Skip to main content

Advertisement

Log in

Quinone diterpenes from Salvia species: chemistry, botany, and biological activity

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

A total of 175 abietane quinone diterpenes with ortho- or para-quinone chromophore, namely 11,12-ortho-quinone abietane, 11,14-para-quinone abietane, seco-abietane and abeo-abietanes quinones were surveyed from 130 species of Salvia of central Asia/Mediterranean area, eastern Asia, and Central and South America. An organized information on the phytochemistry and the biological activities, i.e. anti-cancer, antioxidant, anxiolytic and antidepressant, anti-obesity, antinflammatory, as well as antimicrobial and toxicological aspects of these compounds was provided. Due to the many nomenclatural mistakes caused by the abundance of data, and the need to provide the plant knowledge for further chemotaxonomic studies, the results about the botany and the taxonomy of the plant source of these compounds were also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi J, Ebrahimi M, Ali Ramshini H, Jaafari AA, Eftekhari M, Mansouri YS, Sheikh BGMA (2012) Seed germination as the major conservation issue of endemic Iranian Salvia species. J Med Plants Res 6:37–46

    Article  CAS  Google Scholar 

  • Abdul-Ghani MM (2004) Diterpene quinones from Salvia viridis horminium. Alex J Pharm Sci 18:31–32

    CAS  Google Scholar 

  • Abe T, Kanaya S, Kinouchi M, Ichiba Y, Kozuki T, Ikemura T (2003) Informatics for unveiling hidden genome signatures. Genome Res 13:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboul-Ela M (2006) Aegyptinone D; a new rearranged abietane diterpene-p-quinone from roots of Salvia aegyptiaca L. growing in Egypt. Alex J Pharm Sci 20:29

    CAS  Google Scholar 

  • Adams JD, Wall M, Garcia C (2005) Salvia columbariae contains tanshinones. Evid Based Complement Altern Med 2:107–110

    Article  Google Scholar 

  • Akaberi M, Mehri S, Iranshahi M (2015) Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia 100:118–132

    Article  CAS  PubMed  Google Scholar 

  • Al Yousuf MH, Bashir AK, Blunden G, Crabb TA, Patel AV (2002) 6-Methylcryptoacetalide, 6-methyl-epicryptoacetalide and 6-methylcryptotanshinone from Salvia aegyptiaca. Phytochemistry 61:361–365

    Article  CAS  PubMed  Google Scholar 

  • Al-Gharaibeh MM, Hamasha HR, Rosche C, Lachmuth S, Wesche K, Hensen I (2017) Environmental gradients shape the genetic structure of two medicinal Salvia species in Jordan. Plant Biol 19:227–238

    Article  CAS  PubMed  Google Scholar 

  • Ali MS, Dardass AK, Ahmad S, Saleem M, Firdous S, Ahmad VU (2000) Two new diterpenoids from Salvia triloba. Fitoterapia 71:347–352

    Article  CAS  PubMed  Google Scholar 

  • Alvarenga VAS, Gastmans JP, do Vale Rodrigues G, Moreno PRH, Emerenciano VP (2001) A computer assisted approach for chemiotaxonomic studies-diterpenes in Lamiaceae. Phytochemistry 56:583–595

    Article  Google Scholar 

  • Amaro-Luis JM, Herrera JR, Luis JG (1998) Abietane diterpenoids from Salvia chinopeplica. Phytochemistry 47:895–897

    Article  CAS  Google Scholar 

  • Anwar MA, Samaha AA, Ballan S, Saleh AI, Iratni R, Eid AH (2017) Salvia fruticosa induces vasorelaxation in rat isolated thoracic aorta: role of the PI3 K/Akt/eNOS/NO/cGMP signaling pathway. Sci Rep 7:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagherpour S (2010) Taxonomic studies on the genus Salvia L. (Labiatae) in Central Anatolia, Turkey. vol. Doctor Of Philosophy In Biology. The Graduate School of Natural and Applied Sciences of Middle East Technical University, pp 1–222

  • Bakshi B, Hassarajani S, Mulchandani N, Shankar J (1984) 6,7-Dehydroroyleanone, a diterpenoid quinone from Salvia moorcraftiana. Planta Med 50:355–356

    Article  CAS  PubMed  Google Scholar 

  • Bakshi B, Mulchandani NB, Shankar J (1986) A novel phenalenone from Salvia moorcraftiana. Planta Med 52:408

    Article  Google Scholar 

  • Bennett BC, Balick MJ (2014) Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research. J Ethnopharmacol 152:387–392

    Article  PubMed  Google Scholar 

  • Bentham G (1832–1836) Labiatarum genera et species: or, a description of the genera and species of plants of the order labiatae; with their general history, characters, affinities, and geographical distribution. Ridgway and Sons, London

  • Bentham G (1836) Labiatae orientales herbarii Montbretiani. In: Brongniart AD, Guillemin MA (eds) Annales des sciences naturelles. Botanique, vol. Sixième - Botanique. Crochard, Paris, pp 37–56

    Google Scholar 

  • Bentham G (1848) Labiatae. In: de Candolle A (ed) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarium, juxta methodi naturalis, normas digesta, vol 12. Sumptibus Sociorum Treuttel et Würtz, Parisii, pp 262–358

    Google Scholar 

  • Bisio A, Romussi G, Russo E, Cafaggi S, Schito AM, Repetto B, De Tommasi N (2008) Antimicrobial activity of the ornamental species Salvia corrugata, a potential new crop for extractive purposes. J Agric Food Chem 56:10468–10472

    Article  CAS  PubMed  Google Scholar 

  • Bisio A, Fraternale D, Schito AM, Parricchi A, Dal Piaz F, Ricci D, Giacomini M, Ruffoni B, De Tommasi N (2016) Establishment and analysis of in vitro biomass from Salvia corrugata Vahl and evaluation of antimicrobial activity. Phytochemistry 122:276–285

    Article  CAS  PubMed  Google Scholar 

  • Bisio A, Mieri MD, Milella L, Schito AM, Parricchi A, Russo D, Alfei S, Lapillo M, Tuccinardi T, Hamburger M (2017) Antibacterial and hypoglycemic diterpenoids from Salvia chamaedryoides. J Nat Prod 80:503–514

    Article  CAS  PubMed  Google Scholar 

  • Bo L, Fan-Di N, Zhong-Wen L, Hong-Jie Z, De-Zu W, Han-Dong S (1991) Diterpenoids from the roots of Salvia przewalskii. Phytochemistry 30:3815–3817

    Article  Google Scholar 

  • Boissier E (1838) Elenchus plantarum novarum minusque cognitarum in Hispania australi collectarum. Lador et Ramboz, Geneve

    Book  Google Scholar 

  • Boissier E (1860) Aufzaehlung derauf einer reise durch Transkaukasien und Persien gesammelten pflanzen in gemeinschaft. Gautier, W., Moscow

  • Boissier E (1879) Flora Orientalis: sive, Enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum. Georg, H., Basileae

  • Bonaccini L, Karioti A, Bergonzi MC, Bilia AR (2015) Effects of Salvia miltiorrhiza on CNS neuronal injury and degeneration: a plausible complementary role of tanshinones and depsides. Planta Med 81:1003–1016

    Article  CAS  PubMed  Google Scholar 

  • Boya MT, Valverde S (1981) An orthoquinone isolated from Salvia aethiopis. Phytochemistry 20:1367–1368

    Article  CAS  Google Scholar 

  • Brieskorn C, Buchberger L (1973) Diterpenchinone aus labiatenwurzeln (Diterpenchinones from Labiatae-roots). Planta Med 24:190–195

    Article  CAS  PubMed  Google Scholar 

  • Brieskorn CH, Fuchs A, Bredenberg JB-S, McChesney JD, Wenkert E (1964) The structure of carnosol. J Org Chem 29:2293–2298

    Article  CAS  Google Scholar 

  • Briquet J (1895–1897) Labiatae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol IV Abteilung 3a. Engelmann, W., Leipzig

  • Briquet J, Engler A, Prantl K (1897) Die natürlichen Pflanzenfamilien. Abteilung 3a. Wilhelm Engelmann

  • Búfalo J, Cantrell CL, Jacob MR, Schrader KK, Tekwani BL, Kustova TS, Ali A, Boaro CS (2016) Antimicrobial and antileishmanial activities of diterpenoids isolated from the roots of Salvia deserta. Planta Med 82:131–137

    PubMed  Google Scholar 

  • Bunge AGV (1873) Labiatae persicae. Imperatorskaiâ akademīiâ nauk (Russia), St-Pétersbourg

  • Campos-Xolalpa N, Alonso-Castro ÁJ, Sánchez-Mendoza E, Zavala-Sánchez MÁ, Pérez-Gutiérrez S (2017) Cytotoxic activity of the chloroform extract and four diterpenes isolated from Salvia ballotiflora. Rev Bras Farmacogn 27:302–305

    Article  CAS  Google Scholar 

  • Cao E-H, Liu XQ, Wang J-J, Xu N-F (1995) Effect of natural antioxidant tanshinone II-A on dna damage by lipid peroxidation in liver cells. Free Radical Biol Med 31:226–232

    Google Scholar 

  • Cardenas J, Rodriguez-Hahn L (1995) Abietane and icetexane diterpenoids from Salvia candicans. Phytochemistry 38:199–204

    Article  CAS  Google Scholar 

  • Celep F (2010) Revision of the genus Salvia L. (Labiatae) in the Mediterranean and the Aegean geographic regions of Turkey. vol. Doctor of Philosophy in Biology. Middle East Technical University, pp 1–263

  • Celep F, Doğan M, Kahraman A (2010) Re-evaluated conservation status of Salvia (sage) in Turkey I: the mediterranean and the aegean geographic regions. Turk J Bot 34:201–214

    Google Scholar 

  • Chang HM, Cheng KP, Choang TF, Chow HF, Chui KY, Hon PM, Tan FWL, Yang Y, Zhong ZP, Lee CM, Sham HL, Chan CF, Cui YX, Wong HNC (1990) Structure elucidation and total synthesis of new tanshinones isolated from Salvia miltiorrhiza Bunge (Danshen). J Org Chem 55:3537–3543

    Article  CAS  Google Scholar 

  • Chang J, Xu J, Li M, Zhao M, Ding J, Zhang JS (2005) Novel cytotoxic seco-abietane rearranged diterpenoids from Salvia prionitis. Planta Med 71:861–866

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Sun L, Zhao RH, Chow MS, Zuo Z (2008) Simultaneous determination of ten active components in traditional Chinese medicinal products containing both Gegen (Pueraria lobata) and Danshen (Salvia miltiorrhiza) by high-performance liquid chromatography. Phytochem Anal 19:368–375

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Chu C-F, Wang C-N, Wu H-T, Bi K-W, Pang J-HS, Huang S-T (2014) The anti-atherosclerotic effect of Tanshinone IIA is associated with the inhibition of Tnf-α-induced Vcam-1, Icam-1 and Cx3cl1 expression. Phytomedicine 21:207–216

    Article  CAS  PubMed  Google Scholar 

  • Chang CI, Chen CC, Wang S-Y, Chao C-Y, Chao LK, Chen J-J, Ko H-H, Chen C-C, Kuo Y-H (2017) Three new abietane-type diterpenes from the bark of Cryptomeria japonica. Phytochem Lett 19:46–49

    Article  CAS  Google Scholar 

  • Chen X, Ding J, Ye Y-M, Zhang J (2002) Bioactive abietane and seco-abietane diterpenoids from Salvia prionitis. J Nat Prod 65:1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Hussain A, Diego S, Jolla L, Ali Z, Adhikari A (2012) Diterpenoids including a novel dimeric conjugate from Salvia leriaefolia. Planta Med 78:269–275

