Skip to main content
Log in

Influence of the laser pulse repetition rate and scanning speed on the morphology of Ag nanostructures fabricated by pulsed laser ablation of solid target in water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructures of noble metal were produced by pulsed laser ablation in liquid. A solid Ag target was immersed in double distilled water and a CuBr laser in a master oscillator—power amplifier configuration oscillating at 511 nm and emitting pulses with duration of 30 ns at a repetition rate of up to 20 kHz was employed to produce different colloids. The impact was studied of the laser pulse repetition rate and the beam scanning speed on the morphology of the nanostructures formed. Further, the optical extinction spectra of the colloids in the UV/VIS range were measured and used to make an indirect assessment of the changes in the shape and size distribution of the nanostructures. The transmission values in the near UV range were used to estimate the efficiency of the ablation process under the different experimental conditions implemented. A visualization of the nanostructures was made possible by transmission electron microscopy (TEM). The structure and phase composition of the nanoparticles were studied by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), while the alteration of the target surface caused by the impact of the high-repetition-rate laser illumination was investigated by X-ray photoelectron spectroscopy (XPS). The optimal conditions were determined yielding the highest efficiency in terms of amount of ablated material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.H. Cho, J.E. Park, T. Osaka, S.G. Park, Electrochim. Acta 51, 956–960 (2005)

    Article  Google Scholar 

  2. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, M. Minaian, Nanomedicine 3, 168–171 (2007)

    Article  Google Scholar 

  3. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero. Molecules 20, 8856–8874 (2015)

    Article  Google Scholar 

  4. S. Jana, T. Pal, J. Nanosci. Nanotechnol 7, 2151–2156 (2007)

    Article  Google Scholar 

  5. R. Stiufiuc, C. Iacovita, C.M. Lucaciu, G. Stiufiuc, A.G. Dutu, C. Braescu, N. Leopold, Nanoscale Res. Lett. 8, 47 (2013)

    Article  ADS  Google Scholar 

  6. Y. Bu, S. Lee, ACS Appl. Mater. Interfaces 4, 3923–3931 (2012)

    Article  Google Scholar 

  7. Y. Luo, L. Ma, X. Zhang, A. Liang, Z. Jiang, Nanoscale Res. Lett. 10, 230 (2015)

    Article  ADS  Google Scholar 

  8. P.J. Rivero, A. Urrutia, J. Goicoechea, I.R. Matias, F.J. Arregui, Sens. Actuators B 187, 40–44 (2013)

    Article  Google Scholar 

  9. G.A. Evtugyn, R.V. Shamagsumova, P.V. Padnya, I.I. Stoikov, I.S. Antipin, Talanta 127, 9–17 (2014)

    Article  Google Scholar 

  10. N.T.K. Thanha, L.A.W. Green, Nano Today 5, 213–230 (2010)

    Article  Google Scholar 

  11. N. Alon, Y. Miroshnikov, N. Perkas, I. Nissan, A. Gedanken, O. Shefi, Int. J.Nanomed 9, 23–31 (2014)

    Google Scholar 

  12. R. Tankhiwale, S.K. Bajpai, J. Appl. Polym. Sci. 115, 1894–1900 (2010)

    Article  Google Scholar 

  13. S.K. Rastogi, V.J. Rutledge, C. Gibson, D. Newcombe, J.R. Branen, A.L. Branen, Nanomed. Nanotechnol. Biol. Med. 7(3), 305–314 (2011)

    Article  Google Scholar 

  14. S.A. Wissing, R.H. Müller, J. Control. Release 81(3), 225–233 (2002). June)

    Article  Google Scholar 

  15. I. Osório, I. Rui, F. Ricardo, Mater. Lett. 75, 200–203 (2012)

    Article  Google Scholar 

  16. J.M. Ashraf, M.A. Ansari, H.M. Khan, M.A. Alzohairy, I. Choi, 6, 20414, (2016) (Open Access)

  17. J. Natsuki, T. Natsuki, Y. Hashimoto, Int. J. Mater. Sci. Appl. 4(5), 325–332 (2015)

    Google Scholar 

  18. X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17(9), 1534 (2016) (Open Access)

    Article  Google Scholar 

  19. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  20. S.R. Emory, S. Nie, Anal. Chem 69, 2631 (1997)

