Skip to main content
Log in

A methodological note on using next generation sequencing technology to identify the algal sources of stolen chloroplasts in a single sea slug specimen (Elysia crispata) to provide a comprehensive view of the animal’s kleptoplast population

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Elysia crispata is a Sacoglossan sea slug which sequesters, maintains, and utilizes chloroplasts from a wide range of Ulvophycean algae. While many sacoglossan species feed on a small number of algal species, E. crispata is capable of utilizing at least 30 ulvophycean algal species throughout the Caribbean, although individual populations vary tremendously in actual algal chloroplast sources. Most studies have relied on PCR based DNA barcoding techniques combined with plasmid cloning and screening to separate and sequence chloroplast encoded genes (usually rbcL or tufA). However, PCR/cloning-based studies are time consuming, expensive, and may not amplify the targeted gene from all algal species evenly. Recent cost declines in high throughput genome sequencing provides a cost-effective mechanism to examine sequestered chloroplast identities on a much larger scale with more comprehensive coverage. In this note we analyze total genomic DNA from a single E. crispata specimen which was sequenced on the Illumina Hi-Seq platform. Sequences were BLAST searched, filtered, and sorted using OmicsBox v2.1.10 software. Chloroplasts from four algal species could be identified, but over 95% of the rbcL sequences were from just one algal species, Penicillus lamourouxii. The results suggest that the animal either preferred this algal species or that it was the most readily available for consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Barber K, Middlebrooks M, Bell S, Pierce S (2021) The specialist marine herbivore Elysia papillosa grows faster on a less utilized algal diet. Biol Bull 241:158–167

    Article  CAS  PubMed  Google Scholar 

  • Brandley BK (1979) Aspects of the Biology of Tridachia crispata. Dissertation, University of Miami

  • Cartaxana P, Trampe E, Kühl M, Cruz S (2017) Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis. Sci Rep 7:7714. https://doi.org/10.1038/s41598-017-08002-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christa G, Wescott L, Schäberle TF, König GM, Wägele H (2014) What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding. Planta 237:559–572. https://doi.org/10.1007/s00425-012-1788-6

    Article  CAS  Google Scholar 

  • Chihara S, Nakamura T, Hirose E (2020) Seasonality and longevity of the functional chloroplasts retained by the sacoglossan sea slug Plakobranchus ocellatus van Hasselt, 1824 inhabiting a subtropical back reef off Okinawa-Jima island, Japan. Zool Stud 59:e65. https://doi.org/10.6620/ZS.2020.59-65

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortona AD, Leliaert F, Bogaert KA, Turmel M, Boedeker C, Janouškovec J, Lopez-Bautista JM, Verbruggen H, Vandepoele K, De Clerck O (2017) The plastid genome in Cladophorales green algae is encoded by hairpin plasmids. 27:3771–3782. https://doi.org/10.1101/145037

  • Curtis NE, Massey SE, Pierce SK (2006) The symbiotic chloroplasts in the sacoglossan Elysia clarki are from several algal species. Invert Biol 125:336–345

    Article  Google Scholar 

  • Curtis NE, Pierce SK, Massey SE, Schwartz JA, Maugel TK (2007) Newly metamorphosed Elysia clarki juveniles feed on and sequester chloroplasts from algal species different from those utilized by adult slugs. Mar Biol 150:797–806

    Article  Google Scholar 

  • Curtis NE, Dawes CJ, Pierce SK (2008) Phylogenetic analysis of the large subunit rubisco gene supports the exclusion of Avrainvillea and Cladocephalus from the Udoteaceae (Bryopsidales, Chlorophyta). J Phycol 44:761–767

    Article  PubMed  Google Scholar 

  • Curtis NE, Schwartz JA, Pierce SK (2010) Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance. Invertebr Biol 129:297–308