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Hussain A, Adhikari A, Marasini BP, Sattar SA (2013) Anticancer and α-chymotrypsin inhibiting diterpenes and triterpenes from Salvia leriifolia. Phytochem Lett 6:139–143

    Article  CAS  Google Scholar 

  • Cioffi G, Bader A, Malafronte A, Dal Piaz F, De Tommasi N (2008) Secondary metabolites from the aerial parts of Salvia palaestina Bentham. Phytochemistry 69:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Clebsch B (2003) The new book of salvias: Sages for every garden. Timber Press, Portland

    Google Scholar 

  • Cortese K, Daga A, Monticone M, Tavella S, Stefanelli A, Aiello C, Bisio A, Bellese G, Castagnola P (2016) Carnosic acid induces proteasomal degradation of Cyclin B1, RB and SOX2 along with cell growth arrest and apoptosis in GBM cells. Phytomedicine, pp 1–7

  • Dang J, Cui Y, Pei J, Yue H, Liu Z, Wang W, Jiao L, Mei L, Wang Q, Tao Y (2018) Efficient separation of four antibacterial diterpenes from the roots of Salvia prattii using non-aqueous hydrophilic solid-phase extraction followed by preparative high-performance liquid chromatography. Molecules 23:623

    Article  CAS  PubMed Central  Google Scholar 

  • De Castro ML, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389

    Article  CAS  Google Scholar 

  • De Falco B, Lanzotti V (2018) NMR spectroscopy and mass spectrometry in metabolomics analysis of Salvia. Phytochem Rev 17:951–972

    Article  CAS  Google Scholar 

  • De Halácsy E (1902) Conspectus florae graecae. Guilelmi Engelmann (Reprinted 1969 by Cramer J.), Lipsiae (Leipzig)

  • De la Torre MC, Bruno M, Rodríguez B, Savona G (1992) Abietane and 20-nor-abietane diterpenoids from the root of Meriandra benghalensis. Phytochemistry 31:3953–3955

    Article  Google Scholar 

  • Del Corral JMM, Gordaliza M, Salinero MA, San Feliciano A (1994) 13C NMR Data for abieta-8,11,13-triene diterpenoids. Magn Reson Chem 32:774–781

    Article  Google Scholar 

  • Demarque DP, Crotti AE, Vessecchi R, Lopes JL, Lopes NP (2016) Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat Prod Rep 33:432–455

    Article  CAS  PubMed  Google Scholar 

  • Dezi M, Lin H, Hu F (2007) Flora Ningxiaensis. Typis Ningxiaensis Popularis, Yinchuan

    Google Scholar 

  • Dizkirici A, Celep F, Kansu C, Kahraman A, Dogan M, Kaya Z (2015) A molecular phylogeny of Salvia euphratica sensu lato (Salvia L., Lamiaceae) and its closely related species with a focus on the section Hymenosphace. Plant Syst Evol 301:2313–2323

    Article  Google Scholar 

  • Dobignard A, Chatelain C (2012) Dicotyledoneae: Fabaceae–Nymphaeaceae. Ville de Genève Éditions des Conservatoire et Jardin Botaniques, Genève

    Google Scholar 

  • Dominguez XA, Gonzalez H, Aragon R, Gutierrez M, Watson JS (1976) Mexican medicinal plants XXIX. Three new diterpene quinones from Salvia ballotaeflora. Planta Med 30:237–241

    Article  CAS  PubMed  Google Scholar 

  • Drew BT, González-Gallegos JG, Xiang C-L, Kriebel R, Drummond CP, Walker JB, Sytsma KJ (2017) Salvia united: the greatest good for the greatest number. Taxon 66:133–145

    Article  Google Scholar 

  • Dunn ST (1915) A key to the Labiatae of China. Notes Roy Bot Gard Edinburgh 6:127–208

    Google Scholar 

  • Ebrahimi SN, Zimmermann S, Zaugg J, Smiesko M, Brun R, Hamburger M (2013) Abietane diterpenoids from Salvia sahendica—antiprotozoal activity and determination of their absolute configurations. Planta Med 29:150–156

    Google Scholar 

  • Eghbaliferiz S, Emami SA, Tayarani-Najaran Z, Iranshahi M, Shakeri A, Hohmann J, Asili J (2018) Cytotoxic diterpene quinones from Salvia tebesana Bunge. Fitoterapia 128:97–101

    Article  CAS  PubMed  Google Scholar 

  • Eghtesadi F, Farimani MM, Hazeri N, Valizadeh J (2016) Abietane and nor-abitane diterpenoids from the roots of Salvia rhytidea. SpringerPlus 5:1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Lakany AM (2003) New rearranged Abietane Diterpenoids from the roots of Salvia aegyptiaca L. growing in Egypt. Nat Prod Sci 9:220–222

    CAS  Google Scholar 

  • Emboden WAJ (1971) Role of introgressive hybridization on the development of Salvia: section Audibertia (Labiatae). In: Miller VD (ed) Contributions in science, vol 208. Los Angeles County Museum of Natural History, Los Angeles; CA, pp 1–15

    Google Scholar 

  • Epling C (1938) The California Salvias. A review of Salvia, section Audibertia. Ann Missouri Bot Gard 25:95–188

    Article  Google Scholar 

  • Epling C (1939, 1940) A revision of Salvia, subgenus Calosphace. University of California Press–(1939: Verlag des Repertoriums, Dahlem dei Berlin), Berkeley, CA

  • Epling C (1940) Supplementary notes on American Labiatae. B Torrey Bot Club 67:509–534

    Article  Google Scholar 

  • Epling C (1941) Supplementary notes on American Labiatae–II. B Torrey Bot Club 68:552–568

    Article  Google Scholar 

  • Epling C (1944) Supplementary notes on American Labiatae–III. B Torrey Bot Club 71:484–497

    Article  Google Scholar 

  • Epling C (1947) Supplementary notes on American Labiatae–IV. B Torrey Bot Club 74:512–518

    Article  Google Scholar 

  • Epling C (1951) Supplementary notes on American Labiatae–V. Brittonia 7:129–142

    Article  Google Scholar 

  • Epling C (1960) Supplementary notes on American Labiatae–VII. Brittonia 12:140–150

    Article  Google Scholar 

  • Epling C, Jàtiva C (1966) Supplementary notes on American Labiatae–IX. Brittonia 18:255–265

    Article  Google Scholar 

  • Epling C, Mathias ME (1957) Supplementary notes on American Labiatae–VI. Brittonia 8:297–313

    Article  Google Scholar 

  • Epling C, Lewis H, Raven PH (1962) Chromosomes of Salvia: section Audibertia. Aliso 5:217–221

    Article  Google Scholar 

  • Erbano M, Schühli G, Santos É (2015) Genetic variability and population structure of Salvia lachnostachys: implications for breeding and conservation programs. Int J Mol Sci 16:7839–7850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst M, Silva DB, Silva R, Monge M, Semir J, Vencio RZ, Lopes NP (2015) A metabolomic protocol for plant systematics by matrix-assisted laser-desorption/ionization time-of flight mass spectrometry. Anal Chim Acta 859:46–58

    Article  CAS  PubMed  Google Scholar 

  • Esquivel B, Sanchez AA (2005) Rearranged icetexane diterpenoids from the roots of Salvia thymoides (Labiatae). Nat Prod Res 19:413–417

    Article  CAS  PubMed  Google Scholar 

  • Esquivel B, Calderon J, Sanchez A, Ramamoorthy T, Flores E, Dominguez R (1996) Recent advances in phytochemistry and biological activity of Mexican Labiatae. Rev Latinoam Quím 24:44–64

    CAS  Google Scholar 

  • Esquivel B, Calderón J, Flores E, Sánchez A-A, Rivera RR (1997a) Abietane and icetexane diterpenoids from Salvia ballotaeflora and Salvia axillaris. Phytochemistry 46:531–534

    Article  CAS  Google Scholar 

  • Esquivel B, Calderon JS, Flores E, Chavez C, Juarez M (1997b) Abietane and icetexane diterpenoids from Salvia pubescens. Nat Prod Lett 10:87–93

    Article  CAS  Google Scholar 

  • Esquivel B, Sánchez AA, Vergara F, Matus W, Hernandez-Ortega S, Ramírez-Apan MT (2005) Abietane diterpenoids from the roots of some Mexican Salvia species (Labiatae): chemical diversity, phytogeographical significance, and cytotoxic activity. Chem Biodivers 2:738–747

    Article  CAS  PubMed  Google Scholar 

  • Esquivel B, Burgueño E, Celia T, Brito B (2017a) Absolute configuration of the diterpenoids icetexone and conacytone from Salvia ballotaeflora. Chirality 30:177–188

    Article  CAS  PubMed  Google Scholar 

  • Esquivel B, Bustos-Brito C, Sánchez-Castellanos M, Nieto-Camacho A, Ramírez-Apan T, Joseph-Nathan P, Quijano L (2017b) Structure, absolute configuration, and antiproliferative activity of abietane and icetexane diterpenoids from Salvia ballotiflora. Molecules 22:1–22

    Article  CAS  Google Scholar 

  • Esra M, Cetin O, Kahraman A, Celep F, Dogan M (2011) A cytomorphological study in some taxa of the genus Salvia L. (Lamiaceae). Caryologia 64:272–287

    Article  Google Scholar 

  • Estaji A, Hosseini B, Dehghan E, Pirzad A (2012) Seed treatments to overcome dormancy of Nuruozak (Salvia leriifolia Bent.). IRJABS 3:2003–2008

    Google Scholar 

  • Farimani MM, Khodaei B, Moradi H, Aliabadi A, Ebrahimi SN, De Mieri M, Kaiser M, Hamburger M (2018) Phytochemical study of Salvia leriifolia roots: rearranged abietane diterpenoids with antiprotozoal activity. J Nat Prod 81:1384–1390

    Article  CAS  PubMed  Google Scholar 

  • Fernald ML (1900) A synopsis of the Mexican and Central American species of Salvia. In: Proceedings of the American academy of arts and sciences, vol. 35. American Academy of Arts and Sciences, pp 489–556

  • Fischer MM, Meyer CA (1854) Plant nouvelles recueillies par M. de Tchihatcheff, en Asie Mineure, pendant l’année 1849. In: Brongniart AD, Decaisne J (eds) Annales des sciences naturelles. Botanique, vol 1. Masson, Paris, pp 30–36

    Google Scholar 

  • Fragoso-Martínez I, Martínez-Gordillo M, Salazar GA, Sazatornil F, Jenks AA, Peña MDRG, Barrera-Aveleida G, Benitez-Vieyra S, Magallón S, Cornejo-Tenorio, G (2018) Phylogeny of the neotropical sages (Salvia subg. Calosphace; Lamiaceae) and insights into pollinator and area shifts. Plant Syst Evol 304:43–55

    Article  CAS  Google Scholar 

  • Freyn J (1901) Ueber neue und bemerkenswerthe orientlische Pflanzenarten. In: Beauverd G (ed) Bulletin de l’Herbier Boissier, vol 1. Imprimerie Romet, Genève, pp 245–289

    Google Scholar 

  • Fronza M, Murillo R, Ślusarczyk S, Adams M, Hamburger M, Heinzmann B, Laufer S, Merfort I (2011) In vitro cytotoxic activity of abietane diterpenes from Peltodon longipes as well as Salvia miltiorrhiza and Salvia sahendica. Bioorg Med Chem 19:4876–4881

    Article  CAS  PubMed  Google Scholar 

  • Galicia MA, Esquivel B, Sánchez A-A, Cárdenas J, Ramamoorthy T, Rodríguez-Hahn L (1988) Abietane diterpenoids from Salvia pubescens. Phytochemistry 27:217–219

