Skip to main content
Log in

Enhanced corrosion resistance of carbon steel in an aggressive environment by a recently developed pyrazole derivative: Electrochemical, SEM/XPS/AFM, and theoretical investigation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a new pyrazole derivative, namely, (2-(((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino)-5-nitrophenyl)(phenyl) methanone (2-DPM) was uniquely used as an inhibitor of corrosion for carbon steel (C-S) in acidic solution (1 M HCl). Numerous techniques include electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface morphology analysis (SEM), energy-dispersive X-ray spectrometry (EDX), atom force microscopy (AFM), angle of contact, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible analysis. Molecular dynamic simulations (MDs) and quantum chemical computations (DFT) were utilized to assess the 2-DPM ability. The results show that the inhibitor, acting in a mixed inhibitory mode, considerably reduces the incidence of C-S corrosion by protecting the metal surface with an effective protective layer. The chemically adsorbed novel pyrazole (2-DPM) molecule has an improved corrosion performance of nearly 96% at 303 K, which is supported by EIS and theoretical analyses. The Langmuir isotherm model was shown to regulate the adsorption of 2-DPM on the surface of C-S. Finally, there is a strong correlation between theoretical research and experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Quadri TW, Olasunkanmi LO, Fayemi OE, Akpan ED, Lee HS, Lgaz H, Verma C, Guo L, Kaya S, Ebenso EE (2022) Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids. Comput Mater Sci 214:111753. https://doi.org/10.1016/J.COMMATSCI.2022.111753

    Article  CAS  Google Scholar 

  2. Yusuf TL, Quadri TW, Tolufashe GF, Olasunkanmi LO, Ebenso EE, Van Zyl WE (2020) Synthesis and structures of divalent Co, Ni, Zn and Cd complexes of mixed dichalcogen and dipnictogen ligands with corrosion inhibition properties: experimental and computational studies. RSC Adv 10:41967–41982. https://doi.org/10.1039/d0ra07770d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malekmohammadi Nouri P, Attar MM (2015) Experimental and quantum chemical studies on corrosion inhibition performance of fluconazole in hydrochloric acid solution. Bull Mater Sci 38:499–509. https://doi.org/10.1007/s12034-015-0865-4

    Article  CAS  Google Scholar 

  4. Verma C, Quraishi MA, Obot IB, Ebenso EE (2019) Effect of substituent dependent molecular structure on anti-corrosive behavior of one-pot multicomponent synthesized pyrimido [2,1-B] benzothiazoles: computer modelling supported experimental studies. J Mol Liq 287:110972. https://doi.org/10.1016/j.molliq.2019.110972

    Article  CAS  Google Scholar 

  5. Zarrok H, Zarrouk A, Salghi R, Ramli Y, Hammouti B, Assouag M, Essassi EM, Oudda H, Taleb M (2012) 3,7-Dimethylquinoxalin-2-(1H)-one for inhibition of acid corrosion of carbon steel. J Chem Pharm Res 4(12):5048–5055

    CAS  Google Scholar 

  6. Fakhry H, El Faydy M, Benhiba F, Bouassiria M, Laabaissi T, Allali M, Touir R, Oudda H, Jama C, Warad I, Alsalme A, Zarrouk A (2022) Experimental, DFT studies and molecular dynamic simulation on the corrosion inhibition of carbon steel in 1 M HCl by two newly synthesized 8-hydroxyquinoline derivatives. J Indian Chem Soc 99:100701. https://doi.org/10.1016/J.JICS.2022.100701

    Article  CAS  Google Scholar 

  7. Zarrok H, Al Mamari K, Zarrouk A, Salghi R, Hammouti B, Al-Deyab SS, M. Essassi E, Bentiss F, Oudda H (2012) Gravimetric and electrochemical evaluation of 1-allyl-1hindole-2,3-dione of carbon steel corrosion in hydrochloric acid. Int J Electrochem Sci 7:10338–10357

