Skip to main content
Log in

Optical concentration ratio of a parabolic trough collector with flat receiver and concentrator with surface irregularities

Optisches Konzentrationsverhältnis eines Parabolrinnenkollektors mit flachem Receiver und Konzentrator mit Oberflächenunregelmäßigkeiten

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

In a parabolic trough collector (PTC), the geometric concentration ratio (Cg), which is the ratio of the aperture width of the concentrator and the width of the receiver, is generally used for evaluating the solar radiation collected by the flat receiver. This paper argues that this approach is valid only up to a certain width of receiver and that the optical concentration ratio (Copt) should be used when the receiver exceeds that width. A model for evaluating Copt has been developed in this work. It is based on tracing a large number of rays, sampled probabilistically using the Latin Hypercube Sampling (LHS) technique. The model also considers the incidence angle of individual rays, and concentrator surface irregularities, which are ignored in the analytical relationships for Cg. For a perfect parabolic surface where \(100\leq C_{g}\leq 10\), the Copt was found to be between ≈80% to 90% of Cg. Also, the concentration ratio was found to be significantly affected by surface irregularities. A useful graphical tool, a set of mathematical relationships and an online program are presented to help designers and researchers evaluate the Copt by providing the design parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rehman N (2019) Optical-irradiance ray-tracing model for the performance analysis and optimization of a single slope solar still. Desalination 457:22–31

    Article  Google Scholar 

  2. J. Coventry, “Performance of a concentrating photovoltaic/thermal solar collector,” Solar Energy, vol. 78, no. 2, pp. 211–222, 2005.

  3. Rehman N, Siddiqui M (2017) no. 3. “Performance model and sensitivity analysis for a solar thermoelectric generator,” Journal of Electronic Materials, vol 46, pp 1794–1805

    Google Scholar 

  4. (2016) NREL, 11. http://rredc.nrel.gov/solar/old_data/nsrdb/. Accessed Online

  5. (2012) Solar Energy Laboratory (SEL), “. TRNSYS, vol 17. User Manuals,” Solar Energy Laboratories, Madison

  6. Rodrigo P, Fernández E, Almonacid F, Pérez-Higueras P (2014) Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 38:478–488

    Article  Google Scholar 

  7. Chen W, Wang C, Hung C, Yang C, Juang R (2014) Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy 64:287–297

    Article  Google Scholar 

  8. N. Rehman and M. Siddiqui, “Critical Concentration Ratio for Solar Thermoelectric Generators,” Journal of Electronic Materials, vol. 45, no. 10, 2016.

  9. Amanlou Y, Hashjin T, Ghobadian B, Najafi G, Mamat R (2016) A comprehensive review of uniform solar illumination at low concentration photovoltaic (lcpv) systems. Renew Sustain Energy Rev 60:1430–1441

    Article  Google Scholar 

  10. Rehman N (2018) Optical-irradiance ray-tracing model for the performance analysis and optimization of a façade integrated solar collector with a flat booster reflector. Sol Energy 173:1207–1215

    Article  Google Scholar 

  11. Francini F, Fontani D, Sansoni P, Mercatelli L, Jafrancesco D, Sani E (2012) Evaluation of surface slope irregularity in linear parabolic solar collectors. Int J Photoenergy 2012:1–6. https://doi.org/10.1155/2012/921780

  12. S. Ulmer, B. Heinz, K. Pottler and E. Lüpfert, “Slope error measurements of parabolic troughs using the reflected image of the absorber tube,” Journal of Solar Energy Engineering, vol. 131, no. 1, p. 011014, 2009.

  13. A. Maccari and M. Montecchi, “An optical profilometer for the characterisation of parabolic trough solar concentrators,” Solar Energy, vol. 81, no. 2, pp. 185–194, 2007.

  14. D. Krüger, Y. Pandian, K. Hennecke and M. Schmitz, “Parabolic trough collector testing in the frame of the REACt project,” Desalination, vol. 220, no. 1–3, pp. 612–618, 2008.

