Skip to main content

Advertisement

Log in

Optimization of cryogenic processing parameters based on mathematical test functions using a newer hybrid approach (HAIS-GA)

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The article introduces a newer hybrid method (HAIS-GA) of optimizing and choosing the ideal machining parameters for cryogenic processing. It depends on two late methodologies genetic algorithm (GA) and artificial immune system (AIS), which are connected to numerous troublesome combinatorial streamlining issues with specific qualities and shortcomings. These developmental calculations are proposed to find the best arrangement of process factors for the clashing prerequisites in multi objective capacities. Hybrid model optimization also comes with challenges, such as selecting the right combination of techniques, tuning parameters, potential increases in complexity, and the need for expertise in multiple optimization methods. The key reason for this hybrid approach (HAIS-GA) is the improvement in the results that is achieved due to the characteristics of GA and AIS. Three test functions are employed to compare the outcomes in terms of these functions' ability to achieve the lowest value. Cryogenic processing is used to validate the optimised values that were obtained. The attained results showcase that HAIS-GA approach, in conclusion exhibits a more favourable minimal objective function within a reasonable duration. Due to the nature of Unrestricting to local optima, and it being self-adaptive HAIS-GA provides better result compared to GA and AIS. Based on the least value of the objective function and time for each method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ayesha Tanveer, S., Sree, N.M.S., Bhavana, B., Varsha, D.H.: Smart agriculture system using IOT. In: Proceedings—2022 IEEE World Conference on Applied Intelligence and Computing AIC 2022, vol. 3878, pp. 482–486 (2022). https://doi.org/10.1109/AIC55036.2022.9848948

  2. Dhanalaxmi, B., Naidu, G.A., Anuradha, K.: Adaptive PSO based association rule mining technique for software defect classification using ANN. Procedia Comput. Sci. 46, 432–442 (2015). https://doi.org/10.1016/j.procs.2015.02.041

    Article  Google Scholar 

  3. Telagam, N., Kandasamy, N., Prasad, G.N., Nanjundan, M.: Smart sensor network based high quality air pollution monitoring system using labview. Int. J. Online Biomed. Eng. 13, 79–87 (2017). https://doi.org/10.3991/ijoe.v13i08.7161

    Article  Google Scholar 

  4. Kota, V.R., Bhukya, M.N.: A novel global MPP tracking scheme based on shading pattern identification using artificial neural networks for photovoltaic power generation during partial shaded condition. IET Renew. Power Gener. 13, 1647–1659 (2019). https://doi.org/10.1049/iet-rpg.2018.5142

    Article  Google Scholar 

  5. Indira, D.N.V., Ganiya, R.K., Ashok Babu, P., Xavier, A.J., Kavisankar, L., Hemalatha, S., Senthilkumar, V., Kavitha, T., Rajaram, A., Annam, K., et al.: Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. Biomed. Res. Int. (2022). https://doi.org/10.1155/2022/7799812

    Article  Google Scholar 

  6. Reddy, K.S.P., Roopa, Y.M., L.N., K.R., Nandan, N.S.: IoT based smart agriculture using machine learning. In: Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 130–134 (2020)

  7. Kumari, C.U., Murthy, A.S.D., Prasanna, B.L., Reddy, M.P.P., Panigrahy, A.K.: An automated detection of heart arrhythmias using machine learning technique: SVM. Mater. Today Proc. 45, 1393–1398 (2021). https://doi.org/10.1016/j.matpr.2020.07.088

    Article  Google Scholar 

  8. Awasthi, A., Saxena, K.K., Arun, V.: Sustainable and smart metal forming manufacturing process. Mater. Today Proc. 44, 2069–2079 (2021). https://doi.org/10.1016/j.matpr.2020.12.177

    Article  Google Scholar 

  9. Agarwal, K.M., Tyagi, R.K., Choubey, V., Saxena, K.K.: Mechanical behaviour of aluminium alloy AA6063 processed through ECAP with optimum die design parameters. Adv. Mater. Process. Technol. 8, 1901–1915 (2022). https://doi.org/10.1080/2374068X.2021.1878705

    Article  Google Scholar 

  10. Kumari, S., Sonia, P., Singh, B., Abhishek, K., Saxena, K.K.: Optimization of surface roughness in EDM of pure magnesium (Mg) using TLBO. Mater. Today Proc. 26, 2458–2461 (2020). https://doi.org/10.1016/j.matpr.2020.02.523

