Skip to main content
Log in

Unveiling the synthesis of spirocyclic, tricyclic, and bicyclic triazolooxazines from intramolecular [3 + 2] azide-alkyne cycloadditions with a molecular electron density theory perspective

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The intramolecular [3+2] cycloaddition (32CA) reactions of azido alkynes leading to spirocyclic, tricyclic, and bicyclic triazolooxazines has been studied within the molecular electron density theory (MEDT) at the MPWB1K/6-311G(d,p) level. The electron localization function (ELF) characterizes the azido alkynes as zwitterionic species. Analysis of the conceptual DFT indices allows classifying the azide moiety as the electrophilic counterpart and the alkyne as the nucleophilic one. These 32CA reactions are under kinetic control with the activation free energies of 23.4–26.7 kcal mol−1. Along the reaction path, the pseudoradical centre is created initially at C4, consistent with the Parr function analysis; however, the sequence of bond formation is controlled by the energetically feasible formation of the six-membered oxazine ring. The intermolecular interactions at the transition states were characterized from the quantum theory of atoms in molecules (QTAIM) study and the non-covalent interaction (NCI) gradient isosurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Scheme 5
Fig. 3
Fig. 4
Scheme 6
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huisgen R (1984) In: Padwa A (ed) 1,3-Dipolar cycloaddition—introduction, survey, mechanism. Wiley, New York

  2. Huisgen R, Knorr R, Moebius L, Szeimies G (1965) 1.3-Dipolare cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an CC-Dreifachbindungen. Chem Ber 98:4014–4021. https://doi.org/10.1002/cber.19650981228

    Article  CAS  Google Scholar 

  3. Krivopalov VP, Shkurko OP (2005) 1,2,3-Triazole and its derivatives. Development of methods for the formation of the triazole ring. Russian Chem Rev 74:339–379. https://doi.org/10.1070/RC2005v074n04ABEH000893

    Article  CAS  Google Scholar 

  4. Arslan M, Acik G, Tasdelen MA (2019) The emerging applications of click chemistry reactions in the modification of industrial polymers. Polymer Chemistry 10:3806–3821. https://doi.org/10.1039/C9PY00510B

    Article  CAS  Google Scholar 

  5. Hein CD, Liu XM, Wang D (2008) Click chemistry: a powerful tool for pharmaceutical sciences. Pharma Res 25:2216–2230. https://doi.org/10.1007/s11095-008-9616-1

    Article  CAS  Google Scholar 

  6. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(l)-catalyzed regioselective "Ligation" of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599. https://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::aid-anie2596%3E3.0.co;2-4

    Article  CAS  Google Scholar 

  7. Tornøe CW, Meldal M (2001) In: Lebl M, Houghten RA (eds) The wave of the future. American Peptide Society, San Diego

  8. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. https://doi.org/10.1021/jo011148j

    Article  CAS  PubMed  Google Scholar 

  9. Nebra N, García-Álvarez J (2020) Recent progress of Cu-catalyzed azide-alkyne cycloaddition reactions (CuAAC) in sustainable solvents: glycerol, deep eutectic solvents, and aqueous media. Molecules 25:2015. https://doi.org/10.3390/molecules25092015

  10. Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV (2008) Ruthenium-catalyzed azide−alkyne cycloaddition: scope and mechanism. J Am Chem Soc 130:8923–8930. https://doi.org/10.1021/ja0749993

    Article  CAS  PubMed  Google Scholar 

  11. Li R, Jansen DJ, Dutta A (2009) Intramolecular azide-alkyne[3 + 2] cycloaddition: versatile route to new heterocyclic structural scaffolds. Org Biomol Chem 7:1921–1930. https://doi.org/10.1039/B818962E

    Article  CAS  PubMed  Google Scholar 

  12. Majumdar KC, Ray K, Ganai S (2010) Intramolecular Azide-Alkyne [3+2] Cycloaddition: a versatile route for the synthesis of 1,2,3-triazole fused dibenzo[1,5]diazocine derivatives. Synthesis 12:2101–2105. https://doi.org/10.1055/s-0029-1218763