    Article  CAS  Google Scholar 

  • Gallon ME, Monge M, Casoti R, Da Costa FB, Semir J, Gobbo-Neto L (2018) Metabolomic analysis applied to chemosystematics and evolution of megadiverse Brazilian Vernonieae (Asteraceae). Phytochemistry 150:93–105

    Article  CAS  PubMed  Google Scholar 

  • Gandomkar S, Yousefi M, Habibi Z, Habibi MA (2012) A new triterpene from Salvia xanthocheila Boiss. Nat Prod Res 26:648–653

    Article  CAS  PubMed  Google Scholar 

  • Ganzler K, Salgó A, Valkó K (1986) Microwave extraction: a novel sample preparation method for chromatography. J Chromatogr A 371:299–306

    Article  CAS  Google Scholar 

  • Ge Y, Cheng R, Zhou Y, Shen J (2012) Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E. Mol Cell Biochem 368:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ghulam Musharraf S, Goher M, Hussain A, Choudhary MI (2012) Electrospray tandem mass spectrometric analysis of a dimeric conjugate, salvialeriafone and related compounds. Chem Cent J 6:120

    PubMed  PubMed Central  Google Scholar 

  • Giacomelli E, Bertrand S, Nievergelt A, Zwick V, Simoes-Pires C, Marcourt L, Rivara-Minten E, Cuendet M, Bisio A, Wolfender JL (2013) Cancer chemopreventive diterpenes from Salvia corrugata. Phytochemistry 96:257–264

    Article  CAS  PubMed  Google Scholar 

  • Giannoni P, Narcisi R, De Totero D, Romussi G, Quarto R, Bisio A (2010) The administration of demethyl fruticulin A from Salvia corrugata to mammalian cells lines induces “anoikis”, a special form of apoptosis. Phytomedicine 17:449–456

    Article  CAS  PubMed  Google Scholar 

  • Gokdil G, Topcu G, Sonmez U, Ulubelen A (1997) Terpenoids and flavonoids from Salvia cyanescens. Phytochemistry 46:799–800

    Article  CAS  Google Scholar 

  • Gomez-Rivera A, Gonzalez-Cortazar M, Herrera-Ruiz M, Zamilpa A, Rodriguez-Lopez V (2018) Sessein and isosessein with anti-inflammatory, antibacterial and antioxidant activity isolated from Salvia sessei Benth. J Ethnopharmacol 217:212–219

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez MA (2015) Aromatic abietane diterpenoids: their biological activity and synthesis. Nat Prod Rep 32:684–704

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez AG, Aguiar ZE, Luis JG, Ravelo AG, Dominguez X (1988) Quinone methide diterpenoids from the roots of Salvia texana. Phytochemistry 27:1777–1781

    Article  CAS  Google Scholar 

  • Gonzalez AG, Andres LS, Herrera JR, Luis JG, Ravelo AG (1989) Abietane diterpenes with antibiotic activity from the flowers of Salvia canariensis–reaction of Galdosol with Diazomethane. Can J Chem 67:208–212

    Article  CAS  Google Scholar 

  • González AG, Aguiar ZE, Grillo TA, Luis JG (1992) Diterpenes and diterpene quinones from the roots of Salvia apiana. Phytochemistry 31:1691–1695

    Article  Google Scholar 

  • González-Gallegos JG (2014) Sistemática de Salvia sección Membranaceae (Lamiaceae) y diversidad de Lamiaceae en el occidente de México. Centro Universitario de Ciecias Biològicas y Agropecuarias, vol. Doctor en Ciencias en Biosistemàtica, Ecologìa y Manejo de Recursos Naturales y Agrìcolas. Universidad de Guadalajara, Zapopan, Jalisco, p 355

  • Goren AC, Topcu G, Oksuz S, Kokdil G, Voelter W, Ulubelen A (2002) Diterpenoids from Salvia ceratophylla. Nat Prod Lett 16:47–52

    Article  CAS  PubMed  Google Scholar 

  • Govaerts R (2019) World checklist of selected plant families. Royal Botanic Gardens, Kew

    Google Scholar 

  • Guanghui X, Yuanping L, Dewen B, Lanjun Z, Hongzhe L, Linhua G, Liqin W (2017) Diterpenes from the roots of Salvia kiaometiensis Levl. Chinese J Org Chem 37:2772–2775

    Google Scholar 

  • Ha J, Ok P, Bai J-HC, Chen H (2014) Anti-inflammatory effect of tanshinone I in neuroprotection against cerebral ischemia–reperfusion injury in the gerbil hippocampus. Neurochem Res 39:1300–1312

    Article  CAS  Google Scholar 

  • Habibi Z, Gandomkar S, Yousefi M, Ghasemi S (2013) A new abietane diterpenoid from Salvia xanthocheila Boiss. Nat Prod Res 27:266–269

    Article  CAS  PubMed  Google Scholar 

  • Haiza M, Lee J, Snyder JK (1990) Asymmetric syntheses of Salvia miltiorrhiza abietanoid o-quinones: methyl tanshinonate, tanshinone IIB, tanshindiol B and 3-hydroxytanshinone. J Org Chem 55:5008–5013

    Article  CAS  Google Scholar 

  • Han JP, Liu C, Li MH, Shi LC, Song JY, Yao H, Pang XH, Chen SL (2010) Relationship between DNA barcoding and chemical classification of Salvia medicinal herbs. Chin Herb Med 2:16–29

    CAS  Google Scholar 

  • Hanson JR (1986) Diterpenoids. Nat Prod Rep 3:307–322

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (1987) Diterpenoids. Nat Prod Rep 4:399–413

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (1990) Diterpenoids. Nat Prod Rep 7:149–164

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (1992) Diterpenoids. Nat Prod Rep 9:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (1994) Diterpenoids. Nat Prod Rep 11:265–277

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (1996) Diterpenoids. Nat Prod Rep 13:59–71

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2002) Diterpenoids. Nat Prod Rep 19:125–132

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2003) Diterpenoids. Nat Prod Rep 20:70–78

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2004) Diterpenoids. Nat Prod Rep 21:785–793

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2005) Diterpenoids. Nat Prod Rep 22:594–602

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2006) Diterpenoids. Nat Prod Rep 23:875–885

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2009) Diterpenoids. Nat Prod Rep 26:1156–1171

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2011) Diterpenoids of terrestrial origin. Nat Prod Rep 28:1755–1772

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2015a) Diterpenoids of terrestrial origin. Nat Prod Rep 32:1654–1663

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2015b) Diterpenoids of terrestrial origin. Nat Prod Rep 32:76–87

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2016) Diterpenoids of terrestrial origin. Nat Prod Rep 33:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR (2017) Diterpenoids of terrestrial origin. Nat Prod Rep 34:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Grayer R, Harley MM, de Kok R, Krestovskaja T, Morales R, Paton AJ, Ryding O, Upson T (2004) Flowering plants Dicotyledons Lamiales (except Acanthaceae including Avicenniaceae). Springer, Heidelberg

    Google Scholar 

  • Hashempour H, Mehmannavaz M, Ebadi M, Abri AR, Matin AA, Amani-Ghadim AR (2018) Fatty acid composition analysis of aerial parts of selected Salvia species growing in Iran and chemotaxonomic approach by shoot fatty acid composition. Anal Bioanal Chem Res 5:297–306

    CAS  Google Scholar 

  • Hayashi T, Kakisawa H, Hsū H-Y, Chen YP (1970) The structure of miltirone, a new diterpenoid quinone. J Chem Soc D 5:299a

    Article  Google Scholar 

  • Hedge IC (1957) Studies in East Mediterranean species of Salvia. Note R Bot Garden Edinb 22:178–179

    Google Scholar 

  • Hedge IC (1965) Studies in the flora of Afghanistan III An account on Salvia. Notes Roy Bot Gard Edinb 26:407

    Google Scholar 

  • Hedge IC (1970) Observation on the mucilage of Salvia fruits. Notes Roy Bot Gard Edinb 30:79–95

    Google Scholar 

  • Hedge IC (1972) Salvia L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 3. Cambridge University Press, Cambridge, pp 188–192

    Google Scholar 

  • Hedge IC (1974) A revision of Salvia in Africa, including Madagascar and the Canary Islands. Notes Roy Bot Gard Edinb 33:1–121

    Google Scholar 

  • Hedge IC (1980) Salvia. Notes Roy Bot Gard Edinb 38:47–49

    Google Scholar 

  • Hedge IC (1982a) Salvia L. In: Rechinger KH (ed) Flora Iranica, vol 150. Akademische Druck and Vertagsanstalt, Graz, pp 400–476

    Google Scholar 

  • Hedge IC (1982b) Salvia L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 7. Univ. Press, Edinburgh, pp 400–461

    Google Scholar 

  • Hedge IC (1986) Labiatae of South-West Asia: diversity, distribution and endemism. Porc Roy Soc B-Biol Sci 89:23–35

    Google Scholar 

  • Hedge IC (2011) Salvia L. In: Garden MB (ed) Flora of Pakistan, vol 2019. Tropicos.org. Missouri Botanical Garden, Saint Louis

    Google Scholar 

  • Hernandez M, Esquivel B, Cardenas J, Rodriguezhahn L, Ramamoorthy TP (1987) Diterpenoid abietane quinones isolated from Salvia regla. Phytochemistry 26:3297–3299

    Article  CAS  Google Scholar 

  • Hohmann J, Janicsak G, Forgo P, Redei D, Mathe I, Bartok T (2003) New diterpenoids from the aerial parts of Salvia candelabrum. Planta Med 69:254–257

    Article  CAS  PubMed  Google Scholar 

  • Hong J-Y, Park SH, Park HJ, Lee SK (2018) Anti-proliferative effect of 15,16-dihydrotanshinone I through cell cycle arrest and the regulation of AMP-activated protein kinase/Akt/mTOR and Mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells. J Cancer Prev 23:63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooker JD (1885) CXII. Labiatae. Reeve, L., London

    Google Scholar 

  • Hu Z, Alfermann A (1992) Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Planta Med 58:621–621

    Article  Google Scholar 

  • Hu GX, Xiang CL, Liu ED, Clements D (2013) Invasion status and risk assessment for Salvia tiliifolia, a recently recognised introduction to China. Weed Res 53:355–361

    Article  Google Scholar 

  • Hu GX, Takano A, Drew BT, Liu ED, Soltis DE, Soltis PS, Peng H, Xiang CL (2018) Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Ann Bot Lond 122:649–668

    Article  Google Scholar 

  • Huan LIN, Ye-hua LI, Yun LI, Jun-yang YI, Yu-lin MAI, Zhen LI (2012) Tanshinone IIA promotes the assembly of adiponectin in 3T3-L1 adipocytes. Chin J Nat Med 10:150–154

    Article  CAS  Google Scholar 

  • Huang X, Yang B, Hu Z (1981) Studies on the active principles of Dan-shen III. Searching for plant resources containing tanshinone II-A (cont.). Acta Bot Sin 23:70–71

    CAS  Google Scholar 

  • Hueso-Rodríguez JA, Jimeno ML, Rodríguez B, Savona G, Bruno M (1983) Abietane diterpenoids from the root of Salvia phlomoides. Phytochemistry 22:2005–2009

    Article  Google Scholar 

  • Hui C, Ping L, Tian H, Wen J (2016) Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. J Photoch Photobiol 159:93–100

    Article  CAS  Google Scholar 

  • Hussein AA, María C, Rodríguez B, Hammouda FM, Hussiney HA (1997) Modified abietane diterpenoids and a methoxylupane derivative from Salvia palaestina. Phytochemistry 45:1663–1668

    Article  CAS  Google Scholar 

  • Hussein AA, Meyer JJ, Jimeno ML, Rodríguez B (2007) Bioactive diterpenes from Orthosiphon labiatus and Salvia africana-lutea. J Nat Prod 70:293–295

