Skip to main content
Log in

Experimental Verification on Dielectric Breakdown Strength Using Individual and Multiple Nanoparticles in Polyvinyl Chloride

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Nanoparticles distribution techniques inside electrical insulation materials is an essential technology for improving electric and dielectric behavior and maintaining the reliability of industrial applications. In this paper, it has been investigated on dielectric strength of polyvinyl chloride nanocomposites materials based on distribution of individual and multiple nanoparticles techniques under uniform and non-uniform electric fields. It has been succeeded to enhance and control the dielectric strength based on the arrangement of multiple nanoparticles inside polyvinyl chloride materials under uniform and nonuniform applied electric fields. Moreover, optimal types and concentrations of individual and multiple nanoparticles have been specified for dielectric strength degradation under variant thermal conditions (20–80 °C). Trends of using individual and multiple nanoparticles have been depicted the industrial features against traditional industrial materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Flandin, L. Vouyovitch, A. Beroual, J.-L. Bessede, N.D. Alberola, Influences of degree of curing and presence of inorganic fillers on the ultimate electrical properties of epoxy-based composites: experiment and simulation. J. Phys. D Appl. Phys. 8(1), 44–55 (2005)

    Google Scholar 

  2. L.A. Dissado, A. Thabet, Simulation of electrical ageing in insulating polymers using a quantitative physical model. J. Phys. D Appl. Phys. 41(8), 1–5 (2008)

    Google Scholar 

  3. L.A. Dissado, A. Thabet, S.J. Dodd, Simulation of DC electrical ageing in insulating polymer films. IEEE Trans. Dielectr. Electr. Insul. 17(3), 896–903 (2010)

    Google Scholar 

  4. T. Tanaka, T. Imai, Advances in nanodielectric materials over the past 50 years. IEEE Electr. Insul. Mag. 29(1), 10–23 (2013)

    Google Scholar 

  5. N.R.R. Royan, A.B. Sulong, J. Sahari, H. Suherman, Effect of acid- and ultraviolet/ozonolysis-treated MWCNTs on the electrical and mechanical properties of epoxy nanocomposites as bipolar plate applications. J. Nanomater. 2013, 1–8 (2013). https://doi.org/10.1155/2013/717459

    CAS  Google Scholar 

  6. A.D.G.D. Mauro, A.I. Grimaldi, V.L. Ferrara et al., A simple optical model for the swelling evaluation in polymer nanocomposites. J. Sensors 2009, 1–6 (2009). https://doi.org/10.1155/2009/703206

    CAS  Google Scholar 

  7. L. Zhang, J. Zhu, W. Zhou, J. Wang, Y. Wang, Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials. Energy 39(1), 294–302 (2012)

    CAS  Google Scholar 

  8. H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer—inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 55(3), 281–291 (2007)

    CAS  Google Scholar 

  9. L.W. Tang, H.Y. Chien, T.S. Yeong, C.Y. An, W.J. Li, C.Z. Hua, Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells. Eur. Polymer J. 46(4), 634–642 (2010)

    Google Scholar 

  10. J. Kaur, J.H. Lee, M.L. Shofner, Influence of polymer matrix crystallinity on nanocomposite morphology and properties. Polymer 52(19), 4337–4344 (2011)

    CAS  Google Scholar 

  11. A. Kutvonen, G. Rossi, S.R. Puisto, N.K.J. Rostedt, T.A. Nissila, Influence of nanoparticle size, loading, and shape on themechanical properties of polymer nanocomposites. J. Chem. Phys. 137(21), 1–8 (2012)

    Google Scholar 

  12. W.A. Izzati, Y.Z. Arief, Z. Adzis, Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends. Sci. World J. 2014, 1–14 (2014). https://doi.org/10.1155/2014/735070

    CAS  Google Scholar 

  13. A. Krivda et al., Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications. IEEE Electr. Insul. Mag. 28(2), 38–51 (2012)

    Google Scholar 

  14. S. Alapati, M.J. Thomas, Electrical treeing and the associated PD characteristics in LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19(2), 697–704 (2012)

    CAS  Google Scholar 

  15. T. Tanaka, M. Frechette, G.C. Montanari, T. Tanaka et al., Dielectric properties of XLPE/Si02 nanocomposites based on CIGRE WG DI.24 cooperative test results. IEEE Trans. Dielectr. Electr. Insul. 18(5), 1482–1517 (2011)

    Google Scholar 

  16. Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, The Role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 18(3), 675–681 (2011)

    CAS  Google Scholar 

  17. T. Lizuka, K. Uchida, T. Tanaka, Voltage endurance characteristics of epoxy/silica nanocomposites. Electron. Commun. 94(12), 65–73 (2011)

    Google Scholar 

  18. L. Zhe, K. Okamoto, Y. Ohki, T. Tanaka, Role of nano-filler on partial discharge resistance and dielectric breakdown strength of micro-A1203/epoxy composites, in IEEE 9th International Conference on the Properties and Applications oj Dielectric Materials, 2009, vol. 1, pp. 753–756

  19. K.Y. Lau, M.A.M. Piah, Polymer nanocomposites in high voltage electrical insulation perspective: a review. Malays. Polymer J. 6(1), 58–69 (2011)

    Google Scholar 

  20. P. Maity, S. Basu, V. Parameswaran, N. Gupta, Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges. IEEE Trans. Dielectr. Electr. Insul. 15(1), 52–62 (2008)

