Skip to main content
Log in

Impact of Annealing Temperature on Spin Coated V2O5 Thin Films as Interfacial Layer in Cu/V2O5/n-Si Structured Schottky Barrier Diodes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, we report the influence of thermal annealing on structural, electrical properties V2O5 thin films and their application of SBD’s. V2O5 thin films were prepared using glass substrate by sol gel spin coating technique. Films were annealed at different temperatures such as 300 °C, 400 °C and 500 °C. The prepared films were introduced as an interfacial layer between metal and semiconductor interface. V2O5 films exhibit single phase tetragonal structure and surface morphology interestingly, it was changed into nanorod-like structure at higher annealing temperature which was observed through field emission scanning electron microscopy. Atomic force microscopy reveals the surface roughness and the mentioned roughness is increasing due to the increase of annealing temperature. The elemental composition was confirmed by energy dispersive X-ray spectrum. From UV–Vis absorption spectroscopy results revealed that the band gap shows a decreasing trend on increasing the annealing temperature. Besides, we analyzed the influence of high quality vanadium pentoxide (V2O5) thin films prepared at different annealed temperatures and act as an interfacial layer between metal and semiconductor in the fabrication of Schottky diode. V2O5 films depicts high electrical conductivity (σdc) of 0.945 (S cm−1) with activation energy of 0.0747 eV (Ea) as a function of temperature. The MIS structured Cu/V2O5/n-Si based SBD’s diode performance was analyzed for different temperatures ranging from 30 to 150 °C. V2O5 thin-film act as an interfacial layer on Cu/V2O5/n-Si Schottky diode was successfully explained by the thermionic emission theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.S. Kumar, M.S. Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Mater. Sci. Semicond. Process. 41, 497 (2016)

    Article  CAS  Google Scholar 

  2. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, AIP Adv. 7, 085313 (2017)

    Article  CAS  Google Scholar 

  3. Z. Liu, S.P. Lau, F. Yan, Chem. Soc. Rev. 44, 5638 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. P.D. Raj, S. Gupta, M. Sridharan, Ceram. Int. 43, 9401 (2017)

    Article  CAS  Google Scholar 

  5. S. Beke, Thin Solid Films 519, 1761 (2011)

    Article  CAS  Google Scholar 

  6. B.A. Bhat, G.R. Khan, K. Asokan, RSC Adv. 5, 52602 (2015)

    Article  CAS  Google Scholar 

  7. S. Thiagarajan, M. Thaiyan, R. Ganesan, RSC Adv. 6, 82581 (2016)

    Article  CAS  Google Scholar 

  8. P. Banerjee, X. Chen, K. Gregorczyk, L. Henn-Lecordier, G.W. Rubloff, J. Mater. Chem. 21, 15391 (2011)

    Article  CAS  Google Scholar 

  9. A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, P.C. Selvin, Energy Environ. Sci. 4, 1712 (2011)

    Article  CAS  Google Scholar 

  10. Y.J. Park, K.S. Ryu, K.M. Kim, N.G. Park, M.G. Kang, S.H. Chang, Solid State Ionics 154–155, 229 (2002)

    Article  Google Scholar 

  11. Z. Lu, M.D. Levi, G. Salitra, Y. Gofer, E. Levi, D. Aurbach, J. Electroanal. Chem. 491, 211 (2000)

    Article  CAS  Google Scholar 

  12. R. Lindström, V. Maurice, S. Zanna, L. Klein, H. Groult, L. Perrigaud, C. Cohen, P. Marcus, Surf. Interface Anal. 38, 6 (2006)

    Article  CAS  Google Scholar 

  13. L. Michailovits, K. Bali, T. Szörényi, I. Hevesi, Acta Phys. Acad. Sci. Hungaricae 49, 217 (1980)

    Article  CAS  Google Scholar 

  14. G.J. Fang, Z.L. Liu, Y. Wang, Y.H. Liu, K.L. Yao, J. Vac. Sci. Technol. A Vacuum, Surf. Film. 19, 887 (2001)

    Article  CAS  Google Scholar 

  15. A. Bouzidi, N. Benramdane, A. Nakrela, C. Mathieu, B. Khelifa, R. Desfeux, A. Da Costa, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 95, 141 (2002)

