Skip to main content
Log in

A review on vibration analysis and control of machine tool feed drive systems

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the development of the modern manufacturing industry, especially that of high-speed and high-precision machining, higher performances of computer numerical control (CNC) machine tools are necessary than ever. For high-precision CNC machine tools, vibration in high-speed machining is an important factor to affect the machining accuracy. As a significant part of CNC machine tools, the dynamic characteristics of the feed drive system have a great impact on the machining performance. Ball screw drive systems are widely applied in the majority of CNC machine tools for the time being. In the process of high-speed machining, the vibration of the ball-screw drive system will affect the stability of the control system and the machining accuracy of CNC machine tools. Thus, further investigation of dynamic characteristics and vibration control methods of the ball-screw drive system will be of great importance to improve the machining performance. A comprehensive review is carried out here to research statuses of vibration analysis and control methods for feed drive systems. Related studies on system modeling, parameter identification, and vibration control technologies are classified and summarized. The advantages and disadvantages of different methods are discussed and compared. Moreover, the linear parameter-varying (LPV) modeling method of ball-screw drive systems and corresponding control technologies are introduced in detail. Finally, related research prospects are systematically presented based on the existing studies, and these research directions which are rarely studied will be of great significance to develop vibration control technologies for CNC machine tool feed drive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. King R (2013) Handbook of high-speed machining technology. Springer Science & Business Media

  2. Schulz H, Moriwaki T (1992) High-speed machining. CIRP Ann 41:637–643. https://doi.org/10.1016/S0007-8506(07)63250-8

    Article  Google Scholar 

  3. Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann 60:779–796. https://doi.org/10.1016/j.cirp.2011.05.010

    Article  Google Scholar 

  4. Deng C, Yin G, Fang H, Meng Z (2015) Dynamic characteristics optimization for a whole vertical machining center based on the configuration of joint stiffness. Int J Adv Manuf Technol 76:1225–1242. https://doi.org/10.1007/s00170-014-6355-9

    Article  Google Scholar 

  5. Zhang J, Zhang H, Du C, Zhao W (2016) Research on the dynamics of ball screw feed system with high acceleration. Int J Mach Tools Manuf 111:9–16. https://doi.org/10.1016/j.ijmachtools.2016.09.001

    Article  Google Scholar 

  6. Ansoategui I, Campa FJ (2017) Mechatronics of a ball screw drive using an N degrees of freedom dynamic model. Int J Adv Manuf Technol 93:1307–1318. https://doi.org/10.1007/s00170-017-0597-2

    Article  Google Scholar 

  7. Du F, Li P, Wang Z, Yue M, Feng X (2017) Modeling, identification and analysis of a novel two-axis differential micro-feed system. Precis Eng 50:320–327. https://doi.org/10.1016/j.precisioneng.2017.06.005

    Article  Google Scholar 

  8. Du F, Zhang M, Wang Z, Yu C, Feng X, Li P (2018) Identification and compensation of friction for a novel two-axis differential micro-feed system. Mech Syst Signal Pr 106:453–465. https://doi.org/10.1016/j.ymssp.2018.01.004

    Article  Google Scholar 

  9. Altintas Y, Erkorkmaz K, Zhu WH (2000) Sliding mode controller design for high speed feed drives. CIRP Ann Manuf Technol 49:265–270. https://doi.org/10.1016/S0007-8506(07)62943-6

    Article  Google Scholar 

  10. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press

  11. Hecker RL, Flores GM, Xie Q, Haran R (2008) Servocontrol of machine-tools: a review. Lat Am Appl Res 38:85–94

    Google Scholar 

  12. Okwudire C (2009) Modeling and control of high speed machine tool feed drives. University of British Columbia, Dissertation

    Google Scholar 

  13. Kim M, Chung S (2006) Integrated design methodology of ball-screw driven servomechanisms with discrete controllers. Part I: modelling and performance analysis. Mechatronics 16:491–502. https://doi.org/10.1016/j.mechatronics.2006.01.008

    Article  Google Scholar 

  14. Chen JS, Huang YK, Cheng CC (2004) Mechanical model and contouring analysis of high-speed ball-screw drive systems with compliance effect. Int J Adv Manuf Technol 24. https://doi.org/10.1007/s00170-003-1777-9

