Skip to main content

Advertisement

Log in

Fatigue-free dielectric capacitor with giant energy density based on lead-free Na0.5Bi0.5TiO3-based film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free inorganic dielectric film capacitors have ignited plenty of interest in developing the dielectric energy storage. Here, we obtained a 0.5 mol% Ce and 2 mol% Mn-codoped 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 [(Ce,Mn):NBT–BT] ceramic film capacitor on Pt/TiO2/SiO2/Si substrate, which has a significantly improved recoverable energy storage density Wrec ~ 64.2 J/cm3 and efficiency η ~ 68.1% at 2105 kV/cm. The film capacitor exhibits superior frequency stability with small gradient of 5.9% for Wrec in the frequency range of 500 Hz to 20 kHz, and excellent cycling reliability over 108 charge–discharge cycles without fatigue deterioration. Besides, the (Ce,Mn):NBT–BT film capacitor has large discharged energy density of 43.0 J/cm3 at 1579 kV/cm and fast discharging speed of 55.1 μs tested by a resistance–capacitance circuit with a load resistor of 100 kΩ. These findings indicate that the (Ce,Mn):NBT–BT film might be promising lead-free dielectrics for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.-F. Li, S.J. Zhang, Prog. Mater. Sci. 102, 72–108 (2019)

    CAS  Google Scholar 

  2. Y. Shen, X. Zhang, M. Li, Y.H. Lin, C.-W. Nan, Natl. Sci. Rev. 4, 23–25 (2017)

    CAS  Google Scholar 

  3. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334–336 (2006)

    CAS  Google Scholar 

  4. Z. Liu, T. Lu, J.M. Ye, G.S. Wang, X.L. Dong, R. Withers, Y. Liu, Adv. Mater. Technol. 3, 1800111 (2018)

    Google Scholar 

  5. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)

    Google Scholar 

  6. C.H. Yang, P.P. Lv, J. Qian, Y.J. Han, J. Ouyang, X.J. Lin, S.F. Huang, Z.X. Cheng, Adv. Energy Mater. 9, 1803949 (2019)

    Google Scholar 

  7. Y.L. Zhang, W.L. Li, W.P. Cao, Y. Feng, Y.L. Qiao, T.D. Zhang, W.D. Fei, Appl. Phys. Lett. 110, 243901 (2017)

    Google Scholar 

  8. H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, J. Ma, L.L. Li, C.-W. Nan, J. Mater. Chem. A 5, 5920–5926 (2017)

    CAS  Google Scholar 

  9. J.L. Li, F. Li, Z. Xu, S.J. Zhang, Adv. Mater. 30, 1802155 (2018)

    Google Scholar 

  10. H. Pan, J. Ma, J. Ma, Q.H. Zhang, X.Z. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L.L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Nat. Commun. 9, 1813 (2018)

    Google Scholar 

  11. B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, X.R. Zeng, H.T. Huang, ACS Appl. Mater. Interfaces 7, 13512–13517 (2015)

    CAS  Google Scholar 

  12. C.H. Yang, Y.J. Han, J. Qian, Z.X. Cheng, Adv. Electron. Mater. 5, 1900443 (2019)

    CAS  Google Scholar 

  13. G.-T. Hwang, H. Park, J.-H. Lee, S. Oh, K.-I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, S.-G. Lee, B. Joung, K.J. Lee, Adv. Mater. 26, 4880–4887 (2014)

    CAS  Google Scholar 

  14. T. Takenaka, K. Maruyama, L. Sakata, Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    CAS  Google Scholar 

  15. A. Andreia, N.D. Scarisoreanua, R. Birjegaa, M. Dinescua, G. Stanciub, F. Craciunc, C. Galassid, Appl. Surf. Sci. 278, 162–165 (2013)

    Google Scholar 

  16. J.B. Babu, M. He, D.F. Zhang, X.L. Chen, R. Dhanasekaran, Appl. Phys. Lett. 90, 102901 (2007)

    Google Scholar 

  17. B. Liu, B. Lu, X.Q. Chen, X. Wu, S.J. Shi, L. Xu, Y. Liu, F.F. Wang, X.Y. Zhao, W.Z. Shi, J. Mater. Chem. A 5, 23634 (2017)

    CAS  Google Scholar 

  18. C. Ma, X. Tan, J. Am. Ceram. Soc. 94, 4040–4044 (2011)

    CAS  Google Scholar 

  19. Y.P. Guo, Y. Liu, R.L. Withers, F. Brink, H. Chen, Chem. Mater. 23, 219–228 (2011)

    CAS  Google Scholar 

  20. C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 108, 104105 (2010)

    Google Scholar 

  21. S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91, 3950–3954 (2008)

    CAS  Google Scholar 

  22. M.L. Liu, H.F. Zhu, Y.X. Zhang, C.H. Xue, J. Ouyang, Materials 9, 935 (2016)

    Google Scholar 

  23. X.H. Hao, J. Adv. Dielect. 3, 1330001 (2013)

    Google Scholar 

  24. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)

    Google Scholar 

  25. C.H. Yang, Y.J. Han, X.S. Sun, J. Chen, J. Qian, L.X. Chen, Ceram. Int. 44, 6330–6336 (2018)

    CAS  Google Scholar 

  26. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)