    Article  CAS  PubMed  Google Scholar 

  • Ikeshiro Y, Mase I, Tomita Y (1989) Abietane type diterpenoids from Salvia miltiorrhiza. Phytochemistry 28:3139–3141

    Article  CAS  Google Scholar 

  • Ikeshiro Y, Mase I, Tomita Y (1991) Abietane-type diterpene quinones from Salvia nipponica. Planta Med 57:588

    Article  CAS  PubMed  Google Scholar 

  • Jamzad Z (2013) A survey of Lamiaceae in the flora of Iran. Rostaniha 14:59–67

    Google Scholar 

  • Jang T-S, Zhang H, Kim G, Kim DW, Min B-S, Kang W, Son KH (2012) Bioassay-guided isolation of fatty acid synthase inhibitory diterpenoids from the roots of Salvia miltiorrhiza Bunge. Arch Pharm Res 35:481–486

    Article  CAS  PubMed  Google Scholar 

  • Jassbi AR, Mehrdad M, Eghtesadi F, Ebrahimi SN, Baldwin IT (2006) Novel rearranged abietane diterpenoids from the roots of Salvia sahendica. Chem Biodivers 3:916–922

    Article  CAS  PubMed  Google Scholar 

  • Jassbi AR, Zare S, Firuzi O, Xiao J (2016) Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem Rev 15:829–867

    Article  CAS  Google Scholar 

  • Jassbi AR, Eghtesadi F, Hazeri N, Ma’sumi H, Valizadeh J, Chandran JN, Schneider B, Baldwin IT (2017) The roots of Salvia rhytidea: a rich source of biologically active diterpenoids. Nat Prod Res 31:477–481

    Article  CAS  PubMed  Google Scholar 

  • Jenks AA, Walker JB, Kim S-C (2013) Phylogeny of new world Salvia subgenus Calosphace (Lamiaceae) based on cpDNA (psbA-trnH) and nrDNA (ITS) sequence data. J Plant Res 126:483–496

    Article  CAS  PubMed  Google Scholar 

  • Jepson WL (1907) The name of the white sage. In: Heller AA (ed) Muhlenbergia, vol 3. Heller, A.A., Los Gatos, California, p 144

    Google Scholar 

  • Jepson WL (1993) The Jepson Manual: higher plants of California. University of California Press, Berkeley

    Google Scholar 

  • Jiang ZY, Yu YJ, Huang CG, Huang XZ, Hu QF, Yang GY, Wang HB, Zhang XY, Li GP (2015) Icetexane diterpenoids from Perovskia atriplicifolia. Planta Med 81:241–246

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zhu W, Shao Q, Yan X, Jin B, Zhang M, Xu B (2016) Tanshinone IIA protects against folic acid-induced acute kidney injury. Am J Chin Med 44:737–753

    Article  CAS  PubMed  Google Scholar 

  • Jimenez EM, Portugal ME, Lira-Rocha A, Soriano-Garcia M, Toscano RA (1988) A new royleanone-type diterpene from Salvia sessei. J Nat Prod 51:243–248

    Article  Google Scholar 

  • Kabouche A, Kabouche Z (2008) Bioactive diterpenoids of Salvia species. Stud Nat Prod Chem 35:753–833

    Article  CAS  Google Scholar 

  • Kabouche A, Boutaghane N, Kabouche Z, Seguin E, Tillequin F, Benlabed K (2005) Components and antibacterial activity of the roots of Salvia jaminiana. Fitoterapia 76:450–452

    Article  CAS  PubMed  Google Scholar 

  • Kabouche A, Kabouche Z, Öztürk M, Kolak U, Topçu G (2007) Antioxidant abietane diterpenoids from Salvia barrelieri. Food Chem 102:1281–1287

    Article  CAS  Google Scholar 

  • Kahraman A, Celep F, Doğan M, Bagherpour S (2010) A taxonomic revision of Salvia euphratica sensu lato and its closely related species (sect. Hymenosphace, Lamiaceae) using multivariate analysis. Turk J Bot 34:261–276

    Google Scholar 

  • Kakisawa H, Hayashi T, Okazaki I, Ohashi M (1968) Isolation and structures of new tanshinones. Tetrahedron Lett 9:3231–3234

    Article  Google Scholar 

  • Kakisawa H, Hayashi T, Yamazaki T (1969) Structures of isotanshinones. Tetrahedron Lett 10:301–304

    Article  Google Scholar 

  • Kang J, Li L, Wang D, Wang H, Liu C, Li B, Yan Y, Fang L, Du G, Chen R (2015) Isolation and bioactivity of diterpenoids from the roots of Salvia grandifolia. Phytochemistry 116:337–348

    Article  CAS  PubMed  Google Scholar 

  • Kawazoe K, Yamamoto M, Takaishi Y, Honda G, Fujita T, Sezik E, Yesilada E (1999) Rearranged abietane-type diterpenes from Salvia dichroantha. Phytochemistry 50:493–497

    Article  CAS  Google Scholar 

  • Kharazian N (2014) Chemotaxonomy and flavonoid diversity of Salvia L. (Lamiaceae) in Iran. Acta Bot Bras 28:281–292

    Article  Google Scholar 

  • Khetwal KS, Pathak R, Vashisht A, Pant N (1992) Constituents of high altitude himalayan herbs, part V. A new diterpenoid quinone from Salvia hians. J Nat Prod 55:947–949

    Article  CAS  Google Scholar 

  • Kim KM, Park GH, Eo HJ, Hun Min S, Wook J, Ji M, Suk J, Boo J (2015) Tanshinone I induces cyclin D1 proteasomal degradation in an ERK1/2 dependent way in human colorectal cancer cells. Fitoterapia 101:162–168

    Article  CAS  PubMed  Google Scholar 

  • Kim S-A, Kang O-H, Kwon D-Y (2018) Cryptotanshinone induces cell cycle arrest and apoptosis of NSCLC cells through the PI3 K/Akt/GSK-3β pathway. Int J Mol Sci 19:1–12

    Google Scholar 

  • Kolak U, Topçu G, Birteksöz S, Ötük G, Ulubelen A (2005) Terpenoids and steroids from the roots of Salvia blepharochlaena. Turk J Chem 29:177–186

    CAS  Google Scholar 

  • Kuzma Ł, Wysokinska H, Sikora J, Olszewska P (2016) Taxodione and extracts from Salvia austriaca roots as human cholinesterase inhibitors. Phytother Res 30:234–242

    Article  CAS  PubMed  Google Scholar 

  • Kuzma L, Kaiser M, Wysokinska H (2017) The production and antiprotozoal activity of abietane diterpenes in Salvia austriaca hairy roots grown in shake flasks and bioreactor. Prep Biochem Biotechnol 47:58–66

    Article  CAS  PubMed  Google Scholar 

  • Kuźma Ł, Różalski M, Walencka E, Różalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35

    Article  CAS  PubMed  Google Scholar 

  • Kuźma Ł, Kaiser M, Wysokińska H (2012) An unusual taxodione derivative from hairy roots of Salvia austriaca. Fitoterapia 83:770–773

    Article  CAS  PubMed  Google Scholar 

  • Ladeiras D, Monteiro CM, Pereira F, Reis CP, Afonso CA, Rijo P (2016) Reactivity of diterpenoid quinones: royleanones. Curr Pharm Des 22:1682–1714

    Article  CAS  PubMed  Google Scholar 

  • le vicomte De Noé M (1855) Notes et observations sur quelques espèces nouvelles de Labiées de la flore de l’Algérie et de la Régence de Tunis. In: France S (ed) Bulletin de la Société Botanique de France, vol 2. Bureau de la Société, Paris, pp 579–586

  • Lee AR, Wu WL, Chang WL, Lin HC, King ML (1987) Isolation and bioactivity of new tanshinones. J Nat Prod 50:157–160

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Wong HNC, Chui KY, Choang TF, Hon PM, Chang HM (1991) Miltirone, a central benzodiazepine receptor partial agonist from a Chinese medicinal herb Salvia Miltiorrhiza. Neurosci Lett 127:237–241

    Article  CAS  PubMed  Google Scholar 

  • Lee IS, Kaneda N, Suttisri R, El-Lakany AM, Sabri NN, Kinghorn AD (1998) New orthoquinones from the roots of Salvia lanigera. Planta Med 64:632–634

    Article  CAS  PubMed  Google Scholar 

  • Lee H-P, Liu Y-C, Chen P-C, Tai H-C (2017) Tanshinone IIA inhibits angiogenesis in human endothelial progenitor cells in vitro and in vivo. Oncotarget 8:109217–109227

    PubMed  PubMed Central  Google Scholar 

  • Li HW (1983) New plants from Hubei. China Bull Bot Res Harbin 3:67–74

    Google Scholar 

  • Li DZ (2008) Floristics and plant biogeography in China. JIPB 50:771–777

    PubMed  Google Scholar 

  • Li HW, Hedge IC (1994) Lamiaceae. In: Wu CY, Raven PH, Hong DY (eds) Flora of China, vol 17. Science Press, Beijing, pp 50–299

    Google Scholar 

  • Li M, Zhang J-S, Ye Y-M, Fang J-N (2000) Constituents of the roots of Salvia prionitis. J Nat Prod 63:139–141

    Article  CAS  PubMed  Google Scholar 

  • Li M-H, Chen J-M, Peng Y, Xiao P-G (2008) Distribution of phenolic acids in Chinese Salvia plants. World Sci Technol 10:46–52

    CAS  Google Scholar 

  • Li MH, Peng Y, Xiao PG (2010) Distribution of tanshinones in the genus Salvia (family Lamiaceae) from China and its systematic significance. J Syst Evol 48:118–122

    Article  Google Scholar 

  • Li M-H, Li Q-Q, Liu Y-Z, Cui Z-H, Zhang N, Huang L-Q, Xiao P-G (2013a) Pharmacophylogenetic study on plants of genus Salvia L. from China. Chin Herb Med 5:164–181

    Google Scholar 

  • Li M-H, Li Q-Q, Zhang C-H, Zhang N, Cui Z-H, Huang L-Q, Xiao P-G (2013b) An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharm Sin 3:273–280

    Article  Google Scholar 

  • Li QQ, Li MH, Yuan QJ, Cui ZH, Huang LQ, Xiao PG (2013c) Phylogenetic relationships of Salvia (Lamiaceae) in China: evidence from DNA sequence datasets. J Syst Evol 51:184–195

    Article  Google Scholar 

  • Li Y, Yi G, Li L, Abdolmaleky HM, Zhou J-R (2013d) Bioactive tanshinone I inhibits the growth of lung cancer in part via downregulation of aurora a function. Mol Carcinog 52:535–543

    Article  CAS  PubMed  Google Scholar 

  • Li H, Han W, Wang H, Ding F, Xiao L, Shi R, Ai L, Huang Z (2017) Tanshinone IIA inhibits glutamate-induced oxidative toxicity through prevention of mitochondrial dysfunction and suppression of MAPK activation in SH-SY5Y human neuroblastoma cells. Oxid Med Cell Longev 2017:4–6

    Google Scholar 

  • Li L-W, Qi Y-Y, Liu S-X, Wu X-D, Zhao Q-S (2018) Neo-clerodane and abietane diterpenoids with neurotrophic activities from the aerial parts of Salvia leucantha Cav. Fitoterapia 127:367–374

    Article  CAS  PubMed  Google Scholar 

  • Lin H-C, Chang W-L (2000) Diterpenoids from Salvia miltiorrhiza. Phytochemistry 53:951–953

    Article  CAS  PubMed  Google Scholar 

  • Lin LZ, Wang XM, Huang XL, Huang Y, Yang BJ (1988) Diterpenoids from Salvia prionitis. Planta Med 54:443–445

