Skip to main content
Log in

Genetic Mechanisms of the Early Development of the Telencephalon, a Unique Segment of the Vertebrate Central Nervous System, as Reflecting Its Emergence and Evolution

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The emergence of the telencephalon as a forebrain part with a complex structure is one of the most important aromorphoses in vertebrate evolution. The telencephalon developed and improved in evolution to allow higher nervous activity forms observed in animals and humans. A telencephalic anlage is separated at the earliest stages of vertebrate ontogenesis, when the anterior part of the neural tube differentiates into three cerebral vesicles: the prozencephalon as an anlage of the future forebrain, the mesencephalon as the future midbrain, and the rhombencephalon as the future hindbrain. The forebrain further differentiates to form the telencephalon and the diencephalon. The development of brain structures and regions is modulated by the expression of certain regulatory genes, which code for transcription factors and signaling molecules. Problems of the evolutionary origin and ontogenesis of the telencephalon are still poorly understood at the molecular level, although they are among central problems of modern developmental biology. Recent studies of the evolutionary mechanisms responsible for the emergence of the telencephalon in vertebrates have paid much attention to cyclostomes (lampreys and hagfishes) as the most evolutionarily ancient vertebrate groups and Tunicata (ascidians) and Cephalochordata (lancelets) as the closest relatives of vertebrates. Cyclostomes are of particular interest because they were the first in evolution to have the telencephalon as a separate morphological structure and because they might preserve the expression patterns and regulatory mechanisms characteristic of vertebrate ancestors. The review summarizes and analyzes the data accumulated in recent years from studies of the genetic mechanisms of early telencephalon development in lower vertebrates and searches for telencephalon homologs in two vertebrate-related chordate groups, Cephalochordata and Tunicata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Andoniadou, C.L., Signore, M., Sajedi, E., et al., Lack of the murine homeobox gene hesx1 leads to a posterior transformation of the anterior forebrain, Development, 2007, vol. 134, no. 8, pp. 1499–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bachy, I., Berthon, J., and Retaux, S., Defining pallial and subpallial divisions in the developing Xenopus forebrain, Mech. Dev., 2002, vol. 117, pp. 163–172.

    Article  CAS  PubMed  Google Scholar 

  3. Bayramov, A.V., Martynova, N.Yu., Eroshkin, F.M., et al., The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development, Mech. Dev., 2004, vol. 121, pp. 1425–1441.

    Article  CAS  PubMed  Google Scholar 

  4. Bayramov, A.V., Eroshkin, F.M., Martynova, N.Y., et al., Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling, Development, 2011, vol. 138, pp. 5345–5356.

    Article  CAS  PubMed  Google Scholar 

  5. Bayramov, A.V., Ermakova, G.V., Eroshkin, F.M., et al., The presence of the Anf/Hesx1 homeobox in lampreys indicates that it may play important role in telencephalon emergence, Sci. Rep., 2016, vol. 6, p. 39849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayramov, A.V., Ermakova, G.V., Eroshkin, F.M., et al., Presence of homeobox gene of Anf class in Pacific lamprey Lethenteron camtschaticum confirms the hypothesis about the importance of emergence of Anf genes for the origin of telencephalon in vertebrate evolution, Russ. J. Dev. Biol., 2017, vol. 48, no. 4, pp. 241–251.

    Article  CAS  Google Scholar 

  7. Benito Gutierrez, E., Stemmer, M., Rohr, S.D., et al., Patterning of a elencephalon- like region in the adult brain of amphioxus, bioRxiv, 2018, vol. 307629.

  8. Bertrand, S., Camasses, A., Somorjai, I., et al., Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 9160–9165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bielen, H., Pal, S., Tole, S., et al., Temporal variations in early developmental decisions: an engine of forebrain evolution, Curr. Opin. Neurobiol., 2017, vol. 42, pp. 152–159.

    Article  CAS  PubMed  Google Scholar 

  10. Botchkarev, V.A., Botchkareva, N.V., Roth, W., et al., Noggin is a mesenchymally derived stimulator of hair-follicle induction, Nat. Cell. Biol., 1999, vol. 1, pp. 158–164.

    Article  CAS  PubMed  Google Scholar 

  11. Brunet, L.J. and McMahon, J.A., McMahon et al., Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton, Science, 1998, vol. 280, pp. 1455–1457.

    Article  CAS  PubMed  Google Scholar 

  12. Castro, L.F.C., Rasmussen, S.L.K., Holland, P.W.H., et al., A Gbx homeobox gene in amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary, Dev. Biol., 2006, vol. 295, pp. 40–51.

