Skip to main content

Advertisement

Log in

Risk evaluation and mitigation against flood danger in an arid environment. A case study (El Bayadh region, Algeria)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Floods are among the most serious and devastating phenomena of natural disasters. Cities adjacent to flood-prone areas in the last decades have played a major role in increasing the potential adverse effects of flood damage. This research study aims to evaluate and mitigate the risks of flood events in the El Bayadh region, which suffers from poor infrastructure and drained networks. To achieve this, it is necessary to evaluate rainfall intensities and their limits for durations from 0.167 to 24 h with return periods from 2 to 1000 years. Eight different frequency analysis distributions were fit to the historical rainfall data series over 43 years (1970–2012) using hypothesis-based goodness tests and information-based criteria. The most appropriate distributions were used to develop the rainfall intensity-duration-frequency (IDF) and flood risk-duration-frequency (RDF) curves for the study area. The results show that high-intensity rainfall values last for short durations, while high flood risk values last for intermediate durations. The results of the flood RDF curves can provide useful information for policy makers to make the right decisions regarding the effectiveness of the region’s protection structures against future flood risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data is available in the manuscript.

References

  • Afrin, S., Islam, M. M., & Rahman, M. M. (2015). Development of IDF Curve for Dhaka city based on scaling theory under future precipitation variability due to climate change. International Journal of Environmental Science and Development, 6(5), 332–335.

    Article  Google Scholar 

  • Aksoy, H. (2000). Use of gamma distribution in hydrological analysis. Turkish Journal of Engineering and Environmental Sciences, 24, 419–428.

    CAS  Google Scholar 

  • Al-Dokhayel, A. A. (1986). Regional rainfall frequency analysis for Qasim, B.S. Project, Civil Engineering Department, King Saud University, Riyadh (K.S.A).

  • AlHassoun, S. A. (2011). Developing an empirical formulae to estimate rainfall intensity in Riyadh region. Journal of King Saud University - Engineering Sciences, 23(2), 81–88.

    Article  Google Scholar 

  • Arnell, N. W., & Gosling, S. N. (2014). The impacts of climate change on river flood risk at the global scale. Climatic Change. https://doi.org/10.1007/s10584-014-1084-5

    Article  Google Scholar 

  • Aron, G., Wall, D. J., White, E. L., & Dunn, C. N. (1987). Regional rainfall intensity-duration-frequency curves for Pennsylvania. Water Resources Bulletin, 23(3), 479–485.

    Article  Google Scholar 

  • Back, Á. J., Oliveira, J. L. R., & Henn, A. (2012). Duration-frequency relationships of heavy rainfall in santacatarina, Brazil.  Revista Brasileira de Ciência do Solo, 36, 1015–1022.

    Article  Google Scholar 

  • Baghirathan, V. R., & Shaw, E. M. (1978). Rainfall depth-duration-frequency studies for Sri Lanka. Journal of Hydrology, 37, 223–239.

    Article  Google Scholar 

  • Barrow, C. J. (1992). World atlas of desertification (United Nations Environment Programme). London: Edward Arnold. eds N. Middleton & D. S. G. Thomas.

    Google Scholar 

  • Bashir, A., Muhammad, S. K., Mohsin, J. B., & Zakir, H. D. (2010). Hydrological modelling and flood hazard mapping of Nullah Lai. Proceedings of the Pakistan Academy of Sciences, 47(4), 215–226.

    Google Scholar 

  • Bell, F. C. (1969). Generalized rainfall-duration-frequency relationships. Journal of the Hydraulics Division, 95(HY1), 311–327.

    Article  Google Scholar 

  • Birkholz, S., Muro, M., Jeffrey, P., & Smith, H. M. (2014). Rethinking the relationship between flood risk perception and flood management. Science of the Total Environment, 478, 12–20.

    Article  CAS  Google Scholar 

  • Bradford, R. A., O’Sullivan, J. J., van derCraats, I. M., Krywkow, J., Rotko, P., Aaltonen, J., Bonaiuto, M., De Dominicis, S., Waylen, K., & Schelfaut, K. (2012). Risk perception-issues for flood management in Europe. Natural Hazards and Earth Systems Sciences, 12, 2299–2309.