    Article  Google Scholar 

  • Curtis NE, Middlebrooks ML, Schwartz JA, Pierce SK (2015) Kleptoplastic sacoglossan species have very different capacities for plastid maintenance despite using the same algal donors. Symbiosis 65:23–31

    Article  CAS  Google Scholar 

  • Fong P, Paul VJ (2011) Coral Reef Algae. In: Coral Reefs: An Ecosystem in Transition, Z. Dubinsky and N. Stambler (eds.) DOI https://doi.org/10.1007/978-94-007-0114-4_17, Springer Science + Business Media

  • Händeler K, Wägele H, Wahrmund U, Rüdinger M, Knoop V (2010) Slugs’ last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Mol Ecol Res 10:968–978

    Article  Google Scholar 

  • Jensen KR (1994) Behavioural adaptations and diet specificity of sacoglossan opisthobranchs. Ethol Ecol Evol 6:87–101

    Article  Google Scholar 

  • Krug PJ, Vendetti JE, Valdés Á (2016) Molecular and morphological systematics of Elysia Risso, 1818 (Heterobranchia: Sacoglossa) from the caribbean region. Zootaxa 4148:1–37

    Article  PubMed  Google Scholar 

  • Lam DW, Zechman FW (2006) Phylogenetic analyses of the Bryopsidales (Ulvophyceae, Chlorophyta) based on RUBISCO large subunit gene sequences. J Phycol 42:669–678

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196. https://doi.org/10.1080/09670262.2014.904524

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence Alignment/Map format and SAMtools. Bioinform 25:2078–2079

    Article  Google Scholar 

  • Lopes D, Cruz S, Martins P, Ferreira S, Nunes C, Domingues P, Cartaxana P (2022) Sea slug mucus production is supported by photosynthesis of stolen chloroplasts. Biology 11:1207. https://doi.org/10.3390/biology11081207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín A, Ros JD (1992) Dynamics of a peculiar plant-herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum. Mar Biol 112:677–682. https://doi.org/10.1007/BF00346186

    Article  Google Scholar 

  • Maeda T, Takahashi S, Yoshida T, Shimamura S, Takaki Y, Nagai Y, Toyoda A, Suzuki Y, Arimoto A, Ishii H, Satoh N, Nishiyama T, Hasebe M, Maruyama T, Minagawa J, Obokata J, Shigenobu S (2021) Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs. Plakobranchus ocellatus eLife 10:e60176

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks ML, Pierce SK, Bell SS (2011) Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki. PLoS ONE 6:e22162. https://doi.org/10.1371/journal.pone.0022162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks ML, Bell SS, Pierce SK (2012) The kleptoplastic sea slug Elysia clarki prolongs photosynthesis by synthesizing chlorophyll a and b. Symbiosis 57:127–132

    Article  CAS  Google Scholar 

  • Middlebrooks ML, Bell SS, Curtis NE, Pierce SK (2014) Atypical plant–herbivore association of algal food and a kleptoplastic sea slug (Elysia clarki) revealed by DNA barcoding and field surveys. Mar Biol 161:1429–1440

    Article  CAS  Google Scholar 

  • Middlebrooks ML, Curtis NE, Pierce SK (2019) Algal sources of sequestered chloroplasts in the sacoglossan sea slug, Elysia crispata, varies by location and ecotype. Biol Bull 236:88–96

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks ML, Curtis NE, Pierce SK (2020) The complete disappearance of a long standing sacoglossan sea slug population following Hurricane Irma, despite recovery of the local algal community. Symbiosis 80:231–237. https://doi.org/10.1007/s13199-020-00670-3

    Article  Google Scholar 

  • OmicsBox (2019) - Bioinformatics made easy (Version 2.1.14). BioBam Bioinform March 3, https://www.biobam.com/omicsbox

  • Okonechnikov K, Conesa A, Garcia-Alcalde F (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinform 32:292–294