  15. Poignet P, Gautier M, Khalil W (2003) Modeling, control and simulation of high speed machine tool axes. 617–622. https://doi.org/10.1109/aim.1999.803239

  16. Yang T, Lin CS (2004) Identifying the stiffness and damping parameters of a linear servomechanism. Mech Based Des Struct Mach 32:283–304. https://doi.org/10.1081/SME-200027937

    Article  Google Scholar 

  17. Feng G, Pan Y (2012) Investigation of ball screw preload variation based on dynamic modeling of a preload adjustable feed-drive system and spectrum analysis of ball-nuts sensed vibration signals. Int J Mach Tools Manuf 52:85–96. https://doi.org/10.1016/j.ijmachtools.2011.09.008

    Article  Google Scholar 

  18. Chen YJ, Tang WC, Zhang SG (2012) Nonlinear dynamics behaviors of ball screws with preload considered. Adv Mater Res 510:304–309. https://doi.org/10.4028/www.scientific.net/AMR.510.304

    Article  Google Scholar 

  19. Zhou Y, Xu X, Wang G, Cao X (2013) Study on axial vibration of feed drives and rolling vibration of ball screw. J Cent South Univ (Science and Technology) 44:4069–4073

    Google Scholar 

  20. Zaeh MF, Oertli T, Milberg J (2004) Finite element modelling of ball screw feed drive systems. CIRP Ann Manuf Technol 53:289–292. https://doi.org/10.1016/S0007-8506(07)60700-8

    Article  Google Scholar 

  21. Okwudire CE (2011) Improved screw–nut interface model for high-performance ball screw drives. J Mech Des 133:041009. https://doi.org/10.1115/1.4004000

    Article  Google Scholar 

  22. Vicente DA, Hecker RL, Villegas FJ, Flores GM (2012) Modeling and vibration mode analysis of a ball screw drive. Int J Adv Manuf Technol 58:257–265. https://doi.org/10.1007/s00170-011-3375-6

    Article  Google Scholar 

  23. Van Brussel H, Sas P, Nemeth I, De Fonseca P, den Braembussche P (2001) Towards a mechatronic compiler. IEEE/ASME Transactions on Mechatronics 6:90–105. https://doi.org/10.1109/3516.914395

    Article  Google Scholar 

  24. Schäfers E, Denk J, Hamann J (2006) Mechatronic modeling and analysis of machine tools. Proceedings of the CIRP 2nd International Conference on High Performance Cutting, HPC

  25. Okwudire C (2005) Finite element modeling of ball screw feed drive systems for control purposes. University of British Columbia, Dissertation

    Google Scholar 

  26. Pislaru C, Ford DG, Holroyd G (2004) Hybrid modelling and simulation of a computer numerical control machine tool feed drive. Proc Inst Mech Eng Part I J Syst Control Eng 218:111–120. https://doi.org/10.1243/095965104322892276

    Article  Google Scholar 

  27. Varanasi KK, Nayfeh SA (2004) The dynamics of lead-screw drives: low-order modeling and experiments. J Dyn Syst Meas Control 126:388. https://doi.org/10.1115/1.1771690

    Article  Google Scholar 

  28. Whalley R, Ebrahimi M, Abdul-Ameer AA (2006) Machine tool axis dynamics. Proc Inst Mech Eng C J Mech Eng Sci 220:403–419. https://doi.org/10.1243/09544062C15904

    Article  Google Scholar 

  29. Allotta B, Angioli F, Rinchi M (2002) Constraints identification for vibration control of time-varying boundary conditions systems. 606–611. https://doi.org/10.1109/aim.2001.936534

  30. Erkorkmaz K, Kamalzadeh A (2006) High bandwidth control of ball screw drives. CIRP Ann Manuf Technol 55:393–398. https://doi.org/10.1016/S0007-8506(07)60443-0

    Article  Google Scholar 

  31. Holroyd G, Pislaru C, Ford DG (2003) Modelling the dynamic behaviour of a ball- screw system taking into account the changing position of the ball-screw nut. WIT Trans Eng Sci 44