    Article  Google Scholar 

  11. Agarwal, K.M., Tyagi, R.K., Saxena, K.K.: Deformation analysis of Al alloy AA2024 through equal channel angular pressing for aircraft structures. Adv. Mater. Process. Technol. 8, 828–842 (2022). https://doi.org/10.1080/2374068X.2020.1834756

    Article  Google Scholar 

  12. Priyadarshini, M., Vishwanatha, H.M., Biswas, C.K., Singhal, P., Buddhi, D., Behera, A.: Effect of grey relational optimization of process parameters on surface and tribological characteristics of annealed AISI P20 tool steel machined using wire EDM. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00954-6

    Article  Google Scholar 

  13. Raj, A., Misra, J.P., Khanduja, D., Saxena, K.K., Malik, V.: Design, modeling and parametric optimization of WEDM of Inconel 690 using RSM-GRA approach. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00947-5

    Article  Google Scholar 

  14. Kumar, J., Soota, T., Rajput, S.K., Saxena, K.K.: Machining and optimization of Zircaloy-2 using different tool electrodes. Mater. Manuf. Process. 36, 1513–1523 (2021). https://doi.org/10.1080/10426914.2021.1905829

    Article  Google Scholar 

  15. Bandhu, D., Kumari, S., Prajapati, V., Saxena, K.K., Abhishek, K.: Experimental investigation and optimization of RMDTM welding parameters for ASTM A387 grade 11 steel. Mater. Manuf. Process. 36, 1524–1534 (2021). https://doi.org/10.1080/10426914.2020.1854472

    Article  Google Scholar 

  16. Rathod, N.J., Chopra, M.K., Chaurasiya, P.K., Pawar, S.H., Tiwari, D., Kumar, R., Saxena, K.K., Buddhi, D.: Design and optimization of process parameters for hard turning of AISI 304 stainless steel using Taguchi-GRA-PCA. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01021-w

    Article  Google Scholar 

  17. Rao, R.V., Pawar, P.J.: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl. Soft Comput. 10, 445–456 (2010)

    Article  Google Scholar 

  18. Swain, B., Priyadarshini, M., Mohapatra, S.S., Gupta, R.K., Behera, A.: Parametric optimization of atmospheric plasma spray coating using fuzzy TOPSIS hybrid technique. J. Alloys Compd. 867, 159074 (2021). https://doi.org/10.1016/j.jallcom.2021.159074

    Article  Google Scholar 

  19. Chaiyaratana, N., Zalzala, A.M.S.: Hybridisation of neural networks and a genetic algorithm for friction compensation. In: Proceedings of the Congress on Evolutionary Computation, vol. 8512, pp. 22–29. IEEE, La Jolla (2000)

  20. Rao, K., Malghan, R.L., ArunKumar, S., Rao, S.S., Herbert, M.A.: An efficient approach to optimize wear behavior of cryogenic milling process of SS316 using regression analysis and particle swarm techniques. Trans. Indian Inst. Met. 72, 191–204 (2019)

    Article  Google Scholar 

  21. Malghan, L., Rao, R.M., Rao, S.S., Herbert, M.A.: Machining parameters optimization of AA6061 using response surface methodology and particle swarm optimization. Int. J. Precis. Eng. Manuf. 19, 695–704 (2018)

    Article  Google Scholar 

  22. Mishra, R., Das, K.N.: A novel hybrid genetic algorithm for unconstrained and constrained function optimization. In: Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms, pp. 148–180 (2021)

  23. Liu, Y., Wang, C.: A modified genetic algorithm based optimisation of milling parameters. Int. J. Adv. Manuf. Technol. 15, 796–799 (1999)

    Article  Google Scholar 

  24. Singh, A., Deep, K.: Real coded genetic algorithm operators embedded in gravitational search algorithm for continuous optimization. Int. J. Intell Syst Appl. 7, 1 (2015)

    Google Scholar 

  25. Gupta, A.K., Chandna, P., Tandon, P.: Hybrid genetic algorithm for minimizing non productive machining time during 2.5 D milling. Int. J. Eng. Sci. Technol. 3, 1 (2011)

    Article  Google Scholar 

  26. Baskar, N., Asokan, P., Prabhaharan, G., Saravanan, R.: Optimization of machining parameters for milling operations using non-conventional methods. Int. J. Adv. Manuf. Technol. 25, 1078–1088 (2005)

