Skip to main content
Log in

A remote conductometric titration method for simultaneous determination of uranium and nitric acid concentrations at elevated temperatures

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The determination of free acidity and uranium in a radioactive uranyl nitrate solution inside a hot cell has to be done remotely. It generally involves the addition of complexing agents or the application of sophisticated analytical methods and modelling. To make the analyses uncomplicated, a simple acid–base conductometric titration method was developed to determine the free acidity and the uranium concentration simultaneously. Uranyl nitrate solutions containing nitric acid from 0.02 to 0.83 mmol and uranium from 0.32 to 15.90 mg per aliquot were determined by this method. The precision and accuracy of the method were found to be within ± 5%. For the titrations carried out at higher temperatures, the bias was found to be within ± 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lanham WB, Runion TC (1949) USAEC PUREX process for plutonium and uranium recovery. Report ORNL-479

  2. Long JT (1967) Engineering for nuclear fuel reprocessing. Gordon Breach Sci. Publ, New York

    Google Scholar 

  3. Benedict M, Pigford TH, Levi HW (1981) Nuclear chemical engineering, 2nd edn. McGraw Hill Book Co., New York

    Google Scholar 

  4. Bond WD (1990) In: Schulz WW, Burger LL, Navratil JD, Bender KP (eds) Science and technology of tributyl phosphate. Applications of tributyl phosphate in nuclear fuel reprocessing, vol 3. CRC Press Inc, Boca Raton

    Google Scholar 

  5. Subba Rao RV, Venkataraman M, Natarajan R, Raj B (2009) Operating experience of fast reactor spent fuel reprocessing facility. In: CORAL.proceedings of global 2009, Paris, France, 6–11 September, Paper 9126

  6. Natarajan R, Raj B (2007) J Nucl Sci Technol 44:393–397

    Article  CAS  Google Scholar 

  7. Sood DD, Patil SK (1996) Chemistry of nuclear fuel reprocessing: current status. J Radioannal Nucl Chem 203:547–573. https://doi.org/10.1007/bf02041529

    Article  CAS  Google Scholar 

  8. Natarajan R, Venkataraman M, Subba Rao RV (2007) Role and future trends of analytical chemistry for fast reactor fuel reprocessing. In: Proceedings of DAE-BRNS tropical symposium on the role of analytical chemistry in nuclear technology (RACNT), IT-5 (38-43), BARC, Mumbai

  9. Natarajan R (2006) Reprocessing of FBTR mixed carbide fuel—some chemistry aspects. In: Proceedings Indian nuclear society annual conference held at IGCAR (INSAC 2005) symposium held at BARC, Mumbai