    Article  CAS  PubMed  Google Scholar 

  • Lin LZ, Blasko G, Cordell GA (1989) Diterpenes of Salvia prionitis. Phytochemistry 28:177–181

    Article  CAS  Google Scholar 

  • Lin WH, Fang JM, Cheng YS (1997) Cycloadducts of terpene quinones from Taiwania cryptomerioides. Phytochemistry 46:169–173

    Article  CAS  Google Scholar 

  • Lin H-C, Ding H-Y, Chang W-L (2001) Two new fatty diterpenoids from Salvia miltiorrhiza. J Nat Prod 64:648–650

    Article  CAS  PubMed  Google Scholar 

  • Lin F-W, Damu AG, Wu T-S (2006a) Abietane diterpene alkaloids from Salvia yunnanensis. J Nat Prod 69:93–96

    Article  CAS  PubMed  Google Scholar 

  • Lin F-W, Damu AG, Wu T-S (2006b) New abietane diterpene alkaloids possessing an oxazole ring from Salvia trijuga. Heterocycles 68:159–165

    Article  CAS  Google Scholar 

  • Lin J-Y, Ke Y-M, Lai J-S, Ho T-F (2015a) Tanshinone IIA enhances the effects of TRAIL by downregulating survivin in human ovarian carcinoma cells. Phytomedicine 22:929–938

    Article  CAS  PubMed  Google Scholar 

  • Lin L-L, Hsia C-R, Hsu C-L, Huang H-C, Juan H-F (2015b) Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. Genomics 16:1–17

    Google Scholar 

  • Lindley J (1829) Edwards’s botanical register. James Ridgway, London

    Google Scholar 

  • Liu Y-W, Huang Y-T (2014) Inhibitory effect of tanshinone IIA on rat hepatic stellate cells. PLoS ONE 9:e103229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li J, Wang L, Wu F, Huang L, Xu Y, Ye J, Xiao B (2012) Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling. Complement Altern Med 12:1–10

    Article  CAS  Google Scholar 

  • Liu X, Pan L, Liang J, Li J, Wu S (2015) Cryptotanshinone inhibits proliferation and induces apoptosis via mitochondria-derived reactive oxygen species involving FOXO1 in the estrogen receptor-negative breast cancer Bcap37 cells. RSC Adv 00:1–3

    Google Scholar 

  • Liu K, Abdullah AA, Huang M, Nishioka T, Altaf-Ul-Amin M (2017) Novel approach to classify plants based on metabolite-content similarity. Biomed Res Int 2017:5296729

    PubMed  PubMed Central  Google Scholar 

  • Llurba-Montesino N, Schmidt TJ (2018) Salvia species as sources of natural products with antiprotozoal activity. Int J Mol, Sci, p 19

    Google Scholar 

  • Lozano ES, Spina R, Tonn CE, Sosa M, Cifuente DA (2015) An abietane diterpene from Salvia cuspidata and some new derivatives are active against Trypanosoma cruzi. Bioorgan Med Chem Lett 25:5481–5484

    Article  CAS  Google Scholar 

  • Lu XZ, Luo HW, Ji J, Cai H (1991) The structure of trijuganone C from Salvia trijuga. Acta Pharm Sin 26:193–196

    CAS  Google Scholar 

  • Luan L, Liang Z (2018) Tanshinone IIA protects murine chondrogenic ATDC5 cells from lipopolysaccharide-induced inflammatory injury by down-regulating. Biomed Pharm 103:628–636

    Article  CAS  Google Scholar 

  • Luis JG, Grillo TA (1993) New diterpenes from Salvia munzii - chemical and biogenetic aspects. Tetrahedron 49:6277–6284

    Article  CAS  Google Scholar 

  • Luis JG, Grillo TA, Quiñones W, Kishi MP (1994a) Columbaridione, a diterpenequinone from Salvia columbariae. Phytochemistry 36:251–252

    Article  CAS  Google Scholar 

  • Luis JG, Quiñones W, Echeverria F (1994b) Tilifolidione, a cycloheptanenaphthoquinone-type diterpenoid of abietanic origin from the roots of Salvia tiliaefolia. Phytochemistry 36:115–117

    Article  CAS  Google Scholar 

  • Luo HW, Wu BJ, Wu MY, Yong ZG, Niwa M, Hirata Y (1985) Pigments from Salvia miltiorrhiza. Phytochemistry 24:815–817

    Article  CAS  Google Scholar 

  • Mahdjoub MM, Zemouri T, Benmouhoub H, Sahnoune M (2018) Morphological, karyological and biogeographical study of the Algerian endemic species Salvia jaminiana de Noé (Lamiaceae), with taxonomic and evolutionary interpretations. Flora 242:102–119

    Article  Google Scholar 

  • Mahmoud AA, Al-Shihry SS, Son BW (2005) Diterpenoid quinones from Rosemary (Rosmarinus officinalis L.). Phytochemistry 66:1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Maione F, De Feo V, Caiazzo E, De Martino L, Cicala C, Mascolo N (2014) Tanshinone IIA, a major component of Salvia milthorriza Bunge, inhibits platelet activation via Erk-2 signaling pathway. J Ethnopharmacol 155:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Maione F, Cantone V, Chini MG, De Feo V, Mascolo N, Bifulco G (2015) Molecular mechanism of tanshinone IIA and cryptotanshinone in platelet anti-aggregating effects: an integrated study of pharmacology and computational analysis. Fitoterapia 100:174–178

    Article  CAS  PubMed  Google Scholar 

  • Maldonado E, De los Angeles Flores M, Salazar B, Ortega A (1994) Abietane and neo-clerodane diterpenoids from Salvia lavanduloides. Phytochemistry 37:1480–1482

    Article  CAS  Google Scholar 

  • Mamadalieva N, Akramov D, Ovidi E, Tiezzi A, Nahar L, Azimova S, Sarker S (2017) Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: ethnopharmacology, essential oils composition, and biological activities. Medicines 4:8

    Article  CAS  PubMed Central  Google Scholar 

  • Marcin O, Piasecka A, Gryszczy A, Kachlicki P, Buchwald W, Seremak-Mrozikiewicz A (2017) Determination of phenolic compounds and diterpenes in roots of Salvia miltiorrhiza and Salvia przewalskii by two LC–MS tools: multi-stage and high resolution tandem mass spectrometry with assessment of antioxidant capacity. Phytochem Lett 20:331–338

    Article  CAS  Google Scholar 

  • Martens M, Galeotti H (1844) Enumeratio synoptica plantarum phanerogamicarum ab Henrico Galeotti in regionibus mexicanis collectarum. Bulletins de l’Académie royale des sciences et belles-lettres de Bruxelles, vol XI. Hayez, M., Bruxelles, pp 61–79

  • Martínez-Gordillo M, Bedolla-García B, Cornejo-Tenorio G, Fragoso-Martínez I, García-Peña MR, González-Gallegos JG, Lara-Cabrera SI, Zamudio S (2017) Lamiaceae de México. Bot Sci 95:780–806

    Article  Google Scholar 

  • Michavila A, Delatorre MC, Rodriguez B (1986) 20-nor-abietane and rearranged abietane diterpenoids from the root of Salvia argentea. Phytochemistry 25:1935–1937

    Article  CAS  Google Scholar 

  • Miquel FAG (1865-1866) Prolusio Florae japonicae. In: Miquel FAG (ed) Annales Musei Botanici Lugduno-Batavi, vol 2. Van Der Post, C.G., Amstelodami, pp 107–108

  • Mirzaeia HH, Firuzia O, Schneiderb B, Baldwinc IT, Jassbi AR (2017) Cytotoxic diterpenoids from the roots of Salvia lachnocalyx. Rev Bras Farmacogn 27:475–479

    Article  CAS  Google Scholar 

  • Miura K, Kikuzaki H, Nakatani N (2002) Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J Agric Food Chem 50:1845–1851

    Article  CAS  PubMed  Google Scholar 

  • Monticone M, Bisio A, Daga A, Giannoni P, Giaretti W, Maffei M, Pfeffer U, Romeo F, Quarto R, Romussi G, Corte G, Castagnola P (2010) Demethyl fruticulin A (SCO-1) causes apoptosis by inducing reactive oxygen species in mitochondria. J Cell Biochem 111:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Moradi-Afrapoli F, Shokrzadeh M, Barzegar F, Gorji-Bahri G (2018) Cytotoxic activity of abietane diterpenoids from roots of Salvia sahendica by HPLC-based activity profiling. Rev Bras Farmacogn 28:27–33

    Article  CAS  Google Scholar 

  • Mothana RAA, Jansen R, Gruenert R, Bednarski PJ, Lindequist U (2009) Antimicrobial and cytotoxic abietane diterpenoids from the roots of Meriandra benghalensis (Roxb.) Benth. Pharmazie 64:613–615

    CAS  PubMed  Google Scholar 

  • Moujir L, Gutiérrez-Navarro AM, San Andrés L, Luis JG (1996) Bioactive diterpenoids isolated from Salvia mellifera. Phytother Res 10:172–174

    Article  CAS  Google Scholar 

  • Mueller C (1858) Synopsis plantarum phanerogamicarum novarum omnium per annos 1851(1852), pp. 1854, 1855 descriptarum. In: Mueller C (ed) Annales botanices systematicae, vol V. Abel. Ambrosius, Lipsiae, pp 675–681

    Google Scholar 

  • Mukherjee KS, Ghosh PK, Badruddoza S (1981) Diterpenoid quinones of Salvia lanata. Phytochemistry 20:1441

    Article  CAS  Google Scholar 

  • Munagala R, Aqil F, Jeyabalan J, Gupta RC (2015a) Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett 356:536–546

    Article  CAS  PubMed  Google Scholar 

  • Munagala R, Aqil F, Jeyabalan J, Gupta RC, Graham J, Cancer B (2015b) Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett 356:536–546

    Article  CAS  PubMed  Google Scholar 

  • Musharraf SG, Goher M, Hussain A, Choudhary MI (2012) Electrospray tandem mass spectrometric analysis of a dimeric conjugate, salvialeriafone and related compounds. Chem Cent J 6:120

    CAS  Google Scholar 

  • Nagy G, Dobos A, Gunther G, Yang MH, Blunden G, Crabb TA, Mathe I (1998) Abietane diterpenoids from the roots of Salvia pratensis. Planta Med 64:288–289

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Gunther G, Mathe I, Blunden G, Yang MH, Crabb TA (1999a) 12-Deoxy-6,7-dehydroroyleanone, 12-deoxy-6-hydroxy-6,7-dehydroroyleanone and 12-deoxy-7,7-dimethoxy-6-ketoroyleanone from Salvia nutans roots. Phytochemistry 51:809–812

    Article  CAS  Google Scholar 

  • Nagy G, Gunther G, Mathe I, Blunden G, Yang MH, Crabb TA (1999b) Diterpenoids from Salvia glutinosa, S. austriaca, S. tomentosa and S. verticillata roots. Phytochemistry 52:1105–1109

    Article  CAS  Google Scholar 

  • Negar S-B, Seyed Ahmad E, Javad A, Zahra T-N (2014) Anti-apoptotic effect of taxodione on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 34:1103–1109

    Article  CAS  Google Scholar 

  • Neisess KR (1983) Evolution, systematics, and terpene relationships of Salvia section Audibertia. vol. Doctor of Philosophy in Botany. University of California, Riverside, California

  • Neisess KR (1985) Notes on the Salvia leucophylla Complex (Lamiaceae) of California and Baja California Norte. Madroño 32–33:272–275

    Google Scholar 

  • Nesbitt M, McBurney RPH, Broin M, Beentje HJ (2010) Linking biodiversity, food and nutrition: the importance of plant identification and nomenclature. J Food Compos Anal 23:486–498