    Article  Google Scholar 

  16. A. Mrigal, M. Addou, M.E. El, Jouad, S. Khannyra, J. Mater. Environ. Sci. 8, 3598 (2017)

    CAS  Google Scholar 

  17. D.B. Le, J. Electrochem. Soc. 142, L102 (1995)

    Article  CAS  Google Scholar 

  18. S. Mahato, D. Biswas, Mater. Res. Express 6, 036303 (2018)

    Article  CAS  Google Scholar 

  19. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, J. Mater. Sci. Mater. Electron. 29, 2618 (2018)

    Article  CAS  Google Scholar 

  20. N.N.K. Reddy, H.S. Akkera, M.C. Sekhar, S. Uthanna, Silicon 1 (2018)

  21. C.L. Sorrensen, Geogr. Bull. - Gamma Theta Upsilon 47, 101 (2005)

    Google Scholar 

  22. G.S. Kim, S.W. Kim, S.H. Kim, J. Park, Y. Seo, B.J. Cho, C. Shin, J.H. Shim, H.Y. Yu, ACS Appl. Mater. Interfaces 8, 35419 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. K. Sasikumar, R. Bharathikannan, M. Raja, Silicon 1 (2018)

  24. K. Omri, I. Najeh, L. El Mir Ceramics International 42, 8940–8948 (2016)

    Google Scholar 

  25. K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Physica B, 537 (2018)

  26. N. Alonizan, S. Rabaoui, K. Omri, Rabia Qindeel Appl. Physics A, 124 (2018)

  27. D. Vasanth Raj, N. Ponpandian, D. Mangalaraj, C. Viswanathan, Mater. Sci. Semicond. Process. 16, 256 (2013)

    Article  CAS  Google Scholar 

  28. K. Jeyalakshmi, S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Mater. Res. Bull. 48, 760 (2013)

    Article  CAS  Google Scholar 

  29. U. Kürüm, H.G. Yaglioglu, B. Küc¸üköz, R.M. Oksuzoglu, M. Yildirim, A.M. Yaʇci, C. Yavru, S. Özgün, T. Tiraş, A. Elmali, J. Opt. (United Kingdom) 17, 015503 (2015)

    Google Scholar 

  30. A. Asadov, S. Mukhtar, W. Gao, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33, 041802 (2015)

    Google Scholar 

  31. C.W. Zou, X.D. Yan, D.A. Patterson, E.A.C. Emanuelsson, J.M. Bian, W. Gao, CrystEngComm 12, 691 (2010)

    Article  CAS  Google Scholar 

  32. Q. Su, W. Lan, Y.Y. Wang, X.Q. Liu, Appl. Surf. Sci. 255, 4177 (2009)

    Article  CAS  Google Scholar 

  33. D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, J. Colloid Interface Sci. 424, 1 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. G. Stewart, 20, 44106 (2009)

  35. J. Sun, C. Li, Y. Qi, S. Guo, X. Liang, Sensors (Switzerland) 16, 584 (2016)

    Article  CAS  Google Scholar 

  36. D. Zhang, R. Huang, T. Zhang, Y. Li, Y. Chen, Y. Zhong, P. Fan, J. Huang, Phys. Status Solidi Appl. Mater. Sci. 209, 2229 (2012)

    Article  CAS  Google Scholar 

  37. A. Grzechnik, ÄN. Supe, Chem. Mater. 10, 2505 (1998)

    Article  CAS  Google Scholar 

  38. M.B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V.M. Naik, R.J. Baird, G.W. Auner, R. Naik, K.R. Padmanabhan, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 143, 42 (2007)

    Article  CAS  Google Scholar 

  39. M.S. Raman, N.S. kumar, J. Chandrasekaran, R. Priya, P. Baraneedharan, M. Chavali, Optik (Stuttg). 157, 410 (2018)

    Article  CAS  Google Scholar 

  40. Z. Wan, R.B. Darling, M.P. Anantram, Phys. Chem. Chem. Phys. 17, 30248 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Z. Luo, Z. Wu, X. Xu, M. Du, T. Wang, Y. Jiang, Vacuum 85, 145 (2010)

    Article  CAS  Google Scholar 

  42. R. Mustafa Öksüzoǧlu, P. Bilgiç, M. Yildirim, O. Deniz, Opt. Laser Technol. 48, 102 (2013)

    Article  CAS  Google Scholar 

  43. Y. Sun, X. Xiao, G. Xu, G. Dong, G. Chai, H. Zhang, P. Liu, H. Zhu, Y. Zhan, Sci. Rep. 3, 2756 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Y. Hu, Z. Li, Z. Zhang, D. Meng, Appl. Phys. Lett. 94, 103107 (2009)