    Article  CAS  PubMed  Google Scholar 

  13. Dale, L. and Slack, J.M.W., Regional specification within the mesoderm of early embryos of Xenopus laevis,Development, 1987, vol. 100, pp. 279–295.

    CAS  PubMed  Google Scholar 

  14. Danesin, C. and Houart, C., A Fox stops the Wnt: implications for forebrain development and diseases, Curr. Opin. Genet. Dev., 2012a, vol. 22, pp. 1–8.

    Article  CAS  Google Scholar 

  15. Danesin, C. and Houart, C., A Fox stops the Wnt: implications for forebrain development and diseases, Curr. Opin. Genet. Dev., 2012b, vol. 22, no. 4, pp. 323–330.

    Article  CAS  PubMed  Google Scholar 

  16. Danesin, C., Peres, J.N., Johansson, M., et al., Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1, Dev. Cell, 2009, vol. 16, no. 4, pp. 576–587.

    Article  CAS  PubMed  Google Scholar 

  17. Dattani, M.T., Martinez-Barbera, J.P., Thomas, P.Q., et al., Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse, Nat Genet., 1998, vol. 19, no. 2, pp. 125–133. https://doi.org/10.1038/477

    Article  CAS  PubMed  Google Scholar 

  18. Delsuc, F., Brinkmann, H., Chourrout, D., et al., Tunicates and not cephalochordates are the closest living relatives of vertebrates, Nature, 2006, vol. 439, pp. 965–968.

    Article  CAS  PubMed  Google Scholar 

  19. Domazet-Loso, T., Brajkovic, J., and Tautz, D., A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages, Trends Genet., 2007, vol. 23, pp. 533–539.

    Article  CAS  PubMed  Google Scholar 

  20. Ermakova, G.V., Alexandrova, E.M., Kazanskaya, O.V., et al., The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo, Development, 1999, vol. 126, pp. 4513–4523.

    CAS  PubMed  Google Scholar 

  21. Ermakova, G.V., Solovieva, E.A., Martynova, N.Y., et al., The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions, Dev. Biol., 2007, vol. 307, pp. 483–497.

    Article  CAS  PubMed  Google Scholar 

  22. Ermakova. G.V., Kucheryavyy, A.V., Zaraisky, A.G., and Bayramov, A.V., The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates, Gene Expr. Patterns, 2019, vol. 34, p. 119073. https://doi.org/10.1016/j.gep.2019.119073

  23. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., et al., Heterochrony of expression of Lanf and FoxG1 genes in lamprey confirms the appearance of the terminal brain as an evolutionarily young superstructure in the central nervous system of vertebrates, Russ. J. Dev. Biol., 2020 (in press).

  24. Eroshkin, F., Kazanskaya, O., Martynova, N., et al., Characterization of cis-regulatory elements of the homeobox gene Xanf-1,Gene, 2002, vol. 285, pp. 279–286.

    Article  CAS  PubMed  Google Scholar 

  25. Eroshkin, F.M., Ermakova, G.V., Bayramov, A.V., et al., Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis,Gene Expr. Patterns, 2006, vol. 6, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  26. Feinberg, T.E. and Mallatt, J., The evolutionary and genetic origins of consciousness in the Cambrian period over 500 million years ago, Front. Psychol., 2013, vol. 4, p. 667. https://doi.org/10.3389/fpsyg.2013.00667

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fletcher, R.B., Watson, A.L., and Harland, R.M., Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod, Gene Expr. Patterns, 2004, vol. 5, pp. 225–230.

    Article  CAS  PubMed  Google Scholar 

  28. Gess, R.W., Coates, M.I., and Rubidge, B.S., A lamprey from the Devonian period of South Africa, Nature, 2006, vol. 443, no. 7114, pp. 981–984.

    Article  CAS  PubMed  Google Scholar 

  29. Green, S.A. and Bronner, M.E., The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits, Differentiation, 2014, vol. 87, pp. 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grunz, H. and Tacke, L., Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer, Cell Differ. Dev., 1989, vol. 28, no. 3, pp. 211–217.

    Article  CAS  PubMed  Google Scholar 

  31. Hebert, J.M. and Fishell, G., The genetics of early telencephalon patterning: some assembly required, Nat. Rev. Neurosci., 2008, vol. 9, pp. 678–685.