    Article  CAS  Google Scholar 

  8. El Faydy M, Benhiba F, Timoudan N, Lakhrissi B, Warad I, Saoiabi S, Guenbour A, Bentiss F, Zarrouk A (2022) Experimental and theoretical examinations of two quinolin-8-ol-piperazine derivatives as organic corrosion inhibitors for C35E steel in hydrochloric acid. J Mol Liq 354:118900. https://doi.org/10.1016/j.molliq.2022.118900

    Article  CAS  Google Scholar 

  9. Zarrouk A, Messali M, Aouad MR, Assouag M, Zarrok H, Salghi R, Hammouti B, Chetouani A (2012) Some new ionic liquids derivatives: synthesis, characterization and comparative study towards corrosion of C-steel in acidic media. J Chem Pharm Res 4(7):3427–3436

    CAS  Google Scholar 

  10. Zarrouk A, Hammouti B, Zarrok H, Warad I, Bouachrine M (2011) N-containing organic compound as an effective corrosion inhibitor for copper in 2M HNO3: weight loss and quantum chemical study. Der Pharma Chem 3(5):263–271

    CAS  Google Scholar 

  11. Zarrouk A, Hammouti B, Touzani R, Al-Deyab SS, Zertoubi M, Dafali A, Elkadiri S (2011) Comparative study of new quinoxaline derivatives towards corrosion of copper in nitric acid. Int J Electrochem Sci 6:4939–4952

    Article  CAS  Google Scholar 

  12. Hammouti B, Zarrouk A, Al-Deyab SS, Warad I (2011) Temperature effect, activation energies and thermodynamics of adsorption of ethyl 2-(4-(2-ethoxy-2-oxoethyl)-2-ptolylquinoxalin-1(4h)-yl)acetate on cu in HNO3. Orient J Chem 27(1):23–31

    CAS  Google Scholar 

  13. Boudjellal F, Ouici HB, Guendouzi A, Benali O, Sehmi A (2020) Experimental and theoretical approach to the corrosion inhibition of mild steel in acid medium by a newly synthesized pyrazole carbothioamide heterocycle. J Mol Struct 1199:127051. https://doi.org/10.1016/J.MOLSTRUC.2019.127051

    Article  CAS  Google Scholar 

  14. Elayyachy M, Elkodadi M, Aouniti A, Ramdani A, Hammouti B, Malek F, Elidrissi A (2005) New bipyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid solutions. Mater Chem Phys 93:281–285. https://doi.org/10.1016/j.matchemphys.2005.03.059

    Article  CAS  Google Scholar 

  15. Verma C, Saji VS, Quraishi MA, Ebenso EE (2020) Pyrazole derivatives as environmental benign acid corrosion inhibitors for mild steel: experimental and computational studies. J Mol Liq 298:111943. https://doi.org/10.1016/j.molliq.2019.111943

    Article  CAS  Google Scholar 

  16. El Arrouji S, Karrouchi K, Berisha A, Alaoui KI, Warad I, Rais Z, Radi S, Taleb M, Ansar M, Zarrouk A (2020) New pyrazole derivatives as effective corrosion inhibitors on steel-electrolyte interface in 1 M HCl: electrochemical, surface morphological (SEM) and computational analysis. Colloids Surf A 604:125325. https://doi.org/10.1016/J.COLSURFA.2020.125325

    Article  Google Scholar 

  17. Arrousse N, Salim R, Kaddouri Y, Zarrouk A, Zahri D, El Hajjaji F, Touzani R, Taleb M, Jodeh S (2020) The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: experimental, surface analysis and in silico approach studies. Arab J Chem 13:5949–5965. https://doi.org/10.1016/j.arabjc.2020.04.030

    Article  CAS  Google Scholar 

  18. Titi A, Touzani R, Moliterni A, Hadda TB, Messali M, Benabbes R, Berredjem M, Bouzina A, Al-Zaqri N, Taleb M, Zarrouk A, Warad I (2022) Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles. J Mol Struct 1264:133156. https://doi.org/10.1016/j.molstruc.2022.133156