    CAS  Google Scholar 

  21. T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)

    CAS  Google Scholar 

  22. T. Tanaka, G.C. Montanari, R. Mulhaupt, Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 11(5), 763–784 (2004)

    CAS  Google Scholar 

  23. A. Thabet, Experimental enhancement for dielectric strength of polyethylene insulation materials using cost-fewer nanoparticles. Int. J. Electr. Power Energy Syst. (IJEPES) 64, 469–475 (2015). https://doi.org/10.1016/j.ijepes.2014.06.075

    Google Scholar 

  24. A. Thabet, Y.A. Mubarak, Experimental dielectric measurements for cost-fewer polyvinyl chloride nanocomposites. Int. J. Electr. Comput. Eng. (IJECE) 5(1), 13–22 (2015)

    Google Scholar 

  25. A. Thabet, Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride. J. Int. Meas. Confed. (IMEKO) 89, 28–33 (2016). https://doi.org/10.1016/j.measurement.2016.04.002

    Google Scholar 

  26. A.A. Ebnalwaled, A. Thabet, Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Metals J. 220, 374–383 (2016). https://doi.org/10.1016/j.synthmet.2016.07.006

    CAS  Google Scholar 

  27. A. Thabet, Experimental control of dielectric loss behavior of polyvinyl chloride nanocomposites under thermal conditions, in IEEE, International Middle East Power System Conference “MEPCON”, 19–21 Dec, Menofia, EGYPT, 2017, vol. 1, pp. 12–17

  28. A. Thabet, Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials. Electr. Eng. ELEN J. 99(2), 487–493 (2017)

    Google Scholar 

  29. A. Thabet, Y.A. Mubarak, The effect of cost-fewer nanoparticles on the electrical properties of polyvinyl chloride. Electr. Eng. J. 99(2), 625–631 (2017)

    Google Scholar 

  30. A. Thabet, A.A. Ebnalwaled, Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. IMEKO 110, 78–83 (2017). https://doi.org/10.1016/j.measurement.2017.06.023

    Google Scholar 

  31. A. Thabet, Y.A. Mobarak, Experimental study for dielectric strength of new nanocomposite polyethylene industrial materials. Int. J. Electr. Eng. Technol. (IJEET) 3(1), 353–364 (2012)

    Google Scholar 

  32. A. Thabet, Experimental verification for improving dielectric strength of polymers by using clay nanoparticles. Adv. Electr. Electron. Eng. J. 13(2), 182–190 (2015)

    Google Scholar 

  33. O. Gouda, Y.A. Mobarak, M. Samir, A simulation model for calculating the dielectric properties of nano-composite materials and comprehensive interphase approach, in 14th International Middle East Power Systems Conference (MEPCON), Cairo University, Egypt, 2010, vol. 1, pp. 151–156

  34. K.K. Karkkainen, A.H. Sihvola, K.I. Nikoskinen, Effective permittivity of mixtures: numerical validation by the FDTD method. IEEE Trans. Geosci. Remote Sens. 38(3), 1303–1308 (2000)

    Google Scholar 

  35. M. Todd, F. Shi, Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials. IEEE Trans. Compon. Packag. Technol. 26(3), 667–672 (2003)

    CAS  Google Scholar 

  36. A. Thabet, N. Salem, Optimizing dielectric characteristics of electrical materials using multi-nanoparticles technique, IEEE, International Middle East Power System Conference “MEPCON”, 19–21 Dec, Menofia, EGYPT, 2017, vol. 1, pp. 220–225

  37. G. Polizos, E. Tuncer, I. Sauers, K.L. More, Properties of a nanodielectric cryogenic resin. Appl. Phys. Lett. 96(15), 152903–152903-3 (2010)

    Google Scholar 

  38. N. Tagami, M. Hyuga, Y. Ohki, T. Tanaka et al., Comparison of dielectric properties between epoxy composites with nanosized clay fillers modified by primary amine and tertiary amine. IEEE Trans. Dielectr. Electr. Insul. 17(1), 214–220 (2010)

    CAS  Google Scholar 

  39. M. Todd, F. Shi, Characterizing the interphase dielectric constant of polymer composite materials: effect of chemical coupling agents. J. Appl. Phys. 94(7), 4551–4557 (2003)

    CAS  Google Scholar 

  40. Y. Yi, M. Sastry, Analytical approximation of the twodimensional percolation threshold for fields of overlapping ellipses. Phys. Rev. E 66(6), 066130-1–066130-8 (2002)

    Google Scholar 

  41. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics Chemistry of Sol-Gel Processing, An Imprint of Elsevier (Academic Press, Inc., Cambridge, 1990). ISBN 0-12-134970-5

    Google Scholar 

  42. L. Bois, F. Chassagneux, S. Parola, F. Bessueille, Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO–PPO–PEO. J. Solid State Chem. 182(7), 1700–1707 (2009)

    CAS  Google Scholar 

  43. H.N. Azlinaa, J.N. Hasnidawania, H. Norita, S.N. Surip, Synthesis of SiO2 nanostructures using sol-gel method, in 5th International Science Congress & Exhibition APMAS2015, Lykia, Oludeniz, 16–19 April, vol. 129(1) (2016), pp. 842–844

  44. B. Reddy, Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications (Intech Open, London, 2011), pp. 323–340. ISBN 978-953-307-165-7

    Google Scholar 

Download references

Acknowledgements

The present work was supported by Nanotechnology Research Center at Aswan University that is established by aided the Science and Technology Development Fund (STDF), Egypt, Grant No. Project ID 505, 2009–2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Thabet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thabet, A., Salem, N. Experimental Verification on Dielectric Breakdown Strength Using Individual and Multiple Nanoparticles in Polyvinyl Chloride. Trans. Electr. Electron. Mater. 21, 274–282 (2020). https://doi.org/10.1007/s42341-020-00176-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00176-1

Keywords

Navigation