Skip to main content
Log in

Low-temperature dielectric and magnetic performance of BiFeO3 multiferroic ceramics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this article, we present the results of low-temperature dielectric, magnetic and magnetodielectric properties of BiFeO3 nanoceramics prepared by auto-combustion method. Rietveld refinement results of X-ray diffraction data show that sample crystallizes in single-phase rhombohedral perovskite structure with R3c (No. 161) space group. The average crystallite size was found to be ≈ 600 Å from Williamson–Hall analysis. The temperature-dependent dielectric data have been presented in permittivity and modulus formalism to understand the relaxation dynamics. Three non-Debye-type relaxation processes were observed in the experimental window (173 to 423 K), which are explained using Kohlrausch–Williams–Watts (KWW) decay function. The temperature variation of relaxation times obeys Arrhenius's behaviour. The anomaly observed in the temperature dependence of relaxation times data near 240 K corresponds to the magnetic transition of BiFeO3. We found that single ionized oxygen vacancies with activation energy ranging from 0.4 to 0.8 eV are involved in the relaxation process. A crossover from AFM/PM to weak ferromagnetic ordering is observed at low temperature. The variation of capacitance with an applied magnetic field shows a hysteresis effect. The magnetocapacitance (MC%) changes by 3% at a magnetic field of 2 T for 200 kHz, indicating an intrinsic bulk magnetocapacitance effect in the ceramics. Hence, the above findings highlight the significance of the material as a potential candidate for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Catalan G and Scott J F 2009 Adv. Mater. 21 2463

    Article  CAS  Google Scholar 

  2. Selbach S, Tybell T, Einarsrud M and Grande T 2008 Adv. Mater. 20 3692

    Article  CAS  Google Scholar 

  3. Palai R, Katiyar R, Schmid H, Tissot P, Clark S, Robertson J et al 2008 Phys. Rev. B 77 014110

    Article  ADS  Google Scholar 

  4. Spaldin N and Ramesh R 2019 Nat. Mater. 18 203

    Article  CAS  PubMed  Google Scholar 

  5. Fiebig M, Lottermoser T, Meier D and Trassin M 2016 Nat. Rev. Mater. 1 16046

    Article  ADS  CAS  Google Scholar 

  6. Yang F, Li M, Li L, Wu P, Pradal-Velázquez E and Sinclair D C 2018 J. Mater. Chem. A 6 5243

    Article  CAS  Google Scholar 

  7. Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z and Gruszka I 2005 J. Phys. D: Appl. Phys. 38 1450

    Article  ADS  CAS  Google Scholar 

  8. Molak A, Paluch M and Pawlus S 2008 Phys. Rev. B 78 134207

    Article  ADS  Google Scholar 

  9. Yang F, West A and Sinclair D 2020 Phys. Chem. Chem. Phys. 22 20941

    Article  CAS  PubMed  Google Scholar 

  10. Yang F, Li M, Li L, Wu P, Pradal-Velazquez E and Sinclair D C 2017 J. Mater. Chem. A 5 21658

    Article  CAS  Google Scholar 

  11. Li L, Li M, Reaney I and Sinclair D C 2017 J. Mater. Chem. C 5 6300

    Article  CAS  Google Scholar 

  12. Hunpratub S, Thongbai P, Yamwong T, Yimnirun R and Maensiri S 2009 Appl. Phys. Lett. 94 062904

    Article  ADS  Google Scholar 

  13. Markiewicz E, Hilczer B, Błaszyk M, Pietraszko A and Talik E 2011 J. Electroceram. 27 154

    Article  CAS  Google Scholar 

  14. Redfern S, Wang C, Hong J, Catalan G and Scott J F 2008 J. Phys.: Condens. Matter 20 452205

    ADS  Google Scholar 

  15. Singh M K, Prellier W, Singh M P, Katiyar R S and Scott J F 2008 Phys. Rev. B 77 144403

    Article  ADS  Google Scholar 

  16. Tripathy S N, Pradhan D K, Mishra K K, Sen S, Palai R, Paluch M et al 2015 J. Appl. Phys. 117 144103

    Article  ADS  Google Scholar 

  17. Dinnebier R E and Billinge S J L 2008 Powder diffraction theory and practice (Cambridge, UK: The Royal Society of Chemistry) ISBN: 978-0-85404-231-9

    Book  Google Scholar 

  18. Tripathy S N, Satpathy K K, Palai R and Pradhan D K 2022 Ferroelectrics 589 103

    Article  ADS  CAS  Google Scholar 

  19. Moynihan C 1998 Solid State Ion. 105 175

    Article  CAS  Google Scholar 

  20. Ngai K L 2011 Relaxation and diffusion in complex systems (Dordrecht: Springer) ISBN 978-1-4419-7648-2

    Book  Google Scholar 

  21. Kremer F and Schönhals A 2003 Broadband dielectric spectroscopy (Heidelberg: Springer)  ISBN 978-3-642-62809-2

    Book  Google Scholar 

  22. Moulson A J and Herbert J M 2003 Electroceramics: materials, properties, applications 2nd edn. (New York: John Wiley & Sons Ltd.)

    Book  Google Scholar 

  23. Ang C, Yu Z and Cross L E 2000 Phys. Rev. B 62 228

    Article  ADS  Google Scholar 

  24. Ke Q, Lou X, Wang Y and Wang J 2010 Phys. Rev. B 82 024102

    Article  ADS  Google Scholar 

  25. Rath A, Mohapatra S R, Singh A K, Kaushik S D, Dhara S, Chandrakant K et al 2023 J. Magn. Magn. 578 170813

    Article  CAS  Google Scholar 

  26. Masso R, Tripathy S N, Aponte F A, Pradhan D K, Martinez R and Palai R 2021 Mater. Res. Express. 8 016302

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

SRM acknowledges the financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) Project No. CRS/2022-23/03/853. SNT is thankful to Prof. hab. Marian Paluch (Institute of Physics, University of Silesia, Poland) for providing dielectric measurements. SNT acknowledges Odisha State Higher Education Council (OSHEC) for providing financial support under OURIIP-2022 Seed Fund with Reference No. 22SF/PH/092. RP acknowledges the support of the National Science Foundation (NSF DMR-1410869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Mohapatra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S.R., Dhara, S., Palai, R. et al. Low-temperature dielectric and magnetic performance of BiFeO3 multiferroic ceramics. Bull Mater Sci 47, 44 (2024). https://doi.org/10.1007/s12034-023-03113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03113-z

Keywords

Navigation