  32. Heisenberg, C.P., Houart, C., Take-Uchi, M., et al., A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalons, Genes Dev., 2001, vol. 15, no. 11, pp. 1427–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holland, P.W.H., Garcia-Fernandez, J., Williams, N.A., et al., Gene duplications and the origins of vertebrate development, Development, 1994, suppl., pp. 125–133.

  34. Holland, N.D., Panganiban, G., Henyey, E.L., et al., Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest, Development, 1996, vol. 122, pp. 2911–2920.

    CAS  PubMed  Google Scholar 

  35. Janvier, P., Modern look for ancient lamprey, Nature, 2006, vol. 433, pp. 921–924.

    Article  CAS  Google Scholar 

  36. Kiecker, C. and Niehrs, C., A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus,Development, 2001, vol. 128, no. 21, pp. 4189–4201.

    CAS  PubMed  Google Scholar 

  37. Kiecker, C. and Lumsden, A., The role of organizers in patterning the nervous system, Annu. Rev. Neurosci., 2012, vol. 35, pp. 347–367.

    Article  CAS  PubMed  Google Scholar 

  38. Klimova, L. and Kozmik, Z., Stage-dependent requirement of neuroretinal Pax6 for lens and retina development, Development, 2014, vol. 141, pp. 1292–1302.

    Article  CAS  PubMed  Google Scholar 

  39. Kortüm, F., Das, S., Flindt, M., et al., The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis, J. Med. Genet., 2011, vol. 8, no. 6, pp. 396–406.

  40. Kremnyov, S., Henningfeld, K., Viebahn, C., et al., Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate, EvoDevo, 2018, vol. 9, p. 4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumamoto, T. and Hanashima, C., Evolutionary conservation and conversion of Foxg1 function in brain development, Dev. Growth Differ., 2017, vol. 59, no. 4, pp. 258–269.

    Article  PubMed  Google Scholar 

  42. Kuraku, S. and Kuratani, S., Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences, Zool. Sci., 2006, vol. 23, no. 12, pp. 1053–1064.

    Article  CAS  PubMed  Google Scholar 

  43. Kuratani, S., Nobusada, Y., Horigome, N., et al., Embryology of the lamprey and evolution of the vertebrate jaws: insights from molecular and developmental perspectives, Phil. Trans. R. Soc. Lond. B. Biol. Sci., 2001, vol. 356, no. 1414, pp. 1615–1632.

    Article  CAS  Google Scholar 

  44. Lagutin, O.V., Zhu, C.C., Kobayashi, D., et al., Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development, Genes Dev., 2003, vol. 17, no. 3, pp. 368–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lamb, T.M., Knecht, A.K., Smith, W.C., et al., Neural induction by secreted polypeptide noggin, Science, 1993, vol. 262, pp. 713–718.

    Article  CAS  PubMed  Google Scholar 

  46. Linker, C. and Stern, C.D., Neural induction requires bmp inhibition only as a late step, and involves signals other than FGF and Wnt antagonists, Development, 2004, vol. 131, no. 22, pp. 5671–5681.

    Article  CAS  PubMed  Google Scholar 

  47. Maden, M., Heads or tails? Retinoic acid will decide, BioEssays, 1999, vol. 21, no. 10, pp. 809–812.

    Article  CAS  PubMed  Google Scholar 

  48. Martin-Duran, J.M., Pang, K., Borve, A., et al., Convergent evolution of bilaterian nerve cords, Nature, 2018, vol. 553, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  49. Martynoga, B., Morrison, H., Price, D.J., et al., Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis, Dev. Biol., 2005, vol. 283, no. 1, pp. 113–127.

    Article  CAS  PubMed  Google Scholar 

  50. Martynova, N.Yu., Eroshkin, F.M., Ermakova, G.V., et al., Patterning the forebrain: FoxA4a/Pintallavis and Xvent-2 determine the posterior limit of the Xanf-1 expression in the neural plate, Development, 2004, vol. 131, pp. 2329–2338.

    Article  CAS  PubMed  Google Scholar 

  51. Mason, I., Initiation to end point: the multiple roles of fibroblast growth factors in neural development, Nat. Rev. Neurosci., 2007, vol. 8, no. 8, pp. 583–596.

    Article  CAS  PubMed  Google Scholar 

  52. McCauley, D.W., Docker, M.F., Whyard, S., et al., Lampreys as diverse model organisms in the genomics era, BioScience, 2015, vol. 65, no. 11, pp. 1046–1056.

