Skip to main content
Log in

Photo-Assisted Degradation, Toxicological Assessment, and Modeling Using Artificial Neural Networks of Reactive Gray BF-2R Dye

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This work investigates the degradation of Reactive Gray BF-2R dye (a blend of reactive yellow 145, reactive orange 122 and reactive black 5 dyes) using UV/H2O2, Fenton, and photo-Fenton-advanced oxidative processes, with artificial sunlight and UV-C radiations. The photo-Fenton process employing UV-C radiation was the most efficient under the conditions studied. The ideal conditions for the degradation of the dye, determined using a factorial design 23 and a study of the concentration of hydrogen peroxide ([H2O2]), were [H2O2] equal to 40 mg L−1, iron concentration [Fe] of 1 mg L−1, and pH between 3 and 4. The Chan and Chu non-linear kinetic model predicted the kinetic data with a degradation of over 98% for color and 68% for aromatics after 60 min. The behavior of the chemical oxygen demand fitted the first-order kinetic model well, with a degradation of 64% after 60 min. The Multilayer Perceptron 7-11-2 artificial neural network model enabled to model the degradation process of the aromatics and accurately predict the experimental data. Toxicity tests indicated that the post-treatment samples were non-toxic for Escherichia coli bacteria, and Portulaca grandiflora and Basil sabory seeds. However, they inhibited the growth of Lactuca sativa seeds and Salmonella enteritidis bacteria. The photo-Fenton process with UV-C radiation degraded the dye studied efficiently and the degradation percentages were, on average, 7% and 5% higher for color than those observed when employing the Fenton and UV/H2O2 processes, respectively. With the aromatic, however, they were 84% and 62% higher, thus justifying the use of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Araújo, F. V. F., Yokoyama, L., & Teixeira, L. A. C. (2006). Remoção de cor em soluções de corantes reativos por oxidação com H2O2/UV. Química Nova, 29(1), 11–14.

    Article  Google Scholar 

  • Ariyanti, D., Maillot, M., & Gao, W. (2018). Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation. Journal of Environmental Chemical Engineering, 6(1), 539–548.

    Article  CAS  Google Scholar 

  • Asaithambi, P., Saravanathamizhan, R., & Matheswaran, M. (2015). Comparison of treatment and energy efficiency of advanced oxidation processes for the distillery wastewater. International journal of Environmental Science and Technology, 12(7), 2213–2220.

    Article  CAS  Google Scholar 

  • Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572.

    Article  CAS  Google Scholar 

  • Barros Neto, B., Scarminio, I. S., & Bruns, R. E. (2007). Como Fazer Experimentos: Pesquisa e desenvolvimento na ciência e na indústria. Campinas: Editora da Unicamp.

    Google Scholar 

  • Bortoti, A. A., Da Rosa, M. F., Bariccatti, R. A., & Da Silva Lobo, V. (2016). Avaliação do processo foto-Fenton na descoloração de um corante têxtil comercial. Semina: Ciências Exatas e Tecnológicas, 37(1), 81–90.

    Article  Google Scholar 

  • Brito, N. N. D., & Silva, V. B. M. (2012). Advanced oxidative process and environmental application. Revista Eletrônica de Engenharia Civil, 1(3), 36–47.

    Google Scholar 

  • Cetinkaya, S. G., Morcali, M. H., Akarsu, S., Ziba, C. A., & Dolaz, M. (2018). Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research. https://doi.org/10.1016/j.serj.2018.02.001.

  • Chan, K. H., & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51(4), 305–311.

    Article  CAS  Google Scholar 

  • Das, M. P., Bhowmick, M., & Reynolds, M. (2016). Biological decolorization of carcinogenic azo dye: an ecofriendly approach. International Journal of Pharma and Bio Sciences, 7(3), 1164–1170.

    CAS  Google Scholar 

  • Elfarash, A., Mawad, A. M. M., Yousef, N. M. M., & Shoreit, A. A. M. (2017). Azoreductase kinetics and gene expression in the synthetic dyes-degrading Pseudomonas. Egyptian Journal of Basic and Applied Sciences, 4(4), 315–322.

    Article  Google Scholar 

  • Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study. Arabian Journal of Chemistry, 10, S1158–S1163.