    Article  CAS  Google Scholar 

  45. M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, K. Sethuraman, Appl. Surf. Sci. 418, 280 (2017)

    Article  CAS  Google Scholar 

  46. C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, C.M. Julien, Chem. Mater. 17, 1213 (2005)

    Article  CAS  Google Scholar 

  47. C. Glynn, D. Creedon, H. Geaney, E. Armstrong, T. Collins, M.A. Morris, C.O. Dwyer, Nature Publishing Group. May 1–15 (2015)

  48. M. Kang, S.W. Kim, Y. Hwang, Y. Um, J.W. Ryu, AIP Adv. 3, 052129 (2013)

    Article  CAS  Google Scholar 

  49. O. Pakma, N. Serin, T. Serin, Ş Altindal, J. Appl. Phys. 104, 014501 (2008)

    Article  CAS  Google Scholar 

  50. I. Pradeep, E. Ranjith Kumar, N. Suriyanarayanan, K. Mohanraj, C. Srinivas, M.V.K. Mehar, New J. Chem. 42, 4278 (2018)

    Article  CAS  Google Scholar 

  51. M. Raja, J. Chandrasekaran, M. Balaji, B. Janarthanan, Mater. Sci. Semicond. Process. 56, 145 (2016)

    Article  CAS  Google Scholar 

  52. M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)

    Article  CAS  Google Scholar 

  53. M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, J. Mater. Sci. Mater. Electron. 27, 11646 (2016)

    Article  CAS  Google Scholar 

  54. S. Mahato, J. Puigdollers, Phys. B Condens. Matter 530, 327 (2018)

    Article  CAS  Google Scholar 

  55. S. Zeyrek, Ş Altindal, H. Yüzer, M.M. Bülbül, Appl. Surf. Sci. 252, 2999 (2006)

    Article  CAS  Google Scholar 

  56. Ş. Altindal, Y. Şafak Asar, A. Kaya, Z. Sönmez, J. Optoelectron. Adv. M. 14, 998–1004 (2012)

    CAS  Google Scholar 

  57. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Superlattices Microstruct. 119, 134 (2018)

    Article  CAS  Google Scholar 

  58. A. Tataroǧlu, Ş Altindal, J. Alloys Compd. 484, 405 (2009)

    Article  CAS  Google Scholar 

  59. A.F. Güçlü, A. Özdemir, A. Karabulut, Kökce, Altındal, Mater. Sci. Semicond. Process. 89, 26 (2019)

    Article  CAS  Google Scholar 

  60. K. Ejderha, I. Orak, S. Duman, A. Turut, J. Electron. Mater. 47, 3502 (2018)

    Article  CAS  Google Scholar 

  61. S. Rao, G. Pangallo, L. Di Benedetto, A. Rubino, G.D. Licciardo, F.G. Della, Corte, Sensors Actuators, A Phys. 269, 171 (2018)

    Article  CAS  Google Scholar 

  62. S. Kumar, F. Maury, N. Bahlawane, Mater. Today Phys. 2, 1 (2017)

    Article  Google Scholar 

  63. S. ̧ Karataş, S. ̧, Altindal, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 122, 133 (2005)

    Article  CAS  Google Scholar 

  64. Ş. Karataş, Ş. Altindal, A. Türüt, A. Özmen, Appl. Surf. Sci. 217, 250 (2003)

    Article  CAS  Google Scholar 

  65. S. Mahato, N. Shiwakoti, A.K. Kar, in AIP Conf. Proc. (2015), p. 120011

  66. S. Özdemir, I. Dökme, Ş Altindal, Int. J. Electron. 98, 699 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research Project (EMR/2016/007874). The authors would like to thank Dr. P. Suresh, SRM IST Chennai for assist in AFM Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramani, V., Chandrasekaran, J., Marnadu, R. et al. Impact of Annealing Temperature on Spin Coated V2O5 Thin Films as Interfacial Layer in Cu/V2O5/n-Si Structured Schottky Barrier Diodes. J Inorg Organomet Polym 29, 1533–1547 (2019). https://doi.org/10.1007/s10904-019-01117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01117-z

Keywords

Navigation