    Article  CAS  Google Scholar 

  19. Timoudan N, Titi A, El Faydy M, Benhiba F, Touzani R, Warad I, Bellaouchou A, Alsulmi A, Dikici B, Bentiss F, Zarrouk A (2024) Investigation of the mechanisms and adsorption of a new pyrazole derivative against corrosion of carbon steel in hydrochloric acid solution: Experimental methods and theoretical calculations. Colloids Surf A 682:132771. https://doi.org/10.1016/j.colsurfa.2023.132771

    Article  CAS  Google Scholar 

  20. Obot IB, Onyeachu IB, Wazzan N, Al-Amri AH (2019) Theoretical and experimental investigation of two alkyl carboxylates as corrosion inhibitors for steel in acidic medium. J Mol Liq 279:190–207. https://doi.org/10.1016/j.molliq.2019.01.116

    Article  CAS  Google Scholar 

  21. Frisch Æ, Plata RE, Singleton DA (2009) Gaussian 09W Reference. J Am Chem Soc 137:3811–3826

    Google Scholar 

  22. Berrissoul A, Ouarhach A, Benhiba F, Romane A, Guenbour A, Outada H, Dafali A, Zarrouk A (2022) Exploitation of a new green inhibitor against mild steel corrosion in HCl: Experimental, DFT and MD simulation approach. J Mol Liq 349:118102. https://doi.org/10.1016/j.molliq.2021.118102

    Article  CAS  Google Scholar 

  23. Laabaissi T, Benhiba F, Missioui M, Rouifi Z, Rbaa M, Oudda H, Ramli Y, Guenbour A, Warad I, Zarrouk A (2020) Coupling of chemical, electrochemical and theoretical approach to study the corrosion inhibition of mild steel by new quinoxaline compounds in 1 M HCl. Heliyon 6:e03939. https://doi.org/10.1016/J.HELIYON.2020.E03939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nadi I, Bouanis M, Benhiba F, Nohair K, Nyassi A, Zarrouk A, Jama C, Bentiss F (2021) Insights into the inhibition mechanism of 2, 5-bis (4-pyridyl)-1, 3, 4-oxadiazole for carbon steel corrosion in hydrochloric acid pickling via experimental and computational approaches. J Mol Liq 342:116958. https://doi.org/10.1016/j.molliq.2021.116958

    Article  CAS  Google Scholar 

  25. El Faydy M, Benhiba F, Kerroum Y, Guenbour A, Bentiss F, Warad I, Lakhrissi B, Zarrouk A (2021) Synthesis and anti-corrosion characteristics of new 8-quinolinol analogs with amide-substituted on C35E steel in acidic medium: experimental and computational ways. J Mol Liq 325:115224. https://doi.org/10.1016/J.MOLLIQ.2020.115224

    Article  Google Scholar 

  26. Belghiti ME, El Ouadi Y, Echihi S, Elmelouky A, Outada H, Karzazi Y, Bakasse M, Jama C, Bentiss F, Dafali A (2020) Anticorrosive properties of two 3, 5-disubstituted-4-amino-1, 2, 4-triazole derivatives on copper in hydrochloric acid environment: Ac impedance, thermodynamic and computational investigations. Surf Interfaces 21:100692. https://doi.org/10.1016/J.SURFIN.2020.100692

    Article  CAS  Google Scholar 

  27. Tourabi M, Nohair K, Traisnel M, Jama C, Bentiss F (2013) Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3, 5-bis (2-thienylmethyl)-4-amino-1, 2, 4-triazole. Corros Sci 75:123–133. https://doi.org/10.1016/J.CORSCI.2013.05.023

    Article  CAS  Google Scholar 

  28. El Faydy M, Lakhrissi B, Guenbour A, Kaya SAVAŞ, Bentiss F, Warad I, Zarrouk A (2019) In situ synthesis, electrochemical, surface morphological, UV–visible, DFT and Monte Carlo simulations of novel 5-substituted-8-hydroxyquinoline for corrosion protection of carbon steel in a hydrochloric acid solution. J Mol Liq 280:341–359. https://doi.org/10.1016/J.MOLLIQ.2019.01.105