  15. Rehman N, Uzair M, Siddiqui M (2018) Optical analysis of a novel collector design for a solar concentrated thermoelectric generator. Sol Energy 167:116–124

    Article  Google Scholar 

  16. Senthil R, Nishanth A (2017) no. 5. “Optical and thermal performance analysis of solar parabolic concentrator,” International Journal of Mechanical and Production Engineering Research and Development, vol 7, pp 367–374

    Google Scholar 

  17. Wang J, Yang S, Jiang C, Yan Q, Lund P (2017) A novel 2‑stage dish concentrator with improved optical performance for concentrating solar power plants. Renew Energy 108:92–97

    Article  Google Scholar 

  18. Downs J (2003) Practical conic sections: the geometric properties of ellipses, parabolas and hyperbolas. Courier Corporation

    Google Scholar 

  19. Duffie J, Beckman W (2013) Solar engineering of thermal processes. John Wiley & Sons

    Book  Google Scholar 

  20. Ledder G (2020) “Directional Slope”. https://www.math.unl.edu/~gledder1/Math208/DirectionalSlope.pdf. Accessed 1:1

    Google Scholar 

  21. Horan R, Lavelle M Gradients and Directional Derivatives. https://www.plymouth.ac.uk/uploads/production/document/path/3/3742/PlymouthUniversity_MathsandStats_gradients_and_directional_deriavatives.pdf. Accessed 1 Jan 2020

  22. A. Owen, “Quasi-Monte Carlo sampling,” in Monte Carlo Ray Tracing: SIGGRAPH 2003 Course 44, New York, ACM, 2003, p. 69–88.

  23. S. Omer and D. Infield, “Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation,” Energy Conversion and Management, vol. 41, no. 7, pp. 737–756, 2000.

  24. Rehman N, Uzair M, Allauddin U (2020) An optical-energy model for optimizing the geometrical layout of solar photovoltaic arrays in a constrained field. Renew Energy 149:55–65

    Article  Google Scholar 

  25. Rehman N, Uzair M, Asif M (2020) Evaluating the solar flux distribution uniformity factor for parabolic trough collectors. Renew Energy 157:888–896

    Article  Google Scholar 

  26. Rehman N, Uzair M (2020) Optimizing the inclined field for solar photovoltaic arrays. Renew Energy 153:280–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Uzair.

Ethics declarations

Conflict of interest

M. Uzair and N. ur Rehman declare that they have no competing interests.

Appendix

Appendix

In this section, the width of the sun’s image (dsun) is calculated. Consider that two rays, one from the centre of the sun and the other from the edge of the sun, δ from the centre, are incident at the edge of a truncated parabola (O), as shown in Fig. 10. The rays are reflected to the receiver and are collected at points A and B, which are dsun∕2  apart. If the law of sines is applied to \(\Updelta AOB\) as in Eq. 18, then:

$$\frac{d_{\mathbf{sun}}/\mathbf{2}}{\mathbf{\sin }\boldsymbol{\delta }}=\frac{\boldsymbol{r}}{\mathbf{\sin }\mathbf{\Phi }}$$
(18)

which uses:

$$d_{\mathbf{sun}}=\mathbf{2}\boldsymbol{r}\frac{\mathbf{\sin }\boldsymbol{\delta }}{\mathbf{\sin }\mathbf{\Phi }}$$
(19)

where r is the distance between the centre of the receiver and the edge of the parabola and Φ is the angle at point A.

The value of r can be calculated as the hypotenuse of the right angled \(\Updelta BQO\), as shown in Eq. 20:

$$\boldsymbol{r}=\sqrt{\left(\boldsymbol{D}/\mathbf{2}\right)^{\mathbf{2}}+\left(\boldsymbol{f}-\boldsymbol{h}\right)^{\mathbf{2}}}$$
(20)

where h is the height of the truncated parabola, which can be calculated by substituting \(y=h\) and \(x=D/2\) in Eq. 3 and considering Eq. 8 while simplifying, yielding Eq. 21:

$$\boldsymbol{h}=\frac{\boldsymbol{D}\mathbf{\tan }\left(\frac{\boldsymbol{\psi }}{\mathbf{2}}\right)}{\mathbf{4}}$$
(21)

The value of Φ in Eq. 18 can be calculated by equating the sum of all angles of \(\Updelta AOB\) to 180°, given by Eq. 22:

$$\mathbf{\Phi }=\mathbf{90}{^{\circ}}-\left(\boldsymbol{\psi }+\boldsymbol{\delta }\right)$$
(22)

For a typical case when \(\psi =45{^{\circ}}\) [23], calculation of dsun can be simplified to a linear relationship, given in Eq. 23:

$$\boldsymbol{d}_{\mathrm{sun}}=\mathbf{9.469}\times \mathbf{10}^{-\mathbf{3}}\boldsymbol{D}$$
(23)
Fig. 10
figure 10

Schematic for calculating the width of the sun’s image at the receiver of a parabolic trough collector

Rights and permissions

Springer Nature oder sein Lizenzgeber hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzair, M., ur Rehman, N. Optical concentration ratio of a parabolic trough collector with flat receiver and concentrator with surface irregularities. Forsch Ingenieurwes 86, 903–911 (2022). https://doi.org/10.1007/s10010-022-00603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-022-00603-0

Navigation