    Article  Google Scholar 

  • Nieto M, Garcia EE, Giordano OS, Tonn CE (2000) Icetexane and abietane diterpenoids from Salvia gilliessi. Phytochemistry 53:911–915

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya K, Matsuda H, Shimoda H, Nishida N, Kasajima N, Yoshino T, Morikawa T, Yoshikawa M (2004) Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg Med Chem Lett 14:1943–1946

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki A, Kawamata S, Ozawa M, Kishida A, Gong X, Kuroda C (2011) Salviskinone A, a diterpene with a new skeleton from Salvia przewalskii. Tetrahedron Lett 52:1375–1377

    Article  CAS  Google Scholar 

  • Ohwi J (1965) Flora of Japan (in Engl). Smithsonian Institution, Washington, D.C

    Google Scholar 

  • Okada H (2008) Genetic differentiations among the populations of Salvia japonica (Lamiaceae) and its related species. Hayati J Biosci 15:18–26

    Article  Google Scholar 

  • Okamura N, Sato M, Yagi A, Tanonaka K, Takeo S (1992) An application of HPLC for identification of abietane-type pigments from Salvia miltiorrhiza and their effects on post-hypoxic cardiac contractile force in rats. Planta Med 58:571–573

    Article  CAS  PubMed  Google Scholar 

  • Oliveira KBD, Oliveira BHD (2013) HPLC/DAD determination of rosmarinic acid in Salvia officinalis: sample preparation optimization by factorial design. J Braz Chem Soc 24:85–91

    Article  Google Scholar 

  • Oliveira CS, Salvador MJ, Carvalho JED, Santos ÉP, Barison A, Élida M, Stefanello A (2016a) Cytotoxic abietane-derivative diterpenoids of Salvia lachnostachys. Phytochem Lett 17:140–143

    Article  CAS  Google Scholar 

  • Oliveira CS, Salvador MJ, de Carvalho JE, Santos EP, Barison A, Stefanello MEA (2016b) Cytotoxic abietane-derivative diterpenoids of Salvia lachnostachys. Phytochem Lett 17:140–143

    Article  CAS  Google Scholar 

  • Oliveira Mendoza EI, Bedolla García BY, Lara Cabrera SI (2017) Revisión taxonómica de Salvia subgénero Calosphace sección Scorodoniae (Lamiaceae), endémica de México. Acta Bot Mex 118:7–40

    Article  Google Scholar 

  • Ortega A, Cárdenas J, Gage DA, Maldonado E (1995) Abietane and clerodane diterpenes from Salvia regla. Phytochemistry 39:931–933

    Article  CAS  Google Scholar 

  • Özler H, Pehlivan S, Kahraman A, Doğan M, Celep F, Başer B, Yavru A, Bagherpour S (2011) Pollen morphology of the genus Salvia L. (Lamiaceae) in Turkey. Flora 206:316–327

    Article  Google Scholar 

  • Öztekin N, Başkan S, Kepekçi SE, Erim FB, Topçu G (2010) Isolation and analysis of bioactive diterpenoids in Salvia species (Salvia chionantha and Salvia kronenburgii) by micellar electrokinetic capillary chromatography. J Pharm Biomed Anal 51:439–442

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Niu G, Liu H (2002) Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza Bunge. Biochem Eng J 12:71–77

    Article  CAS  Google Scholar 

  • Pan Z-H, Wang Y-Y, Li M-M, Xu G, Peng L-Y, He J, Zhao Y, Li Y, Zhao Q-S (2010) Terpenoids from Salvia trijuga. J Nat Prod 73:1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Pan Z-H, Li Y, Wu X-D, He J, Chen X-Q, Xu G, Peng L-Y, Zhao Q-S (2012a) Norditerpenoids from Salvia castanea Diels f. pubescens. Fitoterapia 83:1072–1075

    Article  CAS  PubMed  Google Scholar 

  • Pan Z-H, Li Y, Wu X-D, He J, Chen X-Q, Xu G, Peng L-Y, Zhao Q-S (2012b) Norditerpenoids from Salvia castanea Diels f. pubescens. Fitoterapia 83:1072–1075

    Article  CAS  PubMed  Google Scholar 

  • Pan ZH, Li Y, Wu XD, He J, Chen XQ, Xu G, Peng LY, Zhao QS (2012c) Norditerpenoids from Salvia castanea Diels f. pubescens. Fitoterapia 83:1072–1075

    Article  CAS  PubMed  Google Scholar 

  • Paredez JD, Woods SL, Simpson LA (2006) The vascular flora of Howard County, Texas. J Sci 58:23–44

    Google Scholar 

  • Park KO, Choi HJ, Park JH, Kim IH, Chun B, Hyeon J, Kwon S-H, Lee J-C, Sup Y, Kim M, Kang I-J, Kim J-D, Lyul Y, Won M-H (2012) Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage. Fitoterapia 83:1666–1674

    Article  CAS  PubMed  Google Scholar 

  • Park Y-K, Obiang-Obounou BW, Lee J, Lee T-Y, Bae M-A, Hwang K-S, Lee K-B, Choi J-S, Jang B-C (2017) Anti-adipogenic effects on 3T3-L1 cells and zebrafish by tanshinone IIA. Int J Mol Sci 18:1–14

    Google Scholar 

  • Pereira F, Reis CP, Afonso CAM (2016) Reactivity of diterpenoid quinones: royleanones. Curr Pharm Des 22:1–8

    Article  CAS  Google Scholar 

  • Pérez-Gutiérrez S, Zavala-Mendoza D, Hernández-Munive A, Mendoza-Martínez Á, Pérez-González C, Sánchez-Mendoza E (2013) Antidiarrheal activity of 19-deoxyicetexone isolated from Salvia ballotiflora Benth in mice and rats. Molecules 18:8895–8905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pobedimova EG (1954) Labiatae. Springfield, Va.: Israel Program for Scientific Translations (Jerusalem, 1977), Moskva - Leningrad

  • Qiao X, Zhang Y-T, Ye M, Wang B-R, Han J, Guo D-A (2009) Analysis of chemical constituents and taxonomic similarity of Salvia species in China using LC/MS. Planta Med 75:1613–1617

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy TP (1984) Notes on Salvia (Labiatae) in Mexico, with three new species. J Arnold Arbor 65:135–143

    Google Scholar 

  • Ranieri R, Ciaglia E, Amodio G, Picardi P, Proto MC, Gazzerro P, Laezza C, Remondelli P, Bifulco M, Pisanti S (2018) N6-isopentenyladenosine dual targeting of AMPK and Rab7 prenylation inhibits melanoma growth through the impairment of autophagic flux. Cell Death Differ 25:353–367

    Article  CAS  PubMed  Google Scholar 

  • Reales A, Rivera D, Palazon JA, Obon C (2004) Numerical taxonomy study of Salvia sect. Salvia (Labiatae). Bot J Linn Soc 145:353–371

    Article  Google Scholar 

  • Rechinger KH (1952) Labiatae novae orientales. Österreichische Botanische Zeitschrift 99:37–64

    Article  Google Scholar 

  • Rivera D, Obon C, Cano F (1994) The botany, history and traditional uses of three-lobed sage (Salvia fruticosa Miller) (Labiatae). Econ Bot 48:190–195

    Article  Google Scholar 

  • Rodríguez B, Fernández-Gadea F, Savona G (1984) A rearranged abietane diterpenoid from the root of Salvia aethiopis. Phytochemistry 23:1805–1806

    Article  Google Scholar 

  • Rodriguez-Hahn L, Esquivel B, Cardenas J, Ramamoorthy TP (1992) The distribution of diterpenoids in Salvia. In: Harley RM, Reynolds T (eds) Advances in Labiatae science. Royal Botanic Garden, Kew, London UK, pp 335–347

    Google Scholar 

  • Rodríguez-Hahn L, Esquivel B, Sánchez C, Estebanes L, Cárdenas J, Soriano-García M, Toscano R, Ramamoorthy TP (1989) Abietane type diterpenoids from Salvia fruticulosa. A revision of the structure of fruticulin B. Phytochemistry 28:567–570

    Article  Google Scholar 

  • Romanova A, Pribylova G, Zakharov P, Sheichenko V, Ban’kovskii A (1971) A new quinone from Salvia nemorosa. Chem Nat Compd 7:190–191

    Article  Google Scholar 

  • Romanova A, Patudin A, Makhmedov A, Pervykh L (1980) Quinones of Salvia bucharica, S. dracocephaloides and S. korolkovii. Khim Prir Soedin 4:564

    Google Scholar 

  • Różalski M, Walencka E, Różalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35

    PubMed  Google Scholar 

  • Rungsimakan S, Rowan MG (2014) Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans. Phytochemistry 108:177–188

    Article  CAS  PubMed  Google Scholar 

  • Rustaiyan A, Samadizadeh M, Habibi Z, Jakupovic J (1995) Two diterpenes with rearranged abietane skeletons from Zhumeria majdae. Phytochemistry 39:163–165

    Article  CAS  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Sabri NN, Abou-Donia AA, Assad AM, Ghazy NM, El-Lakany AM, Tempesta MS, Sanson DR (1989a) Abietane diterpene quinones from the roots of Salvia verbenaca and S. lanigera. Planta Med 55:582

    Article  CAS  PubMed  Google Scholar 

  • Sabri NN, Abou-Donia AA, Ghazy NM, Assad AM, El-Lakany AM, Sanson DR, Gracz H, Barnes CL, Schlemper EO, Tempesta MS (1989b) Two new rearranged abietane diterpene quinones from Salvia aegyptiaca L. J Org Chem 54:4097–4099

    Article  CAS  Google Scholar 

  • Sadowska B, Kuźma Ł, Micota B, Budzyńska A, Wysokińska H, Kłys A, Więckowska-Szakiel M, Różalska B (2016) New biological potential of abietane diterpenoids isolated from Salvia austriaca against microbial virulence factors. Microb Pathog 98:132–139

    Article  CAS  PubMed  Google Scholar 

  • Saez L (2010) Salvia L. In: Morales R, Quintanar A, Cabezas F, Pujadas AJ, Cirujano S (eds) Flora Iberica, vol. Vol. XII. Verbenaceae-Labiatae-Callitrichaceae. Real Jardín Botánico de Madrid (C.S.I.C.), Madrid, pp 298–326

    Google Scholar 

  • Sales F, Hedge IC, Christie F (2010) Salvia plebeia R.Br.: taxonomy, phytogeography, autogamy and myxospermy. Pak J Bot 42:99–110

    Google Scholar 

  • San Feliciano A, del Corral JMM, Gordaliza M, Salinero MA (1993a) 13C NMR Data for abieta-7,13-diene diterpenoids. Magn Reson Chem 31:841–844

    Article  CAS  Google Scholar 

  • San Feliciano A, Gordaliza M, Salinero MA, Miguel del Corral JM (1993b) Abietane acids: sources, biological activities, and therapeutic uses. Planta Med 59:485–490

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Cardenas J, Rodriguezhahn L, Ramamoorthy TP (1989) Abietane diterpenoids of Salvia anastomosans. Phytochemistry 28:1681–1684

    Article  CAS  Google Scholar 

  • Santos EP (2015) Salvia. Lista de Especies da Flora do Brasil, vol. 2019. Jardim Botanico do Rio de Janeiro

  • Schito AM, Piatti G, Stauder M, Bisio A, Giacomelli E, Romussi G, Pruzzo C (2011) Effects of demethylfruticuline A and fruticuline A from Salvia corrugata Vahl. on biofilm production in vitro by multiresistant strains of Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int J Antimicrob Agents 37:129–134