    Article  Google Scholar 

  21. S.R. Emory, W.E. Haskins, S. Nie, J. Am. Chem. Soc. 120, 8009 (1998)

    Article  Google Scholar 

  22. J.-H. Wang, C.-M. Chiang, J. Am. Chem. Soc. 122, 11521 (2000)

    Article  Google Scholar 

  23. S. Tsuruga, T. Abe, in Proceedings of the Pan-Pacific Imaging Conference (Arcadia-Ichigaya Convention Hall, Tokyo, 2008), pp. 56–59

  24. S. Iwama, T. Sahashi, Jpn. J. Appl. Phys 19 1039–1044 (1980)

    Article  ADS  Google Scholar 

  25. I. Sondi, D.V. Goia, E. Matijevic, J. Colloid. Interface Sci 260, 75–81 (2003)

    Article  ADS  Google Scholar 

  26. L.N. Pacioni, C.D. Borsarelli, V. Rey, A.V. Veglia, A mechanistic perspective, ed. by Alarcon et al. Silver Nanoparticle Applications, Engineering Materials (Springer, Switzerland, 2015). doi:10.1007/978-3-319-11262-6$42

    Google Scholar 

  27. M. Pileni, Langmuir 13, 3266 (1997)

    Article  Google Scholar 

  28. S.F. Chen, H. Zhang, Adv. Nat. Sci. Nanosci. Nanotechnol 3, 035006-1-7 (2012)

    Article  ADS  Google Scholar 

  29. T.M.D. Dang, T.T.T. Le, E.F. Blance, M.C. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol 3, 035004-1-4 (2012)

    Article  ADS  Google Scholar 

  30. R.S. Patil, M.R. Kokate, C. Jambhale, S.M. Pawar, S.H. Han, S.S. Kolekar, Adv. Nat. Sci. Nanosci. Nanotechnol 3, 015013-1-7 (2012)

    Article  ADS  Google Scholar 

  31. S. Vorobyova, A. Lesnikovich, N. Sobal, Colloids Surf. A Physicochem. Eng. Asp 152, 375–379 (1999)

    Article  Google Scholar 

  32. H. Huang, Y. Yang, Compos. Sci. Technol 68, 2948–2953 (2008)

    Article  ADS  Google Scholar 

  33. J. Jung, H. Oh, H. Noh, J. Ji, S. Kim, Aerosol Sci 37, 1662 (2006)

    Article  ADS  Google Scholar 

  34. J. Siegel, O. Kvítek, P. Ulbrich, Z. Kolská, P. Slepička, V. Švorčík, Mater. Lett. 89, 47–50 (2012)

    Article  Google Scholar 

  35. D.-C. Tien, K.-H. Tseng, C.-Y. Liao, J.-C. Huang, T.T. Tsung, J. Alloys Compd. 463, 408–411 (2008)

    Article  Google Scholar 

  36. K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, G. Sangiliyandi, Mater. Lett. 62, 4411–4413 (2008)

    Article  Google Scholar 

  37. M. Prochazka, J. Stepanek, B. Vlckova, I. Srnova, P. Maly, J.Mol. Struct 410/411, 213 (1997)

    Article  ADS  Google Scholar 

  38. G.W. Yang, Progr. Mater. Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  39. A.S. Nikolov, R.G. Nikov, I.G. Dimitrov, N.N. Nedyalkov, P.A. Atanasov, Appl. Surf. Sci. 280, 55–59 (2013)

    Article  Google Scholar 

  40. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)

    Article  Google Scholar 

  41. F. Brygo, A. Semerok, R. Oltra, J.-M. Weulersse, S. Fomichev, Appl. Surf. Sci. 252, 8314–8318 (2006)

    Article  ADS  Google Scholar 

  42. G. Raciukaitis, M. Brikas, P. Gecys, M. Gedvilas, Proc. of SPIE Vol. 7005 70052L, 1–11 (2008)

    ADS  Google Scholar 

  43. F. Di Niso, C. Gaudiuso, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugarà, Opt. Expres 22,12200–12210 (2014). doi:10.1364/OE.22.012200