    Google Scholar 

  27. S. Zhang, M.J. Han, J.Z. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, ACS Appl. Mater. Interfaces 5, 3191–3198 (2013)

    CAS  Google Scholar 

  28. M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, J. Eur. Ceram. Soc. 28, 843–849 (2008)

    Google Scholar 

  29. B.T. Song, C.T. Wu, J. Chang, Acta Biomater. 8, 1901–1907 (2012)

    CAS  Google Scholar 

  30. S.W. Wang, H. Wang, X.M. Wu, S.X. Shang, M. Wang, Z.F. Li, W. Lu, J. Cryst, Growth 224, 323–326 (2001)

    CAS  Google Scholar 

  31. P.X. Miao, Y.G. Zhao, N.N. Luo, D.Y. Zhao, A.T. Chen, Z. Sun, M.Q. Guo, M.H. Zhu, H.Y. Zhang, Q. Li, Sci. Rep. UK 6, 19965 (2016)

    CAS  Google Scholar 

  32. A.Z. Simões, M.A. Ramírez, C.S. Riccardi, A.H.M. Gonzalez, E. Longo, J.A. Varela, Mater. Chem. Phys. 98, 203–206 (2006)

    Google Scholar 

  33. Q.R. Lin, R. Ding, Q. Li, Y.Y. Tay, D.Y. Wang, Y. Liu, Y.Z. Huang, S. Li, J. Am. Ceram. Soc. 99, 2347–2353 (2016)

    CAS  Google Scholar 

  34. P. Chen, B.J. Chu, J. Eur. Ceram. Soc. 36, 81–88 (2016)

    CAS  Google Scholar 

  35. Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Am. Ceram. Soc. 94, 3877–3882 (2011)

    CAS  Google Scholar 

  36. M. Rahimabady, S.T. Chen, K. Yao, F.E.H. Tay, L. Lu, Appl. Phys. Lett. 99, 142901 (2011)

    Google Scholar 

  37. A. Lahmar, J. Belhadi, M. El Marssi, M. Zannen, H. Khemakhem, IEEE International Conference in Energy and Sustainability in Small Developing Economies, Dubai, United Arab Emirates, August 2017

  38. Y.L. Zhang, W.L. Li, W.P. Cao, T.D. Zhang, T.R.G.L. Bai, Y. Yu, Y.F. Hou, Y. Feng, W.D. Fei, Ceram. Int. 42, 14788–14792 (2016)

    CAS  Google Scholar 

  39. Z.S. Liang, M. Liu, C.R. Ma, L.K. Shen, L. Lu, C.-L. Jia, J. Mater. Chem. A 6, 12291 (2018)

    CAS  Google Scholar 

  40. B.B. Yang, M.Y. Guo, D.P. Song, X.W. Tang, R.H. Wei, L. Hu, J. Yang, W.H. Song, J.M. Dai, X.J. Lou, X.B. Zhu, Y.P. Sun, Appl. Phys. Lett. 111, 183903 (2017)

    Google Scholar 

  41. Z.S. Xu, X.H. Hao, S.L. An, J. Alloys Compd. 639, 387–392 (2015)

    CAS  Google Scholar 

  42. C.H. Yang, Y.J. Han, J. Qian, P.P. Lv, X.J. Lin, S.F. Huang, Z.X. Cheng, ACS Appl. Mater. Interfaces 11, 12647–12655 (2019)

    CAS  Google Scholar 

  43. Q.L. Fan, M. Liu, C.R. Ma, L.X. Wang, S.P. Ren, L. Lu, X.J. Lou, C.-L. Jia, Nano Energy 51, 539–545 (2018)

    CAS  Google Scholar 

  44. J.H. Wang, N.N. Sun, Y. Li, Q.W. Zhang, X.H. Hao, X.J. Chou, Ceram. Int. 43, 7804–7809 (2017)

    CAS  Google Scholar 

  45. C.W. Ahn, G. Amarsanaa, S.S. Won, S.A. Chae, D.S. Lee, I.W. Kim, ACS Appl. Mater. Interfaces 7, 26381–26386 (2015)

    CAS  Google Scholar 

  46. Z.S. Liang, M. Liu, L.K. Shen, L. Lu, C.R. Ma, X.L. Lu, X.J. Lou, C.-L. Jia, ACS Appl. Mater. Interfaces 11, 5247–5255 (2019)

    CAS  Google Scholar 

  47. Z.H. Tang, J. Ge, H. Ni, B. Lu, X.-G. Tang, S.-G. Lu, M.H. Tang, J. Gao, J. Alloy Compd. 757, 169–176 (2018)

    CAS  Google Scholar 

  48. Q.M. Zhang, C. Li, H.W. Liu, Q. Tang, J.F. Liu, H.T. Li, M. Wang, W.P. Xie, J. Du, J. Am. Ceram. Soc. 98, 366–369 (2015)

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 51972144), Shandong Provincial Natural Science Foundation of China (ZR2017LEM008) and the Key R&D Program of Shandong Province (2019GGX102015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Qian, J. & Yang, C. Fatigue-free dielectric capacitor with giant energy density based on lead-free Na0.5Bi0.5TiO3-based film. J Mater Sci: Mater Electron 30, 21369–21376 (2019). https://doi.org/10.1007/s10854-019-02513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02513-4

Navigation