Skip to main content
Log in

Investigation on the Single and Multiple Dromions for Nonlinear Telegraph Equation in Electrical Transmission Line

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study some soliton solutions for a nonlinear Telegraph equation (NLTE), also known as the damped wave equation studied in electrical transmission line. We analyze one soliton transformation, two soliton interaction, three soliton interaction and N-soliton interactions for NLTE with the help of Hirota bilinear method (HBM). To enhance the quality of information carriers in fibers, we can place two solitons close to one another in a single channel of an optical fiber and also suppress their mutual interaction. We also obtain Jacobi elliptic solutions (JES) and other solitary wave solutions which degenerate to kink, bell type, rational and dark solitons for NLTE with the aid of extended trial function scheme (ETFS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

The data used to support the findings of this study are included in the article.

References

  1. Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wavestripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. 60, 440–449 (2019)

    Article  Google Scholar 

  2. Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth. Waves Random Complex Media 28(2), 356–366 (2018)

    Article  MathSciNet  Google Scholar 

  3. Zhang, C.R., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, X.X.: Rogue waves and solitons of the coherently-coupled nonlinear Schrödinger equations with the positive coherent coupling. Phys. Scr. 93, 095202 (2018)

    Article  Google Scholar 

  4. Yuan, Y.Q., Tian, B., Liu, L., Wu, X.Y., Sun, Y.: Solitons for the (2 + 1)-dimensional Konopelchenko-Dubrovsky equations. J. Math. Anal. Appl. 460(1), 476–486 (2018)

    Article  MathSciNet  Google Scholar 

  5. Du, Z., Tian, B., Chai, H.P., Sun, Y., Zhao, X.H.: Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Soliton. Fract. 109, 90–98 (2018)

    Article  Google Scholar 

  6. Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)

    Article  MathSciNet  Google Scholar 

  7. Ablowitz, M.J., Clarkson, P.A.: Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  8. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the \(N\)-soliton solution of the Boussinesq equation in terms of a wronskian. J. Phys. A 17, 1415 (1984)

    Article  MathSciNet  Google Scholar 

  9. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow water in an open sea or a wide channel: auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. Chaos Solitons Fract. 138, 109950 (2020)

    Article  Google Scholar 

  10. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the earth, enceladus and titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. Appl. Math. Lett. 104, 106170 (2020)

    Article  MathSciNet  Google Scholar 

  11. Gao, X.Y., Guo, Y.J., Shan, W.R.: Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1942308

    Article  Google Scholar 

  12. Du, X.X., Tian, B., Qu, Q.X., Yu, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Solitons Fract. 134, 109709 (2020)

    Article  MathSciNet  Google Scholar 

  13. Chen, S.S., Tian, B., Chai, J., Wu, X.Y., Du, Z.: Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication, Wave in Random and Complex. Media 30, 389–402 (2020)

    Google Scholar 

  14. Gao, X.Y., Guo, Y.J., Shan, W.R.: Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Phy. Lett. A 384(31), 126788 (2020)

    Article  Google Scholar 

  15. Osman, M.S., Rezazadeh, H., Eslami, M., Neirameh, A., Mirzazadeh, M.: Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 80(4), 267–278 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Rezazadeh, H., Younis, M., Rehman, S.U., Eslami, M., Bilal, M., Younas, U.: New exact traveling wave solutions to the (2+ 1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom. 16, 38 (2021)

    Article  Google Scholar 

  17. Inc, M., Rezazadeh, H., Vahidi, J., Eslami, M., Akinlar, M.A., Ali, M.N., Chu, Y.M.: New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Math. 5(6), 6972–6984 (2020)

    Article  MathSciNet  Google Scholar 

  18. Inc, M., Aliyu, A.I.: Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity. Superlattices Microstruct. 113, 319–327 (2018)

    Article  Google Scholar 

  19. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biwas-Milovic equation by extended trial equation method. Nonlinear Dyn. 84(4), 1883–1900 (2016)

    Article  Google Scholar 

  20. Ali, K., Rizvi, S.T.R., Nawaz, B., Younis, M.: Optical solitons for paraxial waveequation in Kerr media. Modern Phys. Lett. B 33(3), 1950020 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mirzazadeh, M., Eslami, M.: Exact solutions of the Kudryashov-Sinelshchikov equation and nonlinear telegraph equation via the first integral method. Nonlinear Anal. Model. Control 17(4), 481–488 (2012)

    Article  MathSciNet  Google Scholar 

  22. Liu, X.Y., Triki, H., Zhou, Q., Mirzazadeh, M., Liu, W., Biswas, A., Belic, M.: Generation and control of multiple solitons under the in uence of parameters. Nonlinear Dyn. 95, 143–150 (2019)

    Article  Google Scholar 

  23. Hirota, R.: Exact solution of the Kortewegde Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  Google Scholar 

  24. Yu, W., Zhou, Q., Mirzazadeh, M., Liu, W., Biswas, A.: Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 69–76 (2019)

    Article  Google Scholar 

  25. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79(3), 576–587 (2020)

    Article  MathSciNet  Google Scholar 

  26. Hosseini, K., Mirzazadeh, M., Aligoli, M., Eslami, M., Liu, J.G.: Rational wave solutions to a generalized (2+ 1)-dimensional Hirota bilinear equation. Math. Model. Nat. Phenom. 15, 61 (2020)

    Article  MathSciNet  Google Scholar 

  27. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota‘s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Y.J., Yang, C.Y., Yu, W.T., Mirzazadeh, M., Zhou, Q., Liu, W.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351–1360 (2018)

    Article  Google Scholar 

  30. Zhang, Y., Yang, C., Yu, W., Liu, M., Ma, G., Liu, W.: Some types of dark soliton interactions in inhomogeneous optical fibers. Opt. Quant. Electron. 50, 295 (2018)

    Article  Google Scholar 

  31. Hossain, A.K.M.K.S., Akbar, M.A., Hossain, M.J., Rahman, M.M.: Closed form wave solution of nonlinear equations by modified simple equation method. Res. J. Opt. Photonics 2(1), 1000108 (2018)

    Google Scholar 

  32. Gilding, B.H., Kersner, R.: Wavefront solutions of a nonlinear telegraph equation. J. Differ. Equ. 254(2), 599–636 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber. Z. Angew. Math. Phys. 71, 18 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, S.T.R., Ali, K., Bekir, A. et al. Investigation on the Single and Multiple Dromions for Nonlinear Telegraph Equation in Electrical Transmission Line. Qual. Theory Dyn. Syst. 21, 12 (2022). https://doi.org/10.1007/s12346-021-00547-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00547-w

Keywords

Navigation