    Article  Google Scholar 

  29. Nabah R, Benhiba F, Ramli Y, Ouakki M, Cherkaoui M, Oudda H, Touir R, Warad I, Zarrouk A (2018) Corrosion inhibition study of 5, 5-diphenylimidazolidine2, 4-dione for Mild steel corrosion in 1 M HCl solution: experimental, theoretical computational and Monte Carlo simulations studies. Anal Bioanal Electrochem 10(10):1375–1398

    CAS  Google Scholar 

  30. Ouici H, Tourabi M, Benali O, Selles C, Jama C, Zarrouk A, Bentiss F (2017) Adsorption and corrosion inhibition properties of 5-amino 1, 3, 4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: thermodynamic, surface and electrochemical studies. J Electroanal Chem 803:125–134. https://doi.org/10.1016/j.jelechem.2017.09.018

    Article  CAS  Google Scholar 

  31. El Hattak A, Izzaouihda S, Rouifi Z, Benhiba F, Tabti S, Djedouani A, Komiha N, Abou El Makarim H, Touzani R, Oudda H, Warad I, Zarrouk A (2021) Anti-corrosion performance of pyran-2-one derivatives for mild steel in acidic medium: electrochemical and theoretical study. Chem Data Collect 32:100655. https://doi.org/10.1016/J.CDC.2021.100655

    Article  Google Scholar 

  32. Murmu M, Saha SK, Bhaumick P, Murmu NC, Hirani H, Banerjee P (2020) Corrosion inhibition property of azomethine functionalized triazole derivatives in 1 mol L− 1 HCl medium for mild steel: experimental and theoretical exploration. J Mol Liq 313:113508. https://doi.org/10.1016/j.molliq.2020.113508

    Article  CAS  Google Scholar 

  33. Laadam G, Benhiba F, El Faydy M, Titi A, Al-Gorair AS, Alshareef M, Zarrouk A (2022) Anti-corrosion performance of novel pyrazole derivative for carbon steel corrosion in 1 M HCl: computational and experimental studies. Inorg Chem Commun 145:109963. https://doi.org/10.1016/j.inoche.2022.109963

    Article  CAS  Google Scholar 

  34. Adlani L, Benzbiria N, Titi A, Benhiba F, Warad I, Timoudan N, Kaichouh G, Bellaouchou A, Touzani R, Zarrok H, Oudda H, Zarrouk A (2023) Corrosion mitigation of carbon steel using pyrazole derivative: correlation of gravimetric, electrochemical, surface studies with quantum chemical calculations. Anal Bioanal Electrochem 15:967–987. https://doi.org/10.22034/ABEC.2023.709114

    Article  Google Scholar 

  35. Laadam G, El Faydy M, Benhiba F, Titi A, Amegroud H, Al-Gorair AS, Zarrouk A (2023) Outstanding anti-corrosion performance of two pyrazole derivatives on carbon steel in acidic medium: experimental and quantum-chemical examinations. J Mol Liq 375:121268. https://doi.org/10.1016/j.molliq.2023.121268

    Article  CAS  Google Scholar 

  36. Chkirate K, Azgaou K, Elmsellem H, El Ibrahimi B, Sebbar NK, El Hassane A, Benmessaoud M, El Hajjaji S, Essassi EM (2021) Corrosion inhibition potential of 2-[(5-methylpyrazol-3-yl) methyl] benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. J Mol Liq 321:114750. https://doi.org/10.1016/j.molliq.2020.114750

    Article  CAS  Google Scholar 

  37. El Ouali I, Chetouani A, Hammouti B, Aouniti A, Touzani R, El Kadiri S, Nlate S (2013) Thermodynamic study and characterization by electrochemical technique of pyrazole derivatives as corrosion inhibitors for C38 steel in molar hydrochloric acid. Port Electrochimica Acta 31:53–78. https://doi.org/10.4152/pea.201302053