  10. Booman GL, Ellio MG, Kimball RB, Cartan FO, Rein JE (1958) Anal Chem 30:284–287

    Article  CAS  Google Scholar 

  11. Schueider RA, Rasmussen MJ (1959) HW-53368

  12. Rodden CJ (1950) Analytical chemistry of the manhattan project, McGraw-Hill, New York, pp 214–216

  13. Pakalns P (1981) Anal Chim Acta 127:263

    Article  CAS  Google Scholar 

  14. Mayankutty PC, Ravi S, Nadkarni MN (1982) J Radioanal Chem 68:145–150

    Article  CAS  Google Scholar 

  15. Menis O, Manning DL, Goldstein G (1956) Report ORNL-2178

  16. Schmid ER, Juenger E, Fresenius Z (1971) Anal Chem 257:112

    Article  CAS  Google Scholar 

  17. CrossleyD (1980) Report AERE-R 9848

  18. Scargill D, Waterman MJ, Kurucz AS, Hilton TS (1984) Report AERE-M 3323

  19. Arhland S (1960) Acta Chem Scand 14:2035

    Article  Google Scholar 

  20. Motojima K, Izawa K (1964) Anal Chem 36:733

    Article  CAS  Google Scholar 

  21. Chwastowska J, Skwara W (1970) Nukleonika 15:641–648

    CAS  Google Scholar 

  22. Tomasevic M (1973) Hem Ind 27:399

    CAS  Google Scholar 

  23. Fatu M (1974) Revta Chim 25:152

    CAS  Google Scholar 

  24. Bishop JA, Summ S (1954) Chem Anal 43:96

    CAS  Google Scholar 

  25. Pflug JL, Miner FJ (1960) Anal Chim Acta 23:362

    Article  CAS  Google Scholar 

  26. Davies W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron (II) sulphate as reductant. Talanta 8:1203–1211

    Article  Google Scholar 

  27. Florence TM, Farrar Y (1963) Spectrophotometric determination of uranium with 4-(2-Pyridylazo) resorcinol. Anal Chem 35:1613–1616

    Article  CAS  Google Scholar 

  28. Rao RVS, Dhamodaran K, Kumar GS, Ravi TN (2000) Determination of uranium and plutonium in high active solutions by extractive spectrophotometry. J Radioanal Nucl Chem 246:433–435

    Article  CAS  Google Scholar 

  29. Currah JE, Beamish FE (1947) Colorimetric determination of uranium with thiocyanate. Anal Chem 19:609–612

    Article  CAS  Google Scholar 

  30. Haruo Fujimori, Tetsuya Matsui, Kazumichi Suzuki (1988) Simultaneous determination of uranium and HNO3 concentrations in solution by laser-induced fluorescence spectroscopy. J Nucl Sci Technol 25:798–804

    Article  Google Scholar 

  31. Moulin Christophe, Decambox Pierre, Mauchien Patrick, Pouyat Dominique, Couston Laurent (1996) Anal Chem 68:3204–3209

    Article  CAS  Google Scholar 

  32. Spencer BB (1991) Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density and temperature. CONF-910901-1, US Department of Energy (USDOE)

  33. Bürck J (1991) Spectrophotometric determination of uranium and nitric acid by applying partial least-squares regression to uranium (VI) absorption spectra. Anal Chim Acta 254:159–165

    Article  Google Scholar 

  34. Lascola R, Livingston RR, Sanders MA, McCarty JE, Dunning JL (2002) Online spectrophotometric measurements of uranium and nitrate concentrations of process solutions for savannah river site’s H-canyon. J Process Anal Chem 7:14–20

    CAS  Google Scholar 

  35. Warburton J, Smith N, Czerwinski K (2010) Method for online process monitoring for use in solvent extraction and actinide separations. Sep Sci Technol 45:1763–1768

    Article  CAS  Google Scholar 

  36. Bryan SA, Levitskaia TG, Johnsen AM, Orton CR, Peterson JM (2011) Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy. Radiochim Acta 99:563–571

    Article  CAS  Google Scholar 

  37. Smith NA, Krebs JF, Hebden AS (2015) UV-vis spectroscopy as a tool for safeguards; instrumentation installation and fundamental data collection. Report ANL/NE-15/7, Argonne National Laboratory, Argonne, IL

  38. Liu X, Cheng J, He M, Lu X, Wang R (2016) Acidity constants and redox potentials of uranyl ions in hydrothermal solutions. Phys Chem Phys 18:26040–26048

    Article  CAS  Google Scholar 

  39. Fujiwara K, Yamana H, Fujii T, Kawamoto K, Sasaki T, Moriyama H (2005) Solubility product of hexavalent uranium hydrous oxide. J Nucl Sci Technol 42:289–294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly indebted and extended their sincere thanks to Dr K. Anandhasivan, Outstanding Scientist, Director, Reprocessing Group, IGCAR for his valuable suggestion and guidance during this work. The contributions of Smt. C. Shibina, Shri. Sathya Narayan Das, Smt. M. Usha of P&RCD during experimental works are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V . Ganesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, S., . Ganesh Kumar, V. & Subbarao, R.V. A remote conductometric titration method for simultaneous determination of uranium and nitric acid concentrations at elevated temperatures. J Radioanal Nucl Chem 327, 1087–1093 (2021). https://doi.org/10.1007/s10967-020-07581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07581-z

Keywords

Navigation