    Article  Google Scholar 

  • Bubeck, P., Botzen, W. J. W., & Aerts, J. C. J. H. (2012). A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis, 32, 1481–1495. https://doi.org/10.1111/j.1539-6924.2011.01783.x

    Article  CAS  Google Scholar 

  • Burlando, P., & Rosso, R. (1996). Scaling and multi-scaling models of depth-duration frequency curves for storm precipitation. Journal of Hydrology, 187(1–2), 45–64.

    Article  Google Scholar 

  • Cardoso, C. O., Bertol, I., & de Paiva Sampaio, C. A. (2013). Generation of intensity duration frequency curves and intensity temporal variability pattern of intense rainfall for Lages. Brazilian Archives of Biology and Technology, 57, 274–283.

    Article  Google Scholar 

  • Chow, V. T. (1951). A general formula for hydrologic frequency analysis. Transactions American Geophysical Union, 32, 231–237.

    Article  Google Scholar 

  • Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology (p. 572). McGraw-Hill.

    Google Scholar 

  • Chow, V. T. (1988). Handbook of applied hydrology. McGraw-Hill Book.

    Google Scholar 

  • Dahman, E. R., & Hall, M. J. (1990). Screening of hydrological data: Tests for stationarity and relative consistency, IILRI, the Nethrlands.

  • Dalrymple, T. (1960). Flood-frequency analyses technical report water supply paper 1543-A. US Geological survey.

    Google Scholar 

  • Devkota, S., Shakya, N. M., Sudmeier-Rieux, K., Jaboyedoff, M., Van Western, C. J., Mcadoo, B. G., & Adhikari, A. (2018). Development of a monsoonal rainfall intensity-duration-frequency (IDF) relationship and empirical model for data-scarce situations, the case of central western hills of Nepal. Hydrology Journal, 5(27), 1–27.

  • Di Baldassarre, G. (2012). Floods in a changing climate: Inundation modelling. Cambridge University Press.

    Book  Google Scholar 

  • Duc Tran, D., van Halsema, G., Hellegers, P. J. G. J., Phi Hoang, L., Quang Tran, T., Kummu, M., & Ludwig, F. (2018). Assessing impacts of dike construction on the flood dynamics of the Mekong Delta. Hydrology and Earth System Sciences, 22, 1875–1896. https://doi.org/10.5194/hess-22-1875-2018

    Article  Google Scholar 

  • DuPont, B. S., & Allen, D. L. (2000). Revision of the rainfall intensity duration curves for the commonwealth of Kentucky. Lexington: College of Engineering, University of Kentucky.

    Google Scholar 

  • Environmental Agency. (2003). Strategy for flood risk management (2003/4–2007/8) (p. 31). London: Environment Agency. Version 1.2. EA.

    Google Scholar 

  • Faradiba, F. (2021). Analysis of intensity, duration, and frequency rain daily of Java Island using mononobe method. Journal of Physics: Conference Series, 1783, 012107. https://doi.org/10.1088/1742-6596/1783/1/012107

  • Froehlich, D. C. (1995a). Intermediate-duration-rainfall equations. Journal of Hydraulic Engineering ASCE, 121(10), 751–756.

  • Froehlich, D. C. (1995b). Long-duration-rainfall intensity equations. Journal of Irrigation and Drainage Engineering, 121(3), 248–252.

  • Froehlich, D. C. (1995c). Short-duration-rainfall intensity equations for drainage design. Journal of Irrigation and Drainage Engineering, 121(4), 310–311.

  • Garcia-Bartual, R., & Schneider, M. (2001). Estimating maximum expected short-duration rainfall intensities from extreme convective storms. Physics and Chemistry of the Earth (B), 26(9), 675–681.

    Article  Google Scholar 

  • Gellens, D. (2002). Combining regional approach and data extension procedure for assessing GEV distribution of extreme precipitation in Belgium. Journal of Hydrology, 268, 113–126.

    Article  Google Scholar 

  • Gerold, L. A., & Watkins, D. W. (2005). Short duration rainfall frequency analysis in Michigan using scale-invariance assumptions. Journal of Hydrologic Engineering, 10(6), 450–457.