    Article  CAS  Google Scholar 

  • Pierce SK, Curtis NE (2012) Cell biology of the chloroplast symbiosis in sacoglossan sea slugs. Int Rev Cell Mol Biol Vol 293:123–148

    Article  CAS  Google Scholar 

  • Pierce SK, Curtis NE, Massey SE, Bass AL, Karl SA, Finney CM (2006) A morphological and molecular comparison between Elysia crispata and a new species of kleptoplastic sacoglossan sea slug (Gastropoda: Opisthobranchia) from the Florida Keys, USA. Molluscan Res 26:23–38

    CAS  Google Scholar 

  • Pierce SK, Curtis NE, Middlebrooks ML (2015) Sacoglossan sea slugs make routine use of photosynthesis by a variety of species-specific adaptations. Invertebr Biol 134:103–115

    Article  Google Scholar 

  • Rauch C, Tielens AGM, Serôdio J, Gould SB, Christa G (2018) The ability to incorporatefunctional plastids by The sea slug Elysia viridis is governed by its food source. Mar Biol 165:82 https://doi.org/10.1007/s00227-018-3329-8

  • Rumpho ME, Mujer CV, Andrews DL, Manhart JR, Pierce SK (1994) Extraction of DNA from mucilaginous tissues of a sea slug (Elysia chlorotica). Biotechniques 17:1095–1101

    Google Scholar 

  • Saunders GW, Kucera H (2010) An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae, vol 31. Cryptogamie, Algologie, pp 487–528

    Google Scholar 

  • Vital XG, Rey F, Cartaxana P, Cruz S, Domingues MR, Calado R, Simões N (2021) Pigment and fatty acid heterogeneity in the sea slug Elysia crispata is not shaped by habitat depth. Animals 11:3157. https://doi.org/10.3390/ani1111315

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade RM, Sherwood AR (2017) Molecular determination of kleptoplast origins from the sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) reveals cryptic bryopsidalean (Chlorophyta) diversity in the Hawaiian Islands. J Phycol 53:467–475. https://doi.org/10.1111/jpy.12503

    Article  CAS  PubMed  Google Scholar 

  • Wade RM, Sherwood AR (2018) Updating Plakobranchus cf. ianthobapsus (Gastropoda, Sacoglossa) host use: diverse algal-animal interactions revealed by NGS with implications for invasive species management. Mol Phylogenet Evol 128:172–181

    Article  PubMed  Google Scholar 

  • Wetterstrand KA (2021) DNA sequencing costs: data from the NHGRI genome sequencing program (GSP) available at: https://www.genome.gov/sequencingcostsdata. Accessed 10/18/2022.

  • Williams SI, DI Walker (1999) Mesoherbivore-macroalgal interactions: feeding ecology of sacoglossan sea slugs (Mollusca, Opisthobranchia) and their effects on their food algae. Oceanogr Mar Biol 37:95–136

    Google Scholar 

  • Zechman FW (2003) Phylogeny of the Dasycladales (Chlorophyta, Ulvophyceae) based on analyses of RUBISCO large subunit (rbcL) gene sequences. J Phycol 39:819–827

    Article  CAS  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinform 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sequencing of the slug genome was funded by a University of Tampa RISE grant awarded to Middlebrooks and Mahadevan. Additional support was provided to Curtis by the Dr. Paula Ines Castagnet Endowed Chair of Biological Sciences Award and Ave Maria University. Specimens were collected under pemit SAL-20-0616-SR issued to Middlebrooks by the State of Florida Fish and Wildlife Conservation Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Curtis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtis, N.E., Middlebrooks, M.M., Mahadevan, P. et al. A methodological note on using next generation sequencing technology to identify the algal sources of stolen chloroplasts in a single sea slug specimen (Elysia crispata) to provide a comprehensive view of the animal’s kleptoplast population. Symbiosis 89, 251–258 (2023). https://doi.org/10.1007/s13199-023-00895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-023-00895-y

Keywords

Navigation