    Article  CAS  Google Scholar 

  • Eskandarloo, H., Badiei, A., Behnajady, M. A., & Ziarani, G. M. (2016). Hybrid homogeneous and heterogeneous photocatalytic processes for removal of triphenylmethane dyes: artificial neural network modeling. Clean Soil Air Water, 44(7), 739–908.

    Article  Google Scholar 

  • Feng, L., Hullebusch, E. D. V., Rodrigo, M. A., Esposito, G., & Oturan, M. A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes: a review. Chemical Engineering Journal, 228, 944–964.

    Article  CAS  Google Scholar 

  • Florenza, X., Solano, A. M. S., Centellas, F., Martínez-Huitle, C. A., Brillas, E., & Garcia-Segura, S. (2014). Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products. Electrochimica Acta, 142, 276–288.

    Article  CAS  Google Scholar 

  • Gupta, V., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901.

    Article  CAS  Google Scholar 

  • Harris, D. C. (2001). Análise química quantitativa. Rio de Janeiro: Livros Técnicos e Científicos Editora S/A.

    Google Scholar 

  • Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO. (2003). Orientação sobre validação de métodos de ensaios químicos. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_01.pdf accessed 09 January 2018.

  • Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO. (2016). Orientação sobre validação de métodos analíticos. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_05.pdf. Accessed 09 January 2018.

  • Jaramillo, A. C., Cobas, M., Hormaza, A., & Ángeles Sanromán, M. (2017). Degradation of adsorbed azo dye by solid-state fermentation: improvement of culture conditions, a kinetic study, and rotating drum bioreactor performance. Water Air Soil & Pollution. https://doi.org/10.1007/s11270-017-3389-2.

  • Kalaivani, G. J., & Suja, S. (2016). TiO2 (rutile) embedded inulin--a versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydrate Polymers, 143, 51–60.

    Article  Google Scholar 

  • Khan, M. R., Amin, M. S. A., Rahman, M. T., Akbar, F., & Ferdaus, K. (2013). Factors affecting the performance of double chamber microbial fuel cell for simultaneous wastewater treatment and power generation. Polish Journal of Chemical Technology, 15(1), 7–11.

    Article  CAS  Google Scholar 

  • Kono, H., & Kusumoto, R. (2015). Removal of anionic dyes in aqueous solution by flocculation with cellulose ampholytes. Journal of Water Process Engineering, 7, 83–93.

    Article  Google Scholar 

  • Lima, D. R. S., Almeida, I. L. A., & Paula, V. (2016). Degradation of the blue 5G reactive dye by the UV/H2O2 advanced oxidative process. E-xacta, 9(2), 101–109.

    Article  Google Scholar 

  • Liu, S.-H., & Yang, S.-W. (2018). Highly efficient cuprous oxide nanocrystals assisted with graphene for decolorization using visible light. Water Air Soil & Pollution. https://doi.org/10.1007/s11270-018-3728-y.

  • Navarro, P., Gabaldón, J. A., & Gómez-López, V. M. (2017). Degradation of an azo dye by a fast and innovative pulsed light/H2O2 advanced oxidation process. Dyes and Pigments, 136, 887–892.

    Article  CAS  Google Scholar 

  • Paulino, T. R. S., Araújo, R. S., & Salgado, B. C. B. (2015). Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2). Engenharia Sanitaria e Ambiental, 20(3), 347–352.

    Article  Google Scholar 

  • Pliego, G., Zazo, J. A., Garcia-Muñoz, P., Munoz, M., Casas, J. A., & Rodriguez, J. J. (2015). Trends in the intensification of the Fenton process for wastewater treatment: an overview. Critical Reviews in Environmental Science and Technology, 45(24), 2611–2692.

    Article  CAS  Google Scholar 

  • Rajkumar, D., & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials, 133(1–3), 123–129.

    Article  Google Scholar 

  • Raman, C. D., & Kanmani, S. (2016). Textile dye degradation using nano zero valent iron: a review. Journal of Environmental Management, 177, 341–355.

    Article  CAS  Google Scholar 

  • Rashidi, S., Nikazar, M., Yazdi, A. V., & Fazaeli, R. (2014). Optimized photocatalytic degradation of reactive blue 2 by TiO2/UV process. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, 49(4), 452–462.