    Article  CAS  PubMed  Google Scholar 

  • Senol FS, Slusarczyk S, Matkowski A, Alfonso P, Gir F, Horacio P, Pe J (2017) Selective in vitro and in silico butyrylcholinesterase inhibitory activity of diterpenes and rosmarinic acid isolated from Perovskia atriplicifolia Benth. and Salvia glutinosa L. Phytochemistry 133:33–44

    Article  CAS  PubMed  Google Scholar 

  • Shirsath S, Sonawane S, Gogate P (2012) Intensification of extraction of natural products using ultrasonic irradiations–a review of current status. Chem Eng Process 53:10–23

    Article  CAS  Google Scholar 

  • Shishido K, Nakano K, Wariishi N, Tateishi H, Omodani T, Shibuya M, Goto K, Ono Y, Takaishi Y (1994) Diterpene quinoides from Tripterygium wilfordii var. regelii which are interleukin-1 inhibitors. Phytochemistry 35:731–737

    Article  CAS  Google Scholar 

  • Simmons EM, Sarpong R (2009) Structure, biosynthetic relationships and chemical synthesis of the icetexane diterpenoids. Nat Prod Rep 26:1195–1217

    Article  CAS  PubMed  Google Scholar 

  • Simões F, Michavila A, Rodríguez B, Maria C, Hasan M (1986) A quinone methide diterpenoid from the root of Salvia moorcraftiana. Phytochemistry 25:755–756

    Article  Google Scholar 

  • Smith HE (1988) Chiroptical properties and absolute configurations of chiral quinones. In: Patai S, Rappoport Z (eds) The quinonoid compounds, vol 1. Wiley, Chichester

    Google Scholar 

  • Sonmez U, Topçu G, Ulubelen A (1997) Constituents of Salvia verticillata. Turk J Chem 21:376–382

    CAS  Google Scholar 

  • Standley PC (1973) Flora of Guatemala. In: Standley PC, Williams LO, Gibson DN (eds) Fieldiana: Botany, vol 24. Field Museum of Natural History, United States of America, pp 273–301

    Google Scholar 

  • Stapf O (1885) Die botanischen Ergebnisse der Polak’schen Expedition nach Persien im Jahre 1882. I. Teil. In: Klasse KAD (ed) Denkschr. - Österr. Akad. Wiss. Math.-Naturwiss. Kl., vol. Fünfzigster Band. Kaiserlich-Königlichen Hof- und Staatsdruckerei, Wien

  • Stévigny C, Rolle L, Valentini N, Zeppa G (2007) Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. J Sci Food Agric 87:2817–2822

    Article  CAS  Google Scholar 

  • Stibal E (1934) XXX. Labiatae - Salvia L. Nebs Revision der chinesischen und ostbirmanischen Arten der Gattung. Acta Horti Gothob 9:101–165

    Google Scholar 

  • Stibal E (1935) Revision der Gruppe der Salvia japonica Thbg. Acta Horti Gothob 10:55–69

    Google Scholar 

  • Stojanović D, Aleksić JM, Jančić I, Jančić R (2015) A Mediterranean medicinal plant in the continental Balkans: a plastid DNA-based phylogeographic survey of Salvia officinalis (Lamiaceae) and its conservation implications. Willdenowia 45:103–118

    Article  Google Scholar 

  • Swadek RK, Burgess TL (2012) The vascular flora of the north central Texas walnut formation. J Bot Res Inst Texas 6:725–752

    Google Scholar 

  • Taira Z, Watson WH, Dominguez XA (1976) Structure of icetexone, a diterpene quinone from Salvia ballotaeflorae. J Chem Soc 2:1728–1730

    Google Scholar 

  • Takano A (2017) Taxonomic study on Japanese Salvia (Lamiaceae): phylogenetic position of S. akiensis, and polyphyletic nature of S. lutescens var. intermedia. PhytoKeys 80:87–104

    Article  Google Scholar 

  • Takano A, Okada H (2011) Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). J Plant Res 124:245–252

    Article  PubMed  Google Scholar 

  • Tan N, Topcu G, Ulubelen A (1998) Norabietane diterpenoids and other terpenoids from Salvia recognita. Phytochemistry 49:175–178

    Article  CAS  Google Scholar 

  • Tan N, Kaloga M, Radtke OA, Kiderlen AF, Öksüz S, Ulubelen A, Kolodziej H (2002) Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 61:881–884

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Eisenbrand G (1992) Chinese drugs of plant origin. Chemistry, pharmacology, and use in traditional and modern medicine. Springer, Berlin

    Book  Google Scholar 

  • Tayarani-Najaran Z, Hadi S, Tajfard F, Asili J, Soltani S, Hatamipour M, Ahmad S (2013) Cytotoxic and apoptogenic properties of three isolated diterpenoids from Salvia chorassanica through bioassay-guided fractionation. Food Chem Toxicol 57:346–351

    Article  CAS  PubMed  Google Scholar 

  • Tezuka Y, Kasimu R, Li JX, Basnet P, Tanaka K, Namba T, Kadota S (1998) Constituents of roots of Salvia deserta Schang. (Xinjiang-Danshen). Chem Pharm Bull 46:107–112

    Article  CAS  Google Scholar 

  • Tezuka Y, Fan W, Kasimu R, Kadota S (1999) Screening of crude drug extracts for prolyl endopeptidase inhibitory activity. Phytomedicine 6:197–203

    Article  CAS  PubMed  Google Scholar 

  • Thomson RH (1992) The total synthesis of naturally occurring quinones. In: ApSimon J (ed) The total synthesis of natural products, vol 8. Wiley, New York, pp 311–532

    Google Scholar 

  • Thomson RH (1997) Naturally occuring quinones. Recent advances. Chapman & Hall, London

    Google Scholar 

  • Topçu G, Gören A (2007) Biological activity of diterpenoids isolated from Anatolian Lamiaceae plants. Rec Nat Prod 1:1–16

    Article  Google Scholar 

  • Topçu G, Ulubelen A (1990) Diterpenoids from Salvia wiedemannii. Phytochemistry 29:2346–2348

    Article  Google Scholar 

  • Topçu G, Ulubelen A (1996) Abietane and rearranged abietane diterpenes from Salvia montbretii. J Nat Prod 59:734–737

    Article  Google Scholar 

  • Topçu G, Ulubelen A (1999) Terpenoids from Salvia kronenburgii. J Nat Prod 62:1605–1608

    Article  CAS  Google Scholar 

  • Topçu G, Ulubelen A (2007) Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques. J Mol Struct 834–836:57–73

    Article  CAS  Google Scholar 

  • Topcu G, Tan N, Ulubelen A, Sun D, Watson WH (1995) Terpenoids and flavonoids from the aerial parts of Salvia candidissima. Phytochemistry 40:501–504

    Article  CAS  Google Scholar 

  • Topçu G, Eriş C, Ulubelen A (1996) Rearranged abietane diterpenes from Salvia limbata. Phytochemistry 41:1143–1147

    Article  Google Scholar 

  • Topçu G, Ozturk M, Kusman T, Barla Demirkoz AA, Kolak U, Ulubelen A (2013) Terpenoids, essential oil composition, fatty acid profile, and biological activities of Anatolian Salvia fruticosa Mill. Turk J Chem 37:619–632

    Google Scholar 

  • Topçu G, Yücer R, Şenol H (2017) Bioactive constituents of anatolian Salvia species. In: Georgiev V, Pavlov A (eds) Salvia biotechnology. Springer, Cham, pp 31–132

    Chapter  Google Scholar 

  • Torrey J (1859) Botany of the boundary. In: Emory WH (ed) Report on the United States and Mexican boundary survey: made under the direction of the secretary of the Interior (SENATE), vol II, Part I. Nicholson, A.O.P, Washington, pp 131–133

    Google Scholar 

  • Trautvetter ER (1879) Flora Terrae Tschukschorum. In: Trautvetter ER, Maximowics CJ, Regel E (eds) Trudy Imperatorskago S.-Peterburgskago botanicheskago sada. Acta Horti Petropolitani., vol VI. Velikago, Imperatorskīǐ botanicheskīǐ sad Petra, S.-Peterburg, pp 354–358

  • Turner BL (1996) Synopsis of section Axillaris of Salvia (Lamiaceae). Phytologia 81:16–21

    Google Scholar 

  • Ueng YF, Kuo YH, Wang SY, Lin YL, Chen CF (2004) Induction of CYP1A by a diterpene quinone tanshinone IIA isolated from a medicinal herb Salvia miltiorrhiza in C57BL/6 J but not in DBA/2 J mice. Life Sci 74:885–896

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Topcu G (1998) Chemical and biological investigations of Salvia species growing in Turkey. In: Atta-ur-Raman (ed) Studies in Natural Products Chemistry, vol. 20. Elsevier, Amsterdam, pp 659–718

  • Ulubelen A, Topçu G (1992) New abietane diterpenoids from Salvia montbretii. J Nat Prod 55:441–444

    Article  CAS  Google Scholar 

  • Ulubelen A, Tuzlaci E (1990) New diterpenes from Salvia pachystachys. J Nat Prod 53:1597–1599

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Terem B (1987) Abietane diterpenoids from the roots of Salvia cryptantha. Phytochemistry 26:1534–1535

    Article  CAS  Google Scholar 

  • Ulubelen A, Evren N, Tuzlaci E, Johansson C (1988) Diterpenoids from the roots of Salvia hypargeia. J Nat Prod 51:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Topçu G, Tan N (1992a) Rearranged abietane diterpenes from Salvia candidissima. Phytochemistry 31:3637–3638

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Tuzlaci E (1992b) New diterpenoids from Salvia divaricata. J Nat Prod 55:1518–1521

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Eris C, Sonmez U, Kartal M, Kurucu S, Bozok-Johansson C (1994) Terpenoids from Salvia sclarea. Phytochemistry 36:971–974

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Topçu G, Sonmez U, Choudhary MI (1995a) Abietane diterpenes from Salvia napifolia. Phytochemistry 40:861–864

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Sönmez U, Iqbal Choudhary M (1995b) Abietane diterpenes from Salvia napifolia. Phytochemistry 40:861–864

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Sonmez U, Eris C, Ozgen U (1996) Norsesterterpenes and diterpenes from the aerial parts of Salvia limbata. Phytochemistry 43:431–434

    Article  CAS  Google Scholar 

  • Ulubelen A, Sonmez U, Topçu G (1997a) Diterpenoids from the roots of Salvia sclarea. Phytochemistry 44:1297–1299

    Article  CAS  Google Scholar 

  • Ulubelen A, Tan N, Topçu G (1997b) Terpenoids from Salvia candidissima subsp. candidissima. Phytochemistry 45:1221–1223

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Johansson CB (1997c) Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity. J Nat Prod 60:1275–1280

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Öksüz S, Kolak U, Tan N, Bozok-Johansson C, Çelik C, Kohlbau H-J, Voelter W (1999a) Diterpenoids from the roots of Salvia bracteata. Phytochemistry 52:1455–1459

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Chai H-B, Pezzuto JM (1999b) Cytotoxic activity of diterpenoids isolated from Salvia hypargeia. Pharm Biol 37:148–151

    Article  CAS  Google Scholar 

  • Ulubelen A, Öksüz S, Kolak U, Birman H, Voelter W (2000a) Cardioactive terpenoids and a new rearranged diterpene from Salvia syriaca. Planta Med 66:627–629

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Oksuz S, Kolak U, Bozok-Johansson C, Celik C, Voelter W (2000b) Antibacterial diterpenes from the roots of Salvia viridis. Planta Med 66:458–462

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Öksüz S, Topçu G, Gören AC, Voelter W (2001) Antibacterial diterpenes from the roots of Salvia blepharochlaena. J Nat Prod 64:549–551

