51 (2005).

    Article  Google Scholar 

  19. Č. A. Maluckov and M. K. Radović, IEEE Trans. Plasma Sci. 30, 1597 (2002).

    Article  ADS  Google Scholar 

  20. V. A. Lisovskiy, S. D. Yakovin, and V. D. Yegorenkov, J. Phys. D: Appl. Phys. 33, 2722 (2000).

    Article  ADS  Google Scholar 

  21. A. I. Shishpanov, Yu. Z. Ionikh, A. V. Meshchanov, and N. A. Dyatko, Plasma Phys. Rep. 40, 467 (2014).

    Article  ADS  Google Scholar 

  22. M. K. Radović, Č. A. Maluckov, J. P. Karamarković, S. A. Rančev, and S. D. Mitić, Rom. Rep. Phys. 66, 472 (2014).

    Google Scholar 

  23. V. Lj. Marković, S. N. Stamenković, and S. R. Gocić, Rev. Sci. Instrum. 77, 096104 (2006).

    Article  ADS  Google Scholar 

  24. D. Uhrlandt, M. Schmidt, J. F. Behnke, and T. Bindemann, J. Phys. D: Appl. Phys. 33, 2475 (2000).

    Article  ADS  Google Scholar 

  25. R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 85, 075323 (2012).

    Article  ADS  Google Scholar 

  26. M. Li, C. Li, H. Zhan, J. Xu, and X. Wang, Appl. Phys. Lett. 92, 031503 (2008).

    Article  ADS  Google Scholar 

  27. P. F. Ambrico, M. Ambrico, L. Schiavull, and S. De Benedictis, J. Phys. D: Appl. Phys. 47, 305201 (2014).

    Article  Google Scholar 

  28. R. Tschiersch, M. Bogaczyk, and H.-E. Wagner, J. Phys. D: Appl. Phys. 47, 365204 (2014).

    Article  Google Scholar 

  29. R. Wild, J. Benduhn, and L. Stollenwerk, J. Phys. D: Appl. Phys. 47, 435204 (2014).

    Article  Google Scholar 

  30. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (Mosk. Fiz.-Tekh. Inst., Moscow, 1997).

    Google Scholar 

  31. I. S. Stekol’nikov, E. N. Brago, and E. M. Bazelyan, Dokl. Akad. Nauk SSSR 133, 550 (1960).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-02-00288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Z. Ionikh.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionikh, Y.Z., Meshchanov, A.V. & Ivanov, D.O. Dependence of the Breakdown Potential on the Voltage Rise Rate in a Long Discharge Tube at Low Pressure. Tech. Phys. 64, 950–956 (2019). https://doi.org/10.1134/S1063784219070132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219070132

Navigation