    Article  CAS  Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Rosu, C. M., Avadanei, M., Gherghel, D., Mihasan, M., Mihai, C., Trifan, A., Miron, A., & Vochita, G. (2018). Biodegradation and detoxification efficiency of azo-dye Reactive Orange 16 by Pichia kudriavzevii CR-Y103. Water Air Soil & Pollution. https://doi.org/10.1007/s11270-017-3668-y.

  • Salvador, T., Marcolino Jr., L. H., & Peralta-Zamora, P. (2012). Degradação de corantes têxteis e remediação de resíduos de tingimento por processo de Fenton, foto-Fenton e eletro-Fenton. Quím Nova, 35(5), 932–938.

    Article  CAS  Google Scholar 

  • Santana, R. M. R., Nascimento, G. E., Napoleão, D. C., & Duarte, M. M. M. B. (2017). Degradation and kinetic study of Reactive blue BF-5G and Remazol red RB 133% dyes using Fenton and photo-Fenton process. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 21(2), 104–118.

    Google Scholar 

  • Santiago, D. E., González-Díaz, O., Araña, J., Melián, E. P., Pérez-Peña, J., & Doña-Rodríguez, J. M. (2018). Factorial experimental design of imazalil-containing wastewater to be treated by Fenton-based processes. Journal of Photochemistry and Photobiology A: Chemistry, 353, 240–250.

    Article  CAS  Google Scholar 

  • Shafieiyoun, S., Ebadi, T., & Nikazar, M. (2012). Treatment of landfill leachate by Fenton process with nano sized zero valent iron particles. International Journal of Environmental Research, 6(1), 119–128.

    CAS  Google Scholar 

  • Shaikh, J., Patil, N. P., Shinde, V., & Gaikwad, V. B. (2016). Simultaneous decolorization of methyl red and generation of electricity in microbial fuel cell by bacillus circulans NPP1. Journal of Microbial & Biochemical Technology, 8(5), 428–432.

    Article  CAS  Google Scholar 

  • Sharma, S., Kapoor, S., & Christian, R. A. (2017). Effect of Fenton process on treatment of simulated textile wastewater: optimization using response surface methodology. International journal of Environmental Science and Technology, 14(8), 1665–1678.

    Article  CAS  Google Scholar 

  • Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S. (2017). Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523–S3531.

    Article  CAS  Google Scholar 

  • Speck, F., Raja, S., Ramesh, V., & Thivaharan, V. (2016). Modelling and optimization of homogenous photo-Fenton degradation of Rhodamine B by response surface methodology and artificial neural network. International Journal of Environmental Research, 10(4), 543–554.

    CAS  Google Scholar 

  • Sudha, M., Bakiyaraj, G., Saranya, A., Sivakumar, N., & Selvakumar, G. (2018). Prospective assessment of the Enterobacter aerogenes PP002 in decolorization and degradation of azo dyes DB 71 and DG 28. Journal of Environmental Chemical Engineering, 6(1), 95–109.

    Article  CAS  Google Scholar 

  • Tunc, S., Duman, O., & Gurkan, T. (2013). Monitoring the decolorization of acid Orange 8 and Acid Red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study. Industrial & Engineering Chemistry Research, 52(4), 1414–1425.

    Article  CAS  Google Scholar 

  • Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety, 76(2), 182–186.

    Article  CAS  Google Scholar 

  • Zaidan, L. E. M. C., Pinheiro, R. B., Santana, R. M. R., Charamba, L. V. C., Napoleão, D. C., & Silva, V. L. (2017). Evaluation of efficiency of advanced oxidative process in degradation of 2-4 dichlorophenol employing UV-C radiation reator. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 21(2), 147–157.

    Google Scholar 

  • Zhao, H., Wang, Y., Wang, Y., Cao, T., & Zhao, G. (2012). Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental, 125, 120–127.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Texpal company for providing the dye, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio ao Desenvolvimento da Universidade Federal de Pernambuco (FADE/UFPE), and Núcleo de Química Analítica Avançada de Pernambuco da Fundação de Amparo a Ciência e Tecnologia de Pernambuco (NUQAAPE/FACEPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziele Elisandra do Nascimento.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, G.E., Napoleão, D.C., de Aguiar Silva, P.K. et al. Photo-Assisted Degradation, Toxicological Assessment, and Modeling Using Artificial Neural Networks of Reactive Gray BF-2R Dye. Water Air Soil Pollut 229, 379 (2018). https://doi.org/10.1007/s11270-018-4028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4028-2

Keywords

Navigation