    Article  PubMed  PubMed Central  Google Scholar 

  53. McMahon, J.A., Takada, S., Zimmerman, L.B., et al., Noggin-mediated antagonism of bmp signaling is required for growth and patterning of the neural tube and somite, Genes Dev., 1998, vol. 12, pp. 1438–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Medina, L., Evolution and embryological development of forebrain, in Encyclopedia of Neuroscience, Binder, M.D., Hirokawa, N., and Windhorst, U., Eds., Berlin: Springer, 2009.

    Google Scholar 

  55. Medina, L. and Abellan, A., Development and evolution of the pallium, Semin. Cell Dev. Biol., 2009, vol. 20, no. 6, pp. 698–711.

    Article  PubMed  Google Scholar 

  56. Mehta, T.K., Ravi, V., Yamasaki, S., et al., Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum), Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 16044–16049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meléndez-Ferro, M., Villar-Cheda, B., Abalo, X.M., et al., Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study, J. Comp. Neurol., 2002, vol. 442, no. 3, pp. 250–265.

    Article  PubMed  Google Scholar 

  58. Moreau, M. and Leclerc, C., The choice between epidermal and neural fate: a matter of calcium, Int. J. Dev. Biol., 2004, vol. 48, nos. 2–3, pp. 75–84.

    Article  CAS  PubMed  Google Scholar 

  59. Murakami, Y., Ogasawara, M., Sugahara, F., et al., Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates, Development, 2001, vol. 128, no. 18, pp. 3521–3531.

    CAS  PubMed  Google Scholar 

  60. Murakami, Y., Uchida, K., Rijli, F.M., et al., Evolution of the brain developmental plan: insights from agnathans, Dev. Biol., 2005, vol. 280, no. 2, pp. 249–259.

    Article  CAS  PubMed  Google Scholar 

  61. Myojin, M., Ueki, T., Sugahara, F., et al., Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution, J. Exp. Zool., 2001, vol. 291, no. 1, pp. 68–84.

  62. Neidert, A.H., Virupannavar, V., Hooker, G.W., et al., Lamprey Dlx genes and early vertebrate evolution, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 4, pp. 1665–1670.

  63. Nomura, T., Murakami, Y., Gotoh, H., et al., Reconstruction of ancestral brains: exploring the evolutionary process of encephalization in amniotes, Neurosci. Res., 2014, vol. 86, pp. 25–36.

    Article  PubMed  Google Scholar 

  64. Nord, A.S., Pattabiraman, K., Visel, A., et al., Genomic perspectives of transcriptional regulation in forebrain development, Neuron, 2015, vol. 85, no. 1, pp. 27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ohno, S., Evolution by Gene Duplication, Berlin, Germany: Springer, 1970.

    Book  Google Scholar 

  66. Oisi, Y., Ota, K.G., Kuraku, S., et al., Craniofacial development of hagfishes and the evolution of vertebrates, Nature, 2013, vol. 493, no. 7431, pp. 175–180.

    Article  CAS  PubMed  Google Scholar 

  67. Osório, J. and Rétaux, S., The lamprey in evolutionary studies, Dev. Genes Evol., 2008, vol. 218, no. 5, pp. 221–235.

    Article  PubMed  Google Scholar 

  68. Osumi, N., Shinohara, H., Numayama-Tsuruta, K., et al., Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator, Stem Cells, 2008, vol. 26, pp. 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  69. Ota, K.G., Kuraku, S., and Kuratani, S., Hagfish embryology with reference to the evolution of the neural crest, Nature, 2007, vol. 446, pp. 672–675.

    Article  CAS  PubMed  Google Scholar 

  70. Pani, A.M., Mullarkey, E.E., Aronowicz, J., et al., Ancient deuterostome origins of vertebrate brain signalling centres, Nature, 2012, vol. 483, pp. 289–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pavlov, D.S., Nazarov, D.Yu., Zvezdin, A.O., Kucheryavyi, A.V., et al., Downstream migration of early larvae of the European river lamprey Lampetra fluviatilis,Dokl. Biol. Sci., 2014, no. 459, pp. 344–347.