    Article  Google Scholar 

  27. Swain, B., Chatterjee, S., Mohapatra, S.S., Behera, A.: Mechanical properties evaluation and parametric optimization of atmospheric plasma spray NiTi coating. J. Mater. Eng. Perform. 31, 8270–8284 (2022). https://doi.org/10.1007/s11665-022-06834-0

    Article  Google Scholar 

  28. Savas, V., Ozay, C.: The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm. Int. J. Adv. Manuf. Technol. 37, 335–340 (2008)

    Article  Google Scholar 

  29. Huang, H., Wang, S., Wang, C., Li, K., Zhou, Y., Wang, X.: Prediction of residual stress, surface roughness, and grain refinement of 42CrMo steel subjected to shot peening by combining finite element method and artificial neural network. Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-11716-3

    Article  Google Scholar 

  30. Ren, X., Fan, J., Pan, R., Sun, K.: Modeling and process parameter optimization of laser cutting based on artificial neural network and intelligent optimization algorithm. Int. J. Adv. Manuf. Technol. 127, 1177–1188 (2023). https://doi.org/10.1007/s00170-023-11543-6

    Article  Google Scholar 

  31. Zhao, J., Li, J., Qie, H., Wang, X., Shao, J., Yang, Q.: Predicting flatness of strip tandem cold rolling using a general regression neural network optimized by differential evolution algorithm. Int. J. Adv. Manuf. Technol. 126, 3219–3233 (2023). https://doi.org/10.1007/s00170-023-11330-3

    Article  Google Scholar 

  32. Mukherjee, I., Ray, P.K.: A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50, 15–34 (2006)

    Article  Google Scholar 

  33. Antonio, C.C., Castro, C.F., Davim, J.P.: Optimisation of multi-pass cutting parameters in face-milling based on genetic search. Int. J. Adv. Manuf. Technol. 44, 1106–1115 (2009)

    Article  Google Scholar 

  34. Shunmugam, M.S., Reddy, S.B., Narendran, T.T.: Selection of optimal conditions in multi-pass face-milling using a genetic algorithm. Int. J. Mach. Tools Manuf 40, 401–414 (2000)

    Article  Google Scholar 

  35. Shi, J., Du, S., Shi, Y., Cao, W., Zhou, L.: An adaptive genetic algorithm optimize neural networks approach for wafer dicing saw quality prediction. Int. J. Adv. Manuf. Technol. 124, 209–218 (2023). https://doi.org/10.1007/s00170-022-10472-0

    Article  Google Scholar 

  36. Ghasempour-Mouziraji, M., Hosseinzadeh, M., Hajimiri, H., Najafizadeh, M., Marzban Shirkharkolaei, E.: Machine learning-based optimization of geometrical accuracy in wire cut drilling. Int. J. Adv. Manuf. Technol. 123, 4265–4276 (2022). https://doi.org/10.1007/s00170-022-10351-8

    Article  Google Scholar 

  37. Belaadi, A., Boumaaza, M., Alshahrani, H., Bourchak, M., Jawaid, M.: Drilling performance prediction of HDPE/Washingtonia fiber biocomposite using RSM, ANN, and GA optimization. Int. J. Adv. Manuf. Technol. 123, 1543–1564 (2022). https://doi.org/10.1007/s00170-022-10248-6

    Article  Google Scholar 

  38. Zarei, O., Fesanghary, M., Farshi, B., Saffar, R.J., Razfar, M.R.: Optimization of multi-pass face-milling via harmony search algorithm. J. Mater. Process. Technol. 209, 2386–2392 (2009)

    Article  Google Scholar 

  39. Wang, Z.G., Rahman, M., Wong, Y.S., Sun, J.: Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. Int. J. Mach. Tools Manuf 45, 1726–1734 (2005)

    Article  Google Scholar 

  40. Mahdavinejad, R.A., Khani, N., Fakhrabadi, M.M.S.: Optimization of milling parameters using artificial neural network and artificial immune system. J. Mech. Sci. Technol. 26, 4097–4104 (2012)

    Article  Google Scholar 

  41. Briceno, J.F., El-Mounayri, H., Mukhopadhyay, S.: Selecting an artificial neural network for efficient modeling and accurate simulation of the milling process. Int. J. Mach. Tools Manuf 42, 663–674 (2002)