    Article  CAS  Google Scholar 

  38. El Arrouji S, Karrouchi K, Berisha A, Ismaily Alaoui K, Warad I, Rais Z, Radi S, Taleb M, Ansar M, Zarrouk A (2020) New pyrazole derivatives as effective corrosion inhibitors on steelelectrolyte interface in 1 M HCl: electrochemical, surface morphological (SEM) and computational analysis. Colloids Surf A 604:12325. https://doi.org/10.1016/j.colsurfa.2020.125325

    Article  CAS  Google Scholar 

  39. Tayebi H, Bourazmi H, Himmi B, El Assyry A, Ramli Y, Zarrouk A, Geunbour A, Hammouti B, Ebenso Eno E (2014) An electrochemical and theoretical evaluation of new quinoline derivative as a corrosion inhibitor for carbon steel in HCl solutions. Der Pharm Lett 6(6):20–34

    Google Scholar 

  40. Tayebi H, Bourazmi H, Himmi B, El Assyry A, Ramli Y, Zarrouk A, Geunbour A, Hammouti B (2014) Combined electrochemical and quantum chemical study of new quinoxaline derivative as corrosion inhibitor for carbon steel in acidic media. Der Pharma Chem 6(5):220–234

    Google Scholar 

  41. Al Garadi W, Jrajri K, El Faydy M, Benhiba F, El Ghayati L, Sebbar NK, Essassi EM, Warad I, Guenbour A, Bellaouchou A, Jama C, Alsalme A, Zarrouk A (2022) 4-phenyl-decahydro-1H-1, 5-benzodiazepin-2-one as novel and effective corrosion inhibitor for carbon steel in 1 M HCl solution: a combined experimental and empirical studies. J Indian Chem Soc 99:100742. https://doi.org/10.1016/j.jics.2022.100742

    Article  CAS  Google Scholar 

  42. Arslanhan S (2023) Experimental and theoretical investigation of adsorption and inhibition properties of 2-amino-1, 3, 5-triazine-4, 6-dithiol against corrosion in hydrochloric acid solution on mild steel. J Indian Chem Soc 100:101087. https://doi.org/10.1016/j.jics.2023.101087

    Article  CAS  Google Scholar 

  43. Rbaa M, Fardioui M, Verma C, Abousalem AS, Galai M, Ebenso EE, Guedira T, Lakhrissi B, Warad I, Zarrouk A (2020) 8-Hydroxyquinoline based chitosan derived carbohydrate polymer as biodegradable and sustainable acid corrosion inhibitor for mild steel: experimental and computational analyses. Int J Biol Macromol 155:645–655. https://doi.org/10.1016/j.ijbiomac.2020.03.200

    Article  CAS  PubMed  Google Scholar 

  44. Verma DK, Kaya S, Ech-chihbi E, El-Hajjaji F, Phukan MM, Alnashiri HM (2021) Investigations on some coumarin based corrosion inhibitors for mild steel in aqueous acidic medium: electrochemical, surface morphological, density functional theory and Monte Carlo simulation approach. J Mol Liq 329:115531. https://doi.org/10.1016/j.molliq.2021.115531

    Article  CAS  Google Scholar 

  45. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:47094714

    Article  Google Scholar 

  46. Briggs D (1990) Practical surface analysis. Auger and X-Ray Photoelecton Spectroscory 1:151–152

    Google Scholar 

  47. Watts JF, Wolstenholme J (2019) An introduction to surface analysis by XPS and AES. John Wiley & Sons

    Book  Google Scholar 

  48. Outirite M, Lagrenée M, Lebrini M, Traisnel M, Jama C, Vezin H, Bentiss F (2010) ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3, 5-bis (n-pyridyl)-1, 2, 4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim Acta 55:1670–1681. https://doi.org/10.1016/j.electacta.2009.10.048

    Article  CAS  Google Scholar 

  49. Morales-Gil P, Walczak MS, Cottis RA, Romero JM, Lindsay R (2014) Corrosion inhibitor binding in an acidic medium: interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid. Corros Sci 85:109–114. https://doi.org/10.1016/j.corsci.2014.04.003