    Article  Google Scholar 

  • Gert, A., Wall, D. J., White, E. L., & Dunn, C. N. (1987). Regional rainfall intensity-duration-frequency curves for Pennsylvania. Journal of the American Water Resources, 23, 479–485.

    Article  Google Scholar 

  • Ghosh, S., Roy, M. K., & Biswas, S. C. (2016). Determination of the best fit probability distribution for monthly rainfall data in Bangladesh. American Journal of Mathematics and Statistics, 6, 170–174.

    Google Scholar 

  • Gregory, J. H., Michaelsen, J., & Funk, C. (2007). Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology, 7, 935–944.

    Google Scholar 

  • Grimaldi, S., Kao, S. C., Castellarin, A., Papalexiou, S. M., Viglione, A., Laio, F., Aksoy, H., & Gedikli, A. (2011). Statistical Hydrology. In P. Wilderer (Ed.), Treatise on Water Science (Vol. 2, pp. 479–517)

    Chapter  Google Scholar 

  • Hachemi, A., Hafnaoui, M. A., & Madi, M. (2019). Effects of morphometric characteristics on flash flood response at arid area (case study of Wadi Deffa, El Bayadh City, Algeria). Journal Algérien Des Régions Arides (JARA), 13(2), 50–57.

    Google Scholar 

  • Hadadin, N. A. (2005). Rainfall intensity-duration-frequency relationship in the Mujib basin in Jordan. Journal of Applied Sciences, 5(10), 1777–1784.

    Article  Google Scholar 

  • Hafnaoui, M. A., Hachemi, A., Bensaïd, M., Noui, A., Fekraoui, F., Madi, M., Mghezzi, A., & Djabri, L. (2013). Vulnérabilité aux inondations dans les régions sahariennes - cas de Doucen. Journal Algérien Des Régions Arides, 12, 148–155.

    Google Scholar 

  • Hafnaoui, M. A., Madi, M., Hachemi, A., & Farhi, Y. (2020). El Bayadh city against flash floods: Case study. Urban Water Journal, 1–6.

  • Hosking, J. R. M. (1986). The theory of probability weighted moments. Yorktown Heights, N.Y.: IBM Research. IBM Res. Rep. RC12210 (#54860).

    Google Scholar 

  • Hua, M., & Sailesh, S. (2020). Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the Kemp-Welch Catchment, Central Province, Papua New Guinea. Applied Geomatics, 12, 427–440.

    Article  Google Scholar 

  • Huang, Y. F., Mirzaei, M., & Amin, M. Z. M. (2016). Uncertainty quantification in rainfall intensity duration frequency curves based on historical extreme precipitation quantiles. Procedia Engineering, 154, 426–432.

    Article  Google Scholar 

  • HYBACO (HYDRAULICS-BUILDING-CONSULTING). (2013). Actualisation de l’étude du réaménagement de l’oued deffa. Phase A – étude préliminaire, rapport levee de reserves (In French).

  • Jacobson, P. J., Jacobson, K. M., & Seely, M. K. (1995). Ephemeral rivers and their catchments: Sustaining people and development in Western Namibia (p. 160). Windhoek: Desert Research Foundation of Namibia.

    Google Scholar 

  • Jaya, R. R. (2011). A text book of hydrology. Design Flood, 14, 453–489. New Delhi: University Science Press.

    Google Scholar 

  • Kellens, W., Terpstra, T., Schelfaut, K., & De Maeyer, P. (2013). Perception and communication of flood risks: A literature review. Risk Analysis, 33(1), 24–49.

    Article  Google Scholar 

  • Kheradmand, S., Seidou, O., Konte, D., & Batoure, M. B. B. (2018). Evaluation of adaptation options to flood risk in a probabilistic framework. Journal of Hydrology: Regional Studies, 19, 1–16.

    Google Scholar 

  • Kite, G. W. (1977). Frequency and risk analysis in hydrology. Fort Collins CO: Publications.

    Google Scholar 

  • Koutsoyiannis, D., Kozonis, D., & Manetas, A. (1998). A mathematical framework for studying rainfall intensity- duration-frequency relationships. Journal of Hydrology, 206, 118–135.