    Article  Google Scholar 

  42. Liu, M., Li, C., Zhang, Y., An, Q., Yang, M., Gao, T., Mao, C., Liu, B., Cao, H., Xu, X., et al.: Cryogenic minimum quantity lubrication machining: from mechanism to application. Front. Mech. Eng. 16, 649–697 (2021). https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  43. Abdelrazek, A.H., Choudhury, I.A., Nukman, Y., Kazi, S.N.: Metal cutting lubricants and cutting tools: a review on the performance improvement and sustainability assessment. Int. J. Adv. Manuf. Technol. 106, 4221–4245 (2020). https://doi.org/10.1007/s00170-019-04890-w

    Article  Google Scholar 

  44. Kaynak, Y., Lu, T., Jawahir, I.S.: Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Mach. Sci. Technol. 18, 149–198 (2014). https://doi.org/10.1080/10910344.2014.897836

    Article  Google Scholar 

  45. Shukla, S., Bajpai, V.: Cryogenic Machining BT—Innovations in Manufacturing for Sustainability. In: Gupta, K. (ed.) Springer, Cham, pp. 29–52 (2019)

  46. Lee, I., Bajpai, V., Moon, S., Byun, J., Lee, Y., Park, H.W.: Tool life improvement in cryogenic cooled milling of the preheated Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 79, 665–673 (2015). https://doi.org/10.1007/s00170-015-6849-0

    Article  Google Scholar 

  47. Alborz, S., Dhokia, V., Newman, S.T.: Investigation of cutting parameters in sustainable cryogenic end milling. KES Trans. Sustain. Des. Manuf. II, 39–50 (2015)

    Google Scholar 

  48. Rana, M., Singh, T., Saini, A., Singh, J., Sharma, V.K., Singh, M., Rooprai, R.S.: Multi response optimization of nozzle process parameters in MQL assisted face milling of AISI 52,100 alloy steel using TGRA. Mater. Today Proc. 44, 3177–3182 (2021). https://doi.org/10.1016/j.matpr.2021.02.830

    Article  Google Scholar 

  49. Karthik Rao, M.C., Malghan, R.L., ArunKumar, S., Rao, S.S., Herbert, M.A.: An efficient approach to optimize wear behavior of cryogenic milling process of SS316 using regression analysis and particle swarm techniques. Trans. Indian Inst. Met. 72, 191–204 (2019). https://doi.org/10.1007/s12666-018-1473-y

    Article  Google Scholar 

  50. Khare, S.K., Phull, G.S., Verma, R.K., Agarwal, S.: A comparison between optimization techniques of cutting parameters under cryogenic machining process. Mater. Today Proc. 26, 2697–2700 (2020). https://doi.org/10.1016/j.matpr.2020.02.567

    Article  Google Scholar 

  51. Altas, E., Erkan, O., Ozkan, D., Gokkaya, H.: Optimization of cutting conditions, parameters, and cryogenic heat treatment for surface roughness in milling of NiTi shape memory alloy. J. Mater. Eng. Perform. 31, 7315–7327 (2022). https://doi.org/10.1007/s11665-022-06769-6

    Article  Google Scholar 

  52. Wika, K.K., Litwa, P., Hitchens, C.: Impact of supercritical carbon dioxide cooling with minimum quantity lubrication on tool wear and surface integrity in the milling of AISI 304L stainless steel. Wear 426–427, 1691–1701 (2019). https://doi.org/10.1016/j.wear.2019.01.103

    Article  Google Scholar 

  53. KarthikRao, C.M., Malghan, R.L., Shettigar, A.K., Rao, S.S., Herbert, M.A.: Application of back propagation algorithms in neural network-based identification responses of AISI 316 face milling cryogenic machining technique. Aust. J. Mech. Eng. 20, 698–705 (2022)

    Article  Google Scholar 

  54. Castro, L.N., Jonathan, T.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)

    Google Scholar 

  55. de Castro, L.N., von Zuben, F.J.: Immune and neural network models: theoretical and empirical comparisons. Int. J. Comput. Intell. Appl. 01, 239–257 (2001). https://doi.org/10.1142/S1469026801000238

    Article  Google Scholar 

  56. Das, K.N. Hybrid genetic algorithm: an optimization tool. In: Global Trends in Intelligent Computing Research and Development, pp. 268–305 (2014)

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by KRMC. Result analysis and the first draft of the manuscript was written by RLM. All authors commented on previous versions of the manuscript. Final draft was prepared by VHM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. C. Karthik Rao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malghan, R.L., Karthik Rao, M.C. & Vishwanatha, H.M. Optimization of cryogenic processing parameters based on mathematical test functions using a newer hybrid approach (HAIS-GA). Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01599-9

Keywords

Navigation