  72. Piccolo, S., Agius, E., Leyns, L., et al., The head inducer cerberus is a multifunctional antagonist of nodal, BMP and Wnt signals, Nature, 1999, vol. 397, no. 6721, pp. 707–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Puelles, L. and Ferran, J.L., Concept of neural genoarchitecture and its genomic fundament, Front. Neuroanat., 2012, vol. 6, p. 47.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Puelles, L. and Rubenstein, J.L.R., A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model, Front. Neuroanat., 2015, vol. 9, p. 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Putnam, N.H., Butts, T., Ferrier, D.E.K., et al., The amphioxus genome and the evolution of the chordate karyotype, Nature, 2008, vol. 453, pp. 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  76. Putnam, N.H., Butts, T., Ferrier, D.E., et al., The amphioxus genome and the evolution of the chordate karyotype, Nature, 2008, vol. 453, pp. 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  77. Reese, D.E., Hall, C.E., and Mikawa, T., Negative regulation of midline vascular development by the notochord, Dev. Cell, 2004, vol. 6, pp. 699–708.

    Article  CAS  PubMed  Google Scholar 

  78. Renaud, C.B., Lampreys of the world. an annotated and illustrated catalogue of lamprey species known to date, FAO Species Catalogue for Fishery Purposes, 2011, vol. 5, p. 109.

    Google Scholar 

  79. Retaux, S. and Kano, S., Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey hedgehog case, Integr. Comp. Biol., 2010, vol. 50, pp. 98–109.

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez-Seguel, E., Alarcon, P., and Gomez-Skarmeta, J.L., The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx, Dev. Biol., 2009, vol. 329, pp. 258–268.

    Article  CAS  PubMed  Google Scholar 

  81. Scholpp, S., Foucher, I., Staudt, N., et al., Otx1 l, Otx2 and Irx1b establish and position the ZLI in the diencephalons, Development, 2007, vol. 134, pp. 3167–3176.

    Article  CAS  PubMed  Google Scholar 

  82. Schubert, M., Holland, N.D., Laudet, V., et al., A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus, Dev. Biol., 2006, vol. 296, pp. 190–202.

    Article  CAS  PubMed  Google Scholar 

  83. Sestak, M.S. and Domazet-Loso, T., Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain, Mol. Biol. Evol., 2015, vol. 32, no. 2, pp. 299–312.

  84. Slack, J.M. and Tannahill, D., Noggin the dorsalizer, Nature, 1993, vol. 361, pp. 498–499.

    Article  CAS  PubMed  Google Scholar 

  85. Smith, W.C. and Harland, R.M., Expression cloning of noggin, a new dorsalizing factor localized to the Spemann orginizer in Xenopus embryos, Cell, 1992, vol. 70, pp. 829–840.

    Article  CAS  PubMed  Google Scholar 

  86. Smith, W.C., Knecht, A.K., Wu, M., et al., Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm, Nature, 1993, vol. 361, pp. 547–549.

    Article  CAS  PubMed  Google Scholar 

  87. Streit, A., Berliner, A.J., Papanayotou, C., et al., Initiation of neural induction by FGF signalling before gastrulation, Nature, 2000, vol. 406, no. 6791, pp. 74–78.

    Article  CAS  PubMed  Google Scholar 

  88. Suda, Y., Kurokawa, D., Takeuchi, M., et al., Evolution of Otx paralogue usages in early patterning of the vertebrate head, Dev. Biol., 2009, vol. 325, no. 1, pp. 282–295.

    Article  CAS  PubMed  Google Scholar 

  89. Sugahara, F., Pascual-Anaya, J., Oisi, Y., et al., Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain, Nature, 2016, vol. 531, pp. 97–100.

    Article  CAS  PubMed  Google Scholar 

  90. Sugahara, F., Murakami, Y., Pascual-Anaya, J., et al., Reconstructing the ancestral vertebrate brain, Dev. Growth Differ., 2017, vol. 59, no. 4, pp. 163–174.

    Article  PubMed  Google Scholar 

  91. Sussel, L., Marin, O., Kimura, S., et al., Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum, Development, 1999, vol. 126, pp. 3359–3370.

    CAS  PubMed  Google Scholar 

  92. Suzuki, D.G., Murakami, Y., Escriva, H., et al., A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center, Comp. Neurol., 2015, vol. 523, no. 2, pp. 251–261.

    Article  Google Scholar 

  93. Tahara, Y., Normal stages of development in the lamprey, Lampetra reissneri (Dybowski), Zool. Sci., 1988, vol. 5, pp. 109–118.

    Google Scholar 

  94. Takahashi, H. and Liu, F.C., Genetic patterning of the mammalian telencephalon by morphogenetic molecules and transcription factors, Birth Defects Res. C Embryo Today, 2006, vol. 78, no. 3, pp. 256–266.

    Article  CAS  PubMed  Google Scholar 

  95. Tank, E.M., Dekker, R.G., Beauchamp, K., et al., Patterns and consequences of vertebrate Emx gene duplications, Evol. Dev., 2009, vol. 11, no. 4, pp. 343–353.