    Article  CAS  Google Scholar 

  13. Mazur MO, Zhelavskyi OS, Zviagin EM, Shishkina SV, Musatov VI, Kolosov MA, Shvets EH, Andryushchenko AY, Chebanov VA (2021) Effective microwave-assisted approach to 1,2,3-triazolobenzodiazepinones via tandem Ugi reaction/catalyst-free intramolecular azide–alkyne cycloaddition. Beilstein J Org Chem 17:678–687. https://doi.org/10.3762/bjoc.17.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cobb AJA, Dell’Isola A, Abdulsattar BO, McLachlan MMW, Neuman BW, Müller C, Shankland K, Al-Mulla HMN, Binks AWD, Elvidge W (2018) Synthesis and antiviral activity of novel spirocyclic nucleosides. New J Chem 42:18363–18380. https://doi.org/10.1039/C8NJ02777C

    Article  CAS  Google Scholar 

  15. Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21:1319. https://doi.org/10.3390/molecules21101319

    Article  CAS  PubMed Central  Google Scholar 

  16. Ríos-Gutiérrez M, Domingo LR (2019) Unravelling the mysteries of the [3+2] cycloaddition reactions. Eur Jour Org Chem 2019:267–282. https://doi.org/10.1002/ejoc.201800916

    Article  CAS  Google Scholar 

  17. Domingo LR, Acharjee N (2020) In Frontiers in computational chemistry, Ul-Haq Z, Wilson AK (ed(s)) Bentham and Science, Singapore, p. 174-227. https://doi.org/10.2174/9789811457791120050007

  18. Domingo LR, Acharjee N (2020) Unravelling the strain-promoted [3+2] cycloaddition reactions of phenyl azide with cycloalkynes from the molecular electron density theory perspective. New J Chem 44:13633–13643. https://doi.org/10.1039/D0NJ02711A

    Article  CAS  Google Scholar 

  19. Domingo LR, Acharjee N (2020) Unveiling the high reactivity of strained dibenzocyclooctyne in [3+2] cycloaddition reactions with diazoalkanes through the molecular electron density theory. J Phys Org Chem 33:e4100. https://doi.org/10.1002/poc.4100

    Article  CAS  Google Scholar 

  20. Domingo LR, Acharjee N (2021) Unveiling the substituent effects in the stereochemistry of [3+2] cycloaddition reactions of aryl- and alkyldiazomethylphosphonates with norbornadiene within a MEDT perspective. ChemistrySelect 6:10722–10733. https://doi.org/10.1002/slct.202102942

    Article  CAS  Google Scholar 

  21. Domingo LR, Acharjee N (2018) [3+2] Cycloaddition reaction of C-phenyl-N-methyl nitrone to acyclic-olefin-bearing electron-donating substituent: a molecular electron density theory study. ChemistrySelect 3:8373–8380. https://doi.org/10.1002/slct.201801528

    Article  CAS  Google Scholar 

  22. Domingo LR, Ríos-Gutiérrez M, Acharjee N (2019) A molecular electron density theory study of the chemoselectivity, regioselectivity, and diastereofacial selectivity in the synthesis of an anticancer spiroisoxazoline derived from α-santonin. Molecules 24:832. https://doi.org/10.3390/molecules24050832

    Article  CAS  PubMed Central  Google Scholar 

  23. Domingo LR, Acharjee N (2021) Unveiling the chemo- and regioselectivity of the [3+2] cycloaddition reaction between 4-chlorobenzonitrile oxide and β-aminocinnamonitrile with a MEDT perspective. ChemistrySelect 6:4521–4532. https://doi.org/10.1002/slct.202100978

    Article  CAS  Google Scholar 

  24. Domingo LR, Ríos-Gutiérrez M, Pérez P (2018) A molecular electron density theory study of the reactivity and selectivities in [3 + 2] cycloaddition reactions of C, N-dialkyl nitrones with ethylene derivatives. J Org Chem 83:2182–2197. https://doi.org/10.1021/acs.joc.7b03093

    Article  CAS  PubMed  Google Scholar 

  25. Acharjee N, Salim HAM, Chakraborty M, Rao MP, Ganesh M (2021) Unveiling the high regioselectivity and stereoselectivity within the synthesis of spirooxindolenitropyrrolidine: a molecular electron density theory perspective. J Phys Org Chem 34:e4189. https://doi.org/10.1002/poc.4189

