Skip to main content

Advertisement

Log in

Effect of film thickness on dielectric properties and energy storage performance of Ba0.95Ca0.05Zr0.3Ti0.7O3 thick films prepared by tape casting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Free-standing Ba0.95Ca0.05Zr0.3Ti0.7O3 thick films with varying thicknesses (90–200 μm) were prepared by tape casting technology. The thick films exhibited dense microstructure with fine and uniform grains (~ 1 μm). The dielectric properties, dielectric breakdown strength, and energy storage performance of the thick films were examined. The dielectric properties of the thick films were essentially unaffected by changing film thickness. The thick films with varying thicknesses showed similar dielectric constant and loss values, ferroelectric phase transition behavior, and dielectric nonlinearity. In contrast, the dielectric breakdown strength and energy storage performance were substantially dependent on film thickness. The dielectric breakdown strength and recoverable energy storage density were increased with reducing film thickness, while the energy storage efficiency at an identical applied electric field was enhanced. The film with a thickness of 90 μm achieved the optimal energy storage performance among the specimens investigated, exhibiting a recoverable energy storage density of 1.1 J/cm3 and an energy storage efficiency of 81.7% at an electric field of 260 kV/cm. The thickness dependence of the dielectric breakdown strength and energy storage performance was explained with respect to presence of oxygen vacancies in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electroceram. 18, 269–276 (2007)

    CAS  Google Scholar 

  2. X.H. Hao, J. Adv. Dielectr. 3, 1330001–1330014 (2013)

    Google Scholar 

  3. L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Prog. Mater. Sci. 102, 72–108 (2019)

    CAS  Google Scholar 

  4. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    CAS  Google Scholar 

  5. J.B. Lim, S.J. Zhang, N.C. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679–682 (2009)

    CAS  Google Scholar 

  6. Q. Zhang, Y. Zhang, X.R. Wang, T. Ma, Z.B. Yuan, Ceram. Int. 38, 4765–4770 (2012)

    CAS  Google Scholar 

  7. T. Wu, Y.P. Pu, K. Chen, Ceram. Int. 39, 6787–6793 (2013)

    CAS  Google Scholar 

  8. T. Wang, L. Jin, L.L. Shu, Q.Y. Hu, X.Y. Wei, J. Alloys Compd. 617, 399–403 (2014)

    CAS  Google Scholar 

  9. Q.Y. Hu, L. Jin, T. Wang, C.C. Li, Z. Xing, X.Y. Wei, J. Alloys Compd. 640, 416–420 (2015)

    CAS  Google Scholar 

  10. Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, J. Mater. Chem. A 3, 18146–19153 (2015)

    CAS  Google Scholar 

  11. T. Wang, L. Jin, C.C. Li, Q.Y. Hu, X.Y. Wei, J. Am. Ceram. Soc. 98, 559–566 (2015)

    CAS  Google Scholar 

  12. D.G. Zheng, R.Z. Zuo, J. Eur. Ceram. Soc. 37, 413–418 (2017)

    CAS  Google Scholar 

  13. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y.L. Wang, L.N. Guo, W.D. Tai, H. Wei, J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    CAS  Google Scholar 

  14. X.Y. Liu, H.B. Yang, F. Yan, Y. Qin, Y. Lin, T. Wang, J. Alloys Compd. 778, 97–104 (2019)

    CAS  Google Scholar 

  15. Y. Lin, D. Li, M. Zhang, S.L. Zhan, Y.D. Yang, H.B. Yang, Q.B. Yuan, ACS Appl. Mater. Interfaces 11, 36824–43683 (2019)

    CAS  Google Scholar 

  16. N.H. Fletcher, A.D. Hilton, B.W. Ricketts, J. Phys. D 29, 253–258 (1996)

    CAS  Google Scholar 

  17. A. Chen, Y. Zhi, Phys. Rev. B 69, 174109 (2004)

    Google Scholar 

  18. D. Zhan, Q. Xu, D.P. Huang, H.J. Sun, F. Gao, F. Zhang, J. Electron. Mater. 46, 4503–4511 (2017)

    CAS  Google Scholar 

  19. J. McPherson, J.Y. Kim, A. Shanware, H. Mogul, Appl. Phys. Lett. 82, 2121–2123 (2003)

    CAS  Google Scholar 

  20. C. Kim, G. Pilania, R. Ramprasad, J. Phys. Chem. C 120, 14575–14580 (2016)

    CAS  Google Scholar 

  21. Q.M. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, J. Am. Ceram. Soc. 92, 1871–1873 (2009)

    CAS  Google Scholar 

  22. T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A 5, 554–563 (2017)

    CAS  Google Scholar 

  23. N.K. Karan, J.J. Saavedra-Arias, M. Perez, R. Thomas, R.S. Katiyar, Appl. Phys. Lett. 92, 012903 (2008)

    Google Scholar 

  24. D.K. Kwon, M.H. Lee, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1894–1899 (2012)

    Google Scholar 

  25. L.M. Chen, Y. Li, Q.W. Zhang, X.H. Hao, Ceram. Int. 42, 12537–12542 (2016)

    CAS  Google Scholar 

  26. S. Abhinay, R. Mazumder, A. Seal, A. Sen, J. Eur. Ceram. Soc. 36, 3125–3137 (2016)

    CAS  Google Scholar 

  27. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, J. Alloys Compd. 682, 594–600 (2016)