    Article  CAS  Google Scholar 

  50. Olivares O, Likhanova NV, Gomez B, Navarrete J, Llanos-Serrano ME, Arce E, Hallen JM (2006) Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. Appl Surf Sci 252:2894–2909. https://doi.org/10.1016/j.apsusc.2005.04.040

    Article  ADS  CAS  Google Scholar 

  51. Chastain J, King RC Jr (1992) Handbook of X-ray photoelectron spectroscopy. Tech News - Perkin-Elmer Corp Opt Group 40:221

    Google Scholar 

  52. Bommersbach P, Alemany-Dumont C, Millet JP, Normand B (2005) Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim Acta 51:1076–1084. https://doi.org/10.1016/j.electacta.2005.06.001

    Article  CAS  Google Scholar 

  53. Babić-Samardžija K, Lupu C, Hackerman N, Barron AR, Luttge A (2005) Inhibitive properties and surface morphology of a group of heterocyclic diazoles as inhibitors for acidic iron corrosion. Langmuir 21:12187–12196. https://doi.org/10.1021/la051766l

    Article  CAS  PubMed  Google Scholar 

  54. González-Elipe AR, Martínez-Alonso A, Tascón JMD (1988) XPS characterization of coal surfaces: study of aerial oxidation of brown coals. Surf Interface Anal 12:565–571. https://doi.org/10.1002/sia.740121203

    Article  Google Scholar 

  55. Boyd RD, Verran J, Hall KE, Underhill C, Hibbert S, West R (2001) The cleanability of stainless steel as determined by X-ray photoelectron spectroscopy. Appl Surf Sci 172:135–143. https://doi.org/10.1016/S0169-4332(00)00840-0

    Article  ADS  CAS  Google Scholar 

  56. Kannan AG, Choudhury NR, Dutta NK (2007) Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications. Polymer 48:7078–7086. https://doi.org/10.1016/j.polymer.2007.09.050

    Article  CAS  Google Scholar 

  57. Bouanis M, Tourabi M, Nyassi A, Zarrouk A, Jama C, Bentiss F (2016) Corrosion inhibition performance of 2, 5-bis (4-dimethylaminophenyl)-1, 3, 4-oxadiazole for carbon steel in HCl solution: gravimetric, electrochemical and XPS studie. Appl Surf Sci 389:952–966. https://doi.org/10.1016/j.apsusc.2016.07.115

    Article  ADS  CAS  Google Scholar 

  58. Nakayamaand N, Obuchi A (2003) Inhibitory effects of 5-aminouracil on cathodic reactions of steels in saturated Ca (OH) 2 solutions. Corros Sci 45:2075–2092. https://doi.org/10.1016/S0010-938X(03)00032-5

    Article  CAS  Google Scholar 

  59. Pech-Canul MA, Bartolo-Perez P (2004) Inhibition effects of N-phosphono-methyl-glycine/Zn2+ mixtures on corrosion of steel in neutral chloride solutions. Surf Coat Technol 184:133–140. https://doi.org/10.1016/j.surfcoat.2003.11.018

    Article  CAS  Google Scholar 

  60. Bouanis FZ, Bentiss F, Bellayer S, Traisnel M, Vogt JB, Jama C (2011) Radiofrequency cold plasma nitrided carbon steel: microstructural and micromechanical characterizations. Mater Chem Phys 127:329–334. https://doi.org/10.1016/j.matchemphys.2011.02.013

    Article  CAS  Google Scholar 

  61. Sastri VS, Elboujdaini M, Rown JR, Perumareddi JR (1996) Surface analysis of inhibitor films formed in hydrogen sulfide medium. Corrosion 52:447–452. https://doi.org/10.5006/1.3292133

    Article  CAS  Google Scholar 

  62. Abdel-Mottaleb M, Ali SN (2016) A new approach for studying bond rupture/closure of a spiro benzopyran photochromic material: reactivity descriptors derived from frontier orbitals and DFT computed electrostatic potential energy surface maps. Int J Photoenergy 2016:6765805