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Birman H, Öksüz S, Topçu G, Kolak U, Barla A, Voelter W (2002) Cardioactive diterpenes from the roots of Salvia eriophora. Planta Med 68:818–821

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro M, Malafronte N, Leone A (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell Tiss Org Cult 119:65–77

    Article  CAS  Google Scholar 

  • Valant-Vetschera KM, Roitman JN, Wollenweber E (2003) Chemodiversity of exudate flavonoids in some members of the Lamiaceae. Biochem Syst Ecol 31:1279–1289

    Article  CAS  Google Scholar 

  • Villaseñor JL (2016) Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87:559–902

    Article  Google Scholar 

  • Vlasova G, Romanova A, Perel’son M, Ban’kovskii A (1969) Isolation of 7-acetoxyroyleanone from Salvia nemorosa. Chem Nat Compd 5:266–267

    Article  Google Scholar 

  • Walker JB, Sytsma KJ (2007) Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot Lond 100:375–391

    Article  CAS  Google Scholar 

  • Walker JB, Sytsma KJ, Treutlein J, Wink M (2004) Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot 91:1115–1125

    Article  PubMed  Google Scholar 

  • Walker JB, Drew BT, Sytsma KJ (2015) Unravelling species relationships and diversification within the iconic California Floristic Province sages (Salvia subgenus Audibertia, Lamiaceae). Syst Bot 40:826–844

    Article  Google Scholar 

  • Wallich N (1831) Plantae Asiaticae rariores; or, descriptions and figures of a select number of unpublished East Indian Plants. Treuttel and Würtz, London

    Google Scholar 

  • Wang M, Dai H, Li X, Li Y, Wang L, Xue M (2010) Structural elucidation of metabolites of tanshinone I and its analogue dihydrotanshinone I in rats by HPLC–ESI-MSn. J Chromatogr B 878:915–924

    Article  CAS  Google Scholar 

  • Wang H, Su X, Fang J, Xin X, Zhao X, Gaur U, Wen Q, Xu J, Little PJ, Zheng W (2018a) Tanshinone IIA attenuates insulin like growth factor 1-induced cell proliferation in PC12 Cells through the PI3 K/Akt and MEK/ERK pathways. Int J Mol Sci 19:2719

    Article  CAS  PubMed Central  Google Scholar 

  • Wang L, Zhang Y, Liu K, Chen H, Yang R (2018b) Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2. Oncotarget 9:34200–34212

    PubMed  PubMed Central  Google Scholar 

  • Watson WH, Taira Z, Dominguez XA, Gonzales H, Guiterrez M, Aragon R (1976) Isolation and structure of two diterpene quinones from Salvia ballotaeflora Benth. (Labiatae). Tetrahedron Lett

  • Wei WJ, Zhou PP, Lin CJ, Wang WF, Li Y, Gao K (2017) Diterpenoids from Salvia miltiorrhiza and their immune-modulating activity. J Agric Food Chem 65:5985–5993

    Article  CAS  PubMed  Google Scholar 

  • Will M, Claßen-Bockhoff R (2017) Time to split Salvia sl (Lamiaceae)–New insights from Old World Salvia phylogeny. Mol Phylogenetics Evol 109:33–58

    Article  Google Scholar 

  • Will M, Schmalz N, Claßen-Bockhoff R (2015) Towards a new classification of Salvia s.l.: (re)establishing the genus Pleudia Raf. Turk J Bot 39:693–707

    Article  CAS  Google Scholar 

  • Wood JRI (2007) The Salvias (Lamiaceae) of Bolivia. Kew Bull 62:177–221

    Google Scholar 

  • Wood JRI, Harley RM (1989) The genus Salvia (Labiatae) in Colombia. Kew Bull 44:211–278

    Article  Google Scholar 

  • Wu CY (1977) Salvia. In: Wu CY, Li HW, Chen J, Huang SQ, Li HW, Fang RZ, Huang SH, Zhuang X, Li YR, Bia PY (eds) Flora reipublicae popularis sinicae, vol 66. Science Press, Beijing, pp 70–196

    Google Scholar 

  • Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 19:207–216

    Article  PubMed  Google Scholar 

  • Wu TW, Zeng LH, Fung KP, Wu J, Pang H, Grey AA, Weisel RD, Wang JY (1993) Effect of sodium tanshinone IIA sulfonate in the rabbit myocardium and on human cardiomyocytes and vascular endothelial cells. Biochem Pharmacol 46:2327–2332

    Article  CAS  PubMed  Google Scholar 

  • Wu L-C, Lin X, Sun H (2012a) Tanshinone IIA protects rabbits against LPS-induced disseminated intravascular coagulation (DIC). Acta Pharmacol Sin 33:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YB, Ni ZY, Shi QW, Dong M, Kiyota H, Gu YC, Cong B (2012b) Constituents from Salvia species and their biological activities. Chem Rev 112:5967–6026

    Article  CAS  Google Scholar 

  • Wu C-Y, Liao Y, Yang Z-G, Yang X-W, Shen X-L, Li R-T (2014a) Cytotoxic diterpenoids from Salvia yunnanensis. Phytochemistry 106:171–177

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Li Y, Wang Y, Xu D, Li C, Liu M, Sun X (2014b) Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/angiotensin-(1-7) axis in rats. Int J Med Sci 11:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia F, Wu CY, Yang XW, Li X, Xu G (2015) Diterpenoids from the roots of Salvia yunnanensis. Natl Prod Bioprospecting 5:307–312

    Article  CAS  Google Scholar 

  • Xu G, Peng LY, Lu L, Weng ZY, Zhao Y, Li XL, Zhao QS, Sun HD (2006a) Two new abietane diterpenoids from Salvia yunnanensis. Planta Med 72:84–86

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Chang J, Zhao M, Zhang JS (2006b) Abietane diterpenoid dimers from the roots of Salvia prionitis. Phytochemistry 67:795–799

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Peng LY, Tu L, Li XL, Zhao Y, Zhang PT, Zhao QS (2009a) Three new diterpenoids from Salvia przewalskii maxim. Helv Chim Acta 92:409–413

    Article  CAS  Google Scholar 

  • Xu H, Wang Z-T, Cheng K-T, Wu T, Gu L-H, Hu Z-B (2009b) Comparison of rDNA ITS sequences and tanshinones between Salvia miltiorrhiza populations and Salvia species. Bot Stud 50:127–135

    CAS  Google Scholar 

  • Xu G, Yang J, Wang Y-Y, Peng L-Y, Yang X-W, Pan Z-H, Liu E-D, Li Y, Zhao Q-S (2010) Diterpenoid constituents of the roots of Salvia digitaloides. J Agric Food Chem 58:12157–12161

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Liu P, Xu S, Liu P (2013) Tanshinone II-A: new perspectives for old remedies. Expert Opin Ther, Pat, p 3776

    Google Scholar 

  • Xu Z, Jiang H, Zhu Y, Wang H, Jiang J, Chen L, Xu W, Hu T, Hin C (2017) Cryptotanshinone induces ROS-dependent autophagy in multidrug- resistant colon cancer cells. Chem Biol Interact 273:48–55

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wei K, Zhang G, Lei L, Yang D, Wang W, Han Q, Xia Y, Bi Y, Yang M, Li M (2018) Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: a review. J Ethnopharmacol 225:18–30

    Article  CAS  PubMed  Google Scholar 

  • Xuezhao L, Houwei L, Masatake N (1990) Trijuganone A and B: two new phenanthrenequinones from roots of Salvia trijuga. Planta Med 56:87–88

    Article  CAS  PubMed  Google Scholar 

  • Yang BJ, Hong SH (1985) The stereochemistry of przewaquinone-D and przewaquinone-E. Acta Chim Sin 43:898–900

    CAS  Google Scholar 

  • Yang BJ, Qian MK, Qin GW, Chen ZX (1981) Studies on the active principles of Dan-Shen. V. Isolation and structures of przewaquinone A and prezewaquinone B. Acta Phar Sin 16:837–841

    CAS  Google Scholar 

  • Yang MH, Blunden G, Xu YX, Nagy G, Mathe I (1996) Diterpenoids from Salvia species. Pharm Pharmacol Commun 2:69–71

    CAS  Google Scholar 

  • Yang Z, Yoshikazu K, Kazuhiro C, Naohiro S, Hiroshi K, Yohei D, Yoshichika A, Masahiro T (2001) Synthesis of variously oxidized abietane diterpenes and their antibacterial activities against MRSA and VRE. Bioorg Med Chem 9:347–356

    Article  CAS  PubMed  Google Scholar 

  • Yen J-H, Huang S-T, Huang H-S, Fong Y-C, Wu Y-Y, Chiang J-H (2018) HGK-sestrin 2 signaling-mediated autophagy contributes to antitumor efficacy of Tanshinone IIA in human osteosarcoma cells. Cell Death Dis 9:1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunfei L, Haibin Q, Yiyu C (2008) Identification of major constituents in the traditional Chinese medicine “QI-SHEN-YI-QI” dropping pill by high-performance liquid chromatography coupled with diode array detection-electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 47:407–412

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jiang P, Ye M, Kim S-H, Jiang C, Lü J (2012) Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 13:13621–13666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D-W, Liu X, Xie D, Chen R, Tao X-Y, Zou J-H, Dai J (2013) Two new diterpenoids from cell cultures of Salvia miltiorrhiza. Chem Pharm Bull 61:576–580

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang JU, Jiang J-Y, Liu S-D, Fu KAI, Liu H-Y (2014) Tanshinone IIA induces cytochrome c-mediated caspase cascade apoptosis in A549 human lung cancer cells via the JNK pathway. Int J Oncol 45:683–690

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Tong L, Zhang L, Li H, Wan Y, Zhang T (2016) Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice. Mol Med Rep 14:4983–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhenyu X, Lu C, Zhangang X, Yanhong Z, Hui J, Yan J, Cheng G (2018) Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA. Phytomedicine 51:58–67

    Article  CAS  Google Scholar 

  • Zhou Q (2009) Natural diterpene and triterpene quinone methides: structures, synthesis, and biological potentials. In: Rokita SE (ed) Quinone methides. Wiley, Hoboken, pp 269–288

    Chapter  Google Scholar 

  • Zhou L, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Chan SW, Tseng HL, Deng Y, Hoi PM, Choi PS, Or P, Yang J-M, Lam FF, Lee SM, Leung GP, Kong SK, Ho HP, Kwan YW, Yeung JH (2012) Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine 19:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xu X-Z, Hu Y-R, Hu A-R, Zhu C-L (2014) Cryptotanshinone induces inhibition of breast tumor growth by cytotoxic CD4 + T Cells through the JAK2/STAT4/perforin pathway. Asian Pac J Cancer P 15:2439–2445

    Article  Google Scholar 

  • Zhou W-J, Gui Q-F, Wu Y, Yang Y-M (2015a) Tanshinone IIA protects against methylglyoxal-induced injury in human brain microvascular endothelial cells. Int J Clin Exp Med 8:1985–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang Y, Lee WY, Or PM, Wan DC, Kwan YW, Yeung JH (2015b) Miltirone is a dual inhibitor of P-glycoprotein and cell growth in doxorubicin-resistant HepG2 cells. J Nat Prod 78:2266–2275

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by INTERREG V-A Francia-Italia (ALCOTRA) (2014–2020) Project “ANTEA–Attività innovative per lo sviluppo della filiera transfrontaliera del fiore edule” (No. 11039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunziatina De Tommasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 6.

Table 6 Synonyms, lifeform, geographical distribution and ecology of the selected Salvia speciesa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisio, A., Pedrelli, F., D’Ambola, M. et al. Quinone diterpenes from Salvia species: chemistry, botany, and biological activity. Phytochem Rev 18, 665–842 (2019). https://doi.org/10.1007/s11101-019-09633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09633-z

Keywords

Navigation