    Article  Google Scholar 

  • Liang, L., Zhao, L., Gong, Y., Tian, F., & Wang, Z. (2012). Probability distribution of summer daily precipitation in the Huaihe basin of China based on Gamma distribution. Acta Meteorologica Sinica, 26(1), 72–84.https://doi.org/10.1007/s13351-012-0107-2

  • Madi, M., Hafnaoui, M. A., Hachemi, A., Ben Said, M., Noui, A., Mghezzi, C. A., Bouchahm, N., & Farhi, Y. (2020). Flood risk assessment in Saharan regions. A case study (Bechar region, Algeria). Journal of Biodiversity and Environmental Sciences (JBES), 16(1), 42–60.

  • Madsen, H., Mikkelsen, P. S., Rosbjerg, D., & Harremoës, P. (2002). Regional estimation of rainfall-intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics. Water Resources Research, 38(11), 1239. https://doi.org/10.1029/2001WR001125

    Article  Google Scholar 

  • Mares, M. A. (1999). Encyclopedia of deserts. University of Oklahoma Press.

    Google Scholar 

  • Nhat, L. M., Tachikawa, Y., & Takara, K. (2006). Establishment of intensity-duration-frequency curves for precipitation in the monsoon area of Vietnam. Annuals of Disaster Prevention Research, 93–103.

  • Omran, E. S. E. (2019). Egypt’s Sinai desert cries: Flash flood hazard, vulnerability, and mitigation. In A. M. Negm (Ed.), Flash floods in Egypt. Berlin, Germany: Springer.

  • Rashid, M. M., Faruque, S. B., & Alam, J. B. (2012). Modelling of short duration rainfall intensity duration frequency (SDRIDF) equation for Sylhet City in Bangladesh. ARPN Journal of Science and Technology, 2(2), 92–95.

    Google Scholar 

  • Rana, A., Bengtsson, L., & Jothiprakash, V. (2013). Development of IDF-curves for tropical India by random cascade modelling. Hydrology and Earth System Sciences Discussions, 10, 4709–4738.

    Google Scholar 

  • Raska, P. (2015). Flood risk perception in Central-Eastern European members states of the EU: A review. Natural Hazards, 79, 2163–2179.

    Article  Google Scholar 

  • Roy, P. D., Vera-Vera, G., Sánchez-Zavala, J. L., Shanahan, T. M., Quiroz-Jiménez, J. D., Curtis, J. H., Girón-García, P., Lemus-Neri, V. H., & Muthusankar, G. (2020). Depositional histories of vegetation and rainfall intensity in Sierra Madre Oriental Mountains (northeast Mexico) since the late Last Glacial. Global and Planetary Change, 187, 103136. https://doi.org/10.1016/j.gloplacha.2020.103136

    Article  Google Scholar 

  • Sayers, P. B., Hall, J. W., & Meadowcroft, I. C. (2002). Towards risk-based flood hazard management in the UK. Proceedings of the Institution of Civil Engineers, 12803(150), 36–42.

    Google Scholar 

  • Sein, K. K., & Myint, T. (2016). Flood hazard mapping using hydraulic model and GIS: A case study in Mandalay City, Myanmar. Suan Sunandha Science and Technology Journal, 03(1). https://doi.org/10.14456/ssstj.2016.4

  • Şen, Z. (2008). Wadi hydrology. Taylor and Francis Group, CRC Press.

    Book  Google Scholar 

  • Şen, Z. (2018). Flood modeling, prediction, and mitigation (p. 431). Springer International Publishing.

    Book  Google Scholar 

  • Simonovic, S. (2012). Floods in a changing climate: Risk management. Cambridge University Press.

    Book  Google Scholar 

  • Smithers, J. C., & Schulze, R. E. (2004). The estimation of design rainfalls for South Africa using a regional scale invariant approach. Water SA, 30(4), 435–444.

  • Témez, J. R. (1987). Cálculohidrometeorológico de caudales máximos en pequeñascuencasnaturales. Dirección General de Carreteras, MOPU, Madrid. [In Spanish].

  • Thakur, B., Parajuli, R., Kalra, A., Ahmad, S., & Gupta, R. (2017). Coupling HEC-RAS and HECHMS in precipitation runoff modelling and evaluating flood plain inundation map. World Environmental and Water Resources Congress (pp. 240–251). California: Sacramento.