    Article  CAS  PubMed  Google Scholar 

  96. Taverna, E., Gotz, M., and Huttner, W.B., The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex, Annu. Rev. Cell. Dev. Biol., 2014, vol. 30, pp. 465–502.

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, P. and Beddington, R., Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo, Curr. Biol., 1996, vol. 6, no. 11, pp. 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  98. Tomsa, J.M. and Langeland, J.A., Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw, Dev. Biol., 1999, vol. 207, no. 1, pp. 26–37.

    Article  CAS  PubMed  Google Scholar 

  99. Toresson, H., Maritnez-Barbera, J.P., Beardsley, A., et al., Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon, Dev. Genes Evol., 1998, vol. 208, pp. 431–439.

    Article  CAS  PubMed  Google Scholar 

  100. Vieira, C., Pombero, A., Garcia-Lopez, R., et al., Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers, Int. J. Dev. Biol., 2010, vol. 54, pp. 7–20.

    Article  CAS  PubMed  Google Scholar 

  101. Wada, H., Saiga, H., Satoh, N., et al., Tripartite organization of the ancestral chordate brain and the antiquity of the placodes: Insights from ascidian Pax-2/5/8, Hox, and Otx genes, Development, 1998, vol. 125, pp. 1113–1122.

    CAS  PubMed  Google Scholar 

  102. Warren, S.M., Brunet, L.J., Harland, R.M., et al., The BMP antagonist noggin regulates cranial suture fusion, Nature, 2003, vol. 422, pp. 625–629.

    Article  CAS  PubMed  Google Scholar 

  103. Watanabe, K., Kamiya, D., Nishiyama, A., et al., Direct differentiation of telencephalic precursors from embryonic stem cells, Nat. Neurosci., 2005, vol. 8, pp. 288–296.

    Article  CAS  PubMed  Google Scholar 

  104. Wilson, P.A. and Hemmati-Brivanlou, A., Induction of epidermis and inhibition of neural fate by Bmp-4, Nature, 1995, vol. 376, no. 6538, pp. 331–333.

    Article  CAS  PubMed  Google Scholar 

  105. Wilson, S.I., Rydstrom, A., Trimborn, T., et al., The status of Wnt signalling regulates neural and epidermal fates in the chick embryo, Nature, 2001, vol. 411, no. 6835, pp. 325–330.

    Article  CAS  PubMed  Google Scholar 

  106. Wilson, S.W. and Houart, C., Early steps in the development of the forebrain, Dev. Cell, 2004, vol. 6, no. 2, pp. 167–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wullimann, M.F., Mueller, T., Distel, M., et al., The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis, Front. Neuroanat., 2011, vol. 5, p. 27.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Xanthos, J.B., Kofron, M., Tao, Q., et al., The roles of three signaling pathways in the formation and function of the Spemann Organizer, Development, 2002, vol. 129, no. 17, p. 4027–4043.

    CAS  PubMed  Google Scholar 

  109. Yang, X.U., Si-Wei, Z.H.U., and Qing-Wei, L.I., Lamprey: a model for vertebrate evolutionary research, Dongwuxue Yanjiu, 2016, vol. 37, no. 5, pp. 263–269.

    CAS  Google Scholar 

  110. Zaraisky, A.G., Lukyanov, S.A., Vasiliev, O.L., et al., A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo, Dev. Biol., 1992, vol. 152, pp. 373–382.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, H., Ravi, V., Tay, B.H., et al., Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 34, pp. 9146–9151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The reported study and manuscript preparation were funded by the Russian Foundation for Basic Research, project no. 19-14-50215.

Experiments to study FoxG1 and Noggin in lampreys were supported by the Russian Foundation for Basic Research (project no. 18-04-00015). Analysis of Hh expression was supported by the Russian Science Foundation (project no. 19-14-00098). Experiments to functionally study the anterior head genes in clawed frog were supported by the Russian Foundation for Basic Research (project no. 18-29-07014). Studies of the Anf gene were supported by the program “Basic Research for Biomedical Technologies” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bayramov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayramov, A.V., Ermakova, G.V. & Zaraisky, A.G. Genetic Mechanisms of the Early Development of the Telencephalon, a Unique Segment of the Vertebrate Central Nervous System, as Reflecting Its Emergence and Evolution. Russ J Dev Biol 51, 162–175 (2020). https://doi.org/10.1134/S1062360420030054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360420030054

Keywords:

Navigation