    Article  ADS  Google Scholar 

  44. R. Streubel, G. Bendt, B. Gökce, Nanotechnology 27(1–9), 205602 (2016). doi:10.1088/0957-4484/27/20/205602

    Article  ADS  Google Scholar 

  45. H.W. Bergmann, C. Korner, M. Hartmann, R. Mayerhofer, (1996) Pulsed Metal Vapour Lasers, NATO ASI Series 1/5, Kluwer Academic Press, 317–330 1996

  46. S. Link, M. El-Sayed, J. Phys. Chem. B 103(40), 8410–8426 (1999)

    Article  Google Scholar 

  47. R.G. Nikov, A.S. Nikolov, N.N. Nedyalkov, I.G. Dimitrov, P.A. Atanasov, M.T. Alexandrov, Appl. Surf. Sci. 258, 9318–9322 (2012)

    Article  ADS  Google Scholar 

  48. F. Mafune´, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 104, 9111–9117 (2000)

    Article  Google Scholar 

  49. M.A. Valverde-Alva, T. García-Fernández, E. Esparza-Alegría, M. Villagrán-Muniz, C. Sánchez-Aké, R. Castañeda-Guzmán, M.B. de la Mora, C.E. Márquez-Herrera, J. L. Sánchez Llamazares, Laser Phys. Lett. 13(6), 106002 (2016). doi:10.1088/1612-2011/13/10/106002

    Article  ADS  Google Scholar 

  50. T. Tsuji, K. Iryo, Y. Nishimura, M. Tsuji, J. Photochem. Photobiol. A 145, 201–207 (2001)

    Article  Google Scholar 

  51. A. Henglein, J. Phys. Chem 97, 5457–5471 (1993)

    Article  Google Scholar 

  52. G.D. Tsibidis, E. Stratakis, K.E. Aifantis, J. Appl. Phys. 111(1–12), 053502 (2012)

    Article  ADS  Google Scholar 

  53. G.D. Tsibidis, Appl. Phys. Lett. 104(1–5), 051603 (2014)

    Article  ADS  Google Scholar 

  54. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3(12), 4062–4070 (2009). doi:10.1021/nn900654v

    Article  Google Scholar 

  55. M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P.A. Loukakos, Appl Phys A Rapid Commun. doi:10.1007/s00339-013-7893-y

  56. B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, G. Hennig, Proc. SPIE 8607, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, 86070D (2013/03/13). doi:10.1117/12.2004136;10.1117/12.2004136

  57. J. Thorstensen, S.E. Foss, J. Appl. Phys 112, 103514 (2012)

    Article  ADS  Google Scholar 

  58. I. Apitz, A. Vogel, Appl.Phys.A81, 329–338 9, 2013(2005). doi:10.1007/s00339-005-3213-5

  59. P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Phys. Chem. Chem. Phys., 15, 3068–3074 (2013). doi:10.1039/C2CP42592K

    Article  Google Scholar 

  60. S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, Santos dos Rolo, A. Plech, J. Colloid Interface Sci. (2016). doi:10.1016/j.jcis.2016.08.030

    Google Scholar 

  61. Z. Yan, D.B. Chrisey, J. Photochem. Photobiol. C 13, 204–223 (2012)

    Article  Google Scholar 

  62. S.H. Kim, W.I. Choi, K.H. Kim, D.J. Yang, S. Heo, D.-J. Yun, Sci. Rep. 6:33074. doi:10.1038/srep33074

  63. T. Jiao, H. Guo, Q. Zhang, Q. Peng, Y. Tang, X. Yan, B. Li, Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci. Rep. 5:11873. doi:10.1038/srep11873

  64. L.S. Kibis, A.I. Stadnichenko, E.M. Pajetnov, S.V. Koscheev, V.I. Zaykovskii, A.I. Boronin, Appl. Surf. Sci. 257, 404–413 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Bulgarian Science Fund under Project T02/24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nikolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolov, A.S., Balchev, I.I., Nedyalkov, N.N. et al. Influence of the laser pulse repetition rate and scanning speed on the morphology of Ag nanostructures fabricated by pulsed laser ablation of solid target in water. Appl. Phys. A 123, 719 (2017). https://doi.org/10.1007/s00339-017-1328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1328-0

Navigation