  • Thomas, D. S. G. (2011). Arid zone geomorphology: Process, form and change in drylands. the Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK: John Wiley & Sons Ltd.

    Book  Google Scholar 

  • Triatmodjo, B. (2008). Applied hydrology (Indonesian). Yogyakarta: Beta Offset.

    Google Scholar 

  • U.S.D.C (U. S. Department of Commerce). (2015). Flood and flash flood definitions. NOAA: Miami, FL, USA.: NOAA, National Weather Service.

  • UNISDR (United Nations International Strategy for Disaster Reduction). (2009). UNISDR Terminology on disaster risk reduction, United Nations (UN): Geneva, Switzerland, 35. Retrieved January 17, 2020, from https://www.unisdr.org/publications

  • Van de Vyver, H., & Demarée, G. R. (2010). Construction of intensity-duration-frequency (idf) curves for precipitation at Lubumbashi, Congo, under the hypothesis of inadequate data. Hydrological Sciences Journal, 55(4), 555–564.

    Article  Google Scholar 

  • Veneziano, D., Lepore, C., Langousis, A., & Furcolo, P. (2007). Marginal methods of intensity-duration-frequency estimation in scaling and nonscaling rainfall. Water Resources Research, 43.

  • Verhoest, N., Troch, P. A., & De Troch, F. P. (1997). On the applicability of Bartlett-Lewis rectangular pulses models in the modelling of design storms at a point. Journal of Hydrology, 202, 108–120.

    Article  Google Scholar 

  • Vu, M. T., Raghavan, V. S., & Liong, S.-Y. (2017). Deriving short-duration rainfall IDF curves from a regional climate model. Natural Hazards, 85(3), 1877–1891.

    Article  Google Scholar 

  • Wachinger, G., Renn, O., Begg, C., & Kuhlicke, C. (2013). The risk perception paradox-implications for governance and communication of natural hazards. Risk Analysis, 33, 1049–1065. https://doi.org/10.1111/j.1539-6924.2012.01942.x

    Article  Google Scholar 

  • Ward, R. C. (1978). Floods: A geographical perspective. Macmillan.

    Book  Google Scholar 

  • Wenzel, H. G. (1982). Rainfall for urban stormwater design. In D. F. Kibler (Ed.), Urban stormwater hydrology; Water Resources Monograph 7. Washington, D.C: American Geophysical Union.

  • Willems, P. (2000). Compound intensity / duration / frequency-relationships of extreme precipitation for two seasons and two storm types. Journal of Hydrology, 233, 189–205.

    Article  Google Scholar 

  • Yamani, K., Hazzab, A., Sekkoum, M., & Slimane, T. (2016). Mapping of vulnerability of flooded area in arid region. Case study: Area of Ghardaia-Algeria. Modeling Earth Systems and Environment, 2(3), 147.

  • Youssef, A. M., Sefry, S. A., Pradhan, B., & Alfadail, E. A. (2016). Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomatics, Natural Hazards and Risk, 7(3), 1018–1042.

    Article  Google Scholar 

  • Yu, P. S., & Chen, C. L. (1996). Regional analysis of rainfall intensity-duration-frequency relationship. Journal of the Chinese Institute of Engineers, 19, 523–532.

    Article  Google Scholar 

  • Yu, P.-S., Yang, T., & - C., & Lin, C. -S. (2004). Regional rainfall intensity formulas based on scaling property of rainfall. Journal of Hydrology, 295, 108–123. https://doi.org/10.1016/j.jhydrol.2004.03.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Directorate of Planning and Urban Development (DPAU), Municipality of El Bayadh (APC), Provincial Directorate of Hydraulics (DHW), Directorate of Civil Protection (DPC), National Meteorological Office (ONM), and Directorate of Environment for their provide data and helpful technical support.

Funding

This research study was supported by the Directorate General for Scientific Research and Technological Development (DGRSDT, its French acronym) under the National Research Fund project (contribution to flood risk management in El Bayadh region).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammed Madi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madi, M., Hafnaoui, M.A. & Hachemi, A. Risk evaluation and mitigation against flood danger in an arid environment. A case study (El Bayadh region, Algeria). Environ Monit Assess 195, 280 (2023). https://doi.org/10.1007/s10661-022-10905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10905-z

Keywords

Navigation