    Article  Google Scholar 

  63. Abd El-Lateef HM (2020) Corrosion inhibition characteristics of a novel salycilidene isatin hydrazine sodium sulfonate on carbon steel in HCl and a synergistic nickel ions additive: a combined experimental and theoretical perspective. Appl Surf Sci 501:144237

    Article  CAS  Google Scholar 

  64. El yaktini A, Lachiri A, El Faydy M, Benhiba F, Zarrok H, El Azzouzi M, Zertoubi M, Azzi M, Lakhrissi B, Zarrouk A (2018) Practical and theoretical study on the inhibitory inflences of new azomethine derivatives containing 8-hydroxyquinoline moiety for the corrosion of carbon steel in 1 M HCl. Orient J Chem 34:3016–3029

    Article  Google Scholar 

  65. El Faydy M, Benhiba F, About H, Kerroum Y, Guenbour A, Lakhrissi B, Warad I, Verma C, El-SM S, Ebenso EE, Zarrouk A (2020) Experimental and computational investigations on the anti-corrosive and adsorption behavior of 7-N, N’-dialkyaminomethyl-8-Hydroxyquinolines on C40E steel surface in acidic medium. J Colloid Interface Sci 576:330–344. https://doi.org/10.1016/j.jcis.2020.05.010

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Dutta A, Saha SK, Banerjee P, Sukul D (2015) Correlating lectronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: combined experimental and theoretical studies. Corros Sci 98:541–550. https://doi.org/10.1016/j.corsci.2015.05.065

    Article  CAS  Google Scholar 

  67. El-Aouni N, Hsissou R, Saf Z, Abbout S, Benhiba F, El Azzaoui J, Haldhar R, Wazzan N, Guo L, Erramli H, Elharf A, El Bachiri A, Rafi M (2021) Performance of two new epoxy resins as potential corrosion inhibitors for carbon steel in 1MHCl medium: combining experimental and computational approaches. Colloids Surf A 626:127066. https://doi.org/10.1016/j.colsurfa.2021.127066

    Article  CAS  Google Scholar 

  68. Martínez-Araya JI (2015) Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J Math Chem 53:451–465

    Article  MathSciNet  Google Scholar 

  69. Benhiba F, Sebbar NK, Bourazmi H, Belghiti ME, Hsissou R, Hökelek T, Bellaouchou A, Guenbour A, Warad I, Oudda H, Zarrouk A, Essassi EM (2021) Corrosion inhibition performance of 4-(prop-2-ynyl)-[1,4]-benzothiazin-3-one against mild steel in 1M HCl solution: experimental and theoretical studies. Int J Hydrogen Energy 46:25800–25818. https://doi.org/10.1016/j.ijhydene.2021.05.091

    Article  CAS  Google Scholar 

  70. Saady A, Rais Z, Benhiba F, Salim R, Arrousse N, Elhajjaji F, Taleb M, Jarmoni K, Kandri Rodi Y, Warad I, Zarrouk A (2021) Chemical, electrochemical, quantum, and surface analysis evaluation on the inhibition performance of novel imidazo[4,5-b] pyridine derivatives against mild steel corrosion. Corros Sci 189:109621. https://doi.org/10.1016/j.corsci.2021.109621

    Article  CAS  Google Scholar 

  71. Benhiba F, Sebbar NK, Bourazmi H, Belghiti ME, Hsissou R, Hökelek T, Essassi EM (2021) Corrosion inhibition performance of 4-(prop-2-ynyl)-[1, 4]-benzothiazin-3-one against mild steel in 1 M HCl solution: experimental and theoretical studies. Int J Hydrogen Energy 46:25800–25818. https://doi.org/10.1016/j.ijhydene.2021.05.091

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by Researchers Supporting Project number (RSP2024R78), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarrouk.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoudan, N., Faydy, M.E., Titi, A. et al. Enhanced corrosion resistance of carbon steel in an aggressive environment by a recently developed pyrazole derivative: Electrochemical, SEM/XPS/AFM, and theoretical investigation. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05846-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05846-1

Keywords

Navigation