    Article  CAS  Google Scholar 

  26. Domingo LR, M. Ríos-Gutiérrez M, Pérez P (2018) A molecular electron density theory study of the role of the copper metalation of azomethine ylides in [3 + 2] cycloaddition reactions. J Org Chem 83:10959–10973. https://doi.org/10.1021/acs.joc.8b01605

    Article  CAS  PubMed  Google Scholar 

  27. Ayouchia HBEl, Lahoucine B, Anane H, Ríos-Gutiérrez M, Domingo LR, Stiriba SE (2018) Experimental and theoretical MEDT study of the thermal [3+2] cycloaddition reactions of aryl azides with alkyne derivatives. ChemistrySelect 3:1215–1233. https://doi.org/10.1002/slct.201702588

    Article  CAS  Google Scholar 

  28. Ayouchia HBEl, Lahoucine B, Anane H, Domingo LR, Stiriba SE (2018) Understanding the mechanism and regioselectivity of the copper(I) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Adv 8:7670–7678. https://doi.org/10.1039/C7RA10653J

    Article  Google Scholar 

  29. Domingo LR, Acharjee N (2020) A molecular electron density theory study of the grignard reagent mediated regioselective direct synthesis of 1,5-disubstituted-1,2,3-triazoles. J Phys Org Chem 33:e4062. https://doi.org/10.1002/poc.4062

    Article  CAS  Google Scholar 

  30. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748. https://doi.org/10.3390/molecules21060748

    Article  CAS  PubMed Central  Google Scholar 

  31. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  32. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  33. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–686. https://doi.org/10.1038/371683a0

    Article  CAS  Google Scholar 

  34. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, USA

    Google Scholar 

  35. Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960. https://doi.org/10.1063/1.446956

    Article  CAS  Google Scholar 

  36. García JC, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  Google Scholar 

  37. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918. https://doi.org/10.1021/jp048147q

    Article  CAS  Google Scholar 

  39. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1996) Ab initio molecular orbital theory. Wiley, New York, USA

    Google Scholar 

  40. Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74:4161–4163. https://doi.org/10.1021/j100717a029

    Article  CAS  Google Scholar 

  41. González C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527. https://doi.org/10.1021/j100377a021

    Article  Google Scholar 

  42. González C, Schlegel HB (1991) Improved algorithms for reaction path following: Higher-order implicit algorithms. Chem Phys 95:5853–5860. https://doi.org/10.1063/1.461606

    Article  Google Scholar 

  43. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford 4:70–86

    Google Scholar 

  44. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  45. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  46. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org. Biomol Chem 9:7168–7175. https://doi.org/10.1039/C1OB05856H

    Article  CAS  PubMed  Google Scholar 

  47. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494. https://doi.org/10.1039/C2RA22886F

    Article  CAS  Google Scholar 

  48. Tomasi J, Persico M (1994) Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem Rev 94:2027–2094. https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  49. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  CAS  Google Scholar 

  50. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19:404–417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4/404::AID-JCC3/3.0.CO;2-W

    Article  CAS  Google Scholar 

  51. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  52. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Molec Graphics 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  54. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H (2016) Gaussian 16.Revision A 3

  55. Thom R (1972) StabilitéStructurelle et Morphogénèse. Intereditions, Paris

    Google Scholar 

  56. Krokidis X, Noury S, Silvi B (1997) Characterization of elementary chemical processes by Catastrophe Theory. J Phys Chem A 101:7277–7282. https://doi.org/10.1021/jp9711508

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Nivedita Acharjee, Haydar A Mohammad-Salim, and Mrinmoy Chakraborty. The first draft of the manuscript was written by Nivedita Acharjee, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nivedita Acharjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharjee, N., Mohammad-Salim, H.A. & Chakraborty, M. Unveiling the synthesis of spirocyclic, tricyclic, and bicyclic triazolooxazines from intramolecular [3 + 2] azide-alkyne cycloadditions with a molecular electron density theory perspective. Struct Chem 33, 555–570 (2022). https://doi.org/10.1007/s11224-021-01870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01870-3

Keywords

Navigation