    CAS  Google Scholar 

  28. https://materialsdata.com/prodjd.html

  29. https://www.mediacy.com/imageproplus

  30. N. Horchidan, A.C. Ianculescu, L.P. Curecheriu, F. Tudorache, V. Musteata, S. Stoleriu, N. Dragan, D. Crisan, S. Tascu, L. Mitoseriu, J. Alloys Compd. 509, 4731–4737 (2011)

    CAS  Google Scholar 

  31. J. Miao, K.H. Chew, J.X. Zhang, Q. Zhan, X.G. Xu, Y. Jiang, Appl. Phys. Lett. 102, 232902 (2013)

    Google Scholar 

  32. X.F. Liang, Z.Y. Meng, W.B. Wu, J. Am. Ceram. Soc. 87, 2218–2222 (2004)

    CAS  Google Scholar 

  33. J.L. Wang, S. Trolier-McKinstry, Appl. Phys. Lett. 89, 172906 (2006)

    Google Scholar 

  34. S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, S. Mori, Appl. Phys. Lett. 92, 182905 (2008)

    Google Scholar 

  35. P. Chen, L.Y. Zhang, J. Cai, Z.Y. Wang, W.J. Shi, J.Y. Jing, F.B. Wei, G. Liu, Y. Yan, H.B. Liu, L. Jin, J. Mater. Sci. Mater. Electron. 30, 13556–13566 (2019)

    CAS  Google Scholar 

  36. H. Yang, H. Wang, G.F. Zou, M. Jain, N.A. Suvorova, D.M. Feldmann, P.C. Dowden, R.F. DePaula, J.L. MacManus-Driscoll, A.J. Taylor, Q.X. Jia, Appl. Phys. Lett. 93, 142904 (2008)

    Google Scholar 

  37. G.W. Dietz, W. Antpijhler, M. Klee, R. Waser, J. Appl. Phys. 78, 6113–6121 (1995)

    CAS  Google Scholar 

  38. Q. Li, J. Wang, Z.Y. Liu, G.Z. Dong, H.Q. Fan, J. Mater. Sci. 51, 1153–1160 (2016)

    CAS  Google Scholar 

  39. T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767–1769 (1996)

    CAS  Google Scholar 

  40. G. Viola, T. Saunders, X. Wei, K.B. Chong, H. Luo, M.J. Reece, H. Yan, J. Adv. Dielectr. 3, 1350007 (2013)

    Google Scholar 

  41. V.S. Puli, D.K. Pradhan, D.B. Chrisey, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48, 2151–2157 (2013)

    CAS  Google Scholar 

  42. H.B. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, J. Alloys Compd. 720, 116–125 (2017)

    CAS  Google Scholar 

  43. M.G. Zhou, R.H. Liang, Z.Y. Zhou, C.H. Xu, X. Nie, X.F. Chen, X.L. Dong, Mater. Res. Bull. 98, 166–172 (2018)

    CAS  Google Scholar 

  44. H.B. Yang, P.F. Liu, F. Yan, Y. Lin, T. Wang, J. Alloys Compd. 773, 244–249 (2019)

    CAS  Google Scholar 

  45. H.B. Yang, F. Yan, Y. Lin, T. Wang, L. He, F. Wang, J. Alloys Compd. 710, 436–445 (2017)

    CAS  Google Scholar 

  46. X.F. Zhang, Q. Xu, H.X. Liu, W. Chen, M. Chen, B.H. Kim, Phys. B 406, 1571–1576 (2011)

    CAS  Google Scholar 

  47. Q. Xu, D. Zhan, H.X. Liu, W. Chen, D.P. Huang, F. Zhang, Acta Mater. 61, 4481–4489 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51072146 and 51872047) and Nature Science Foundation of Guangdong Province (No. 2018A030313779).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Xu or Min Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, XB., Zhan, D., Xu, Q. et al. Effect of film thickness on dielectric properties and energy storage performance of Ba0.95Ca0.05Zr0.3Ti0.7O3 thick films prepared by tape casting. J Mater Sci: Mater Electron 31, 5305–5315 (2020). https://doi.org/10.1007/s10854-020-03091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03091-6

Navigation