  32. Okwudire CE, Altintas Y (2009) Hybrid modeling of ball screw drives with coupled axial, torsional, and lateral dynamics. J Mech Des 131:071002. https://doi.org/10.1115/1.3125887

    Article  Google Scholar 

  33. Dong L, Tang WC (2013) Hybrid modeling and analysis of structural dynamic of a ball screw feed drive system. Mechanics 19:316–323. https://doi.org/10.5755/j01.mech.19.3.4662

    Article  Google Scholar 

  34. Dong L, Tang WC, Liu L (2013) Hybrid modeling and time-varying analysis of vibration for a ball screw drive. Journal of Vibration and Shock. https://doi.org/10.13465/j.cnki.jvs.2013.20.004

  35. Yang Y, Zhang WM, Qiu WJ, Chen S (2017) State space modeling and test verification for a ball screw feed system based on modal synthesis and dynamic condensation. Journal of Vibration and Shock. https://doi.org/10.13465/j.cnki.jvs.2017.13.008

  36. Zhang GP, Shi WH, Huang YM (2002) Analysys method of dynamic behaviors of guidway joint and its application in machine tools design. Chin J Mech Eng 10:114–117

    Article  Google Scholar 

  37. Zhang GP, Huang YM, Shi WH, Fu WP (2003) Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering. Int J Mach Tools Manuf 43:699–706. https://doi.org/10.1016/S0890-6955(03)00026-9

    Article  Google Scholar 

  38. Tsai JS, Chou YF (1988) The identification of dynamic characteristics of a single bolt joint. J Sound Vib 125:487–502. https://doi.org/10.1016/0022-460X(88)90256-8

    Article  Google Scholar 

  39. Li WL (2002) A new method for structural model updating and joint stiffness identification. Mech Syst Signal Pr 16:155–167. https://doi.org/10.1006/mssp.2000.1339

    Article  Google Scholar 

  40. Ahmadian H, Jalali H (2007) Identification of bolted lap joints parameters in assembled structures. Mech Syst Signal Pr 21:1041–1050. https://doi.org/10.1016/j.ymssp.2005.08.015

    Article  Google Scholar 

  41. Čelič D, Boltežar M (2008) Identification of the dynamic properties of joints using frequency–response functions. J Sound Vib 317:158–174. https://doi.org/10.1016/j.jsv.2008.03.009

    Article  Google Scholar 

  42. Heller L, Foltête E, Piranda J (2009) Experimental identification of nonlinear dynamic properties of built-up structures. J Sound Vib 327:183–196. https://doi.org/10.1016/j.jsv.2009.06.008

    Article  Google Scholar 

  43. Tian H, Li B, Liu H, Mao K, Peng F, Huang X (2011) A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools. Int J Mach Tools Manuf 51:239–249. https://doi.org/10.1016/j.ijmachtools.2010.11.004

    Article  Google Scholar 

  44. Harris TA (2001) Rolling bearing analysis. John Wiley and sons

  45. Lim TC, Singh R (1990) Vibration transmission through rolling element bearings, part I: bearing stiffness formulation. J Sound Vib 139:179–199. https://doi.org/10.1016/0022-460X(90)90882-Z

    Article  Google Scholar 

  46. Chen CH, Wang KW, Shin YC (2008) An integrated approach toward the dynamic analysis of high-speed spindles: part I—system model. J Vib Acoust 116:506. https://doi.org/10.1115/1.2930456

    Article  Google Scholar 

  47. Royston TJ, Basdogan I (1998) Vibration transmission through self-aligning (spherical) rolling element bearings: theory and experiment. J Sound Vib 215:997–1014. https://doi.org/10.1006/jsvi.1998.9999

    Article  Google Scholar 

  48. Dougdag M, Ouali M, Boucherit H, Titouche NE, Djaoui M (2012) An experimental testing of a simplified model of a ball bearing: stiffness calculation and defect simulation. Meccanica 47:335–354. https://doi.org/10.1007/s11012-011-9434-0

    Article  MATH  Google Scholar 

  49. Jacobs W, Boonen R, Sas P, Moens D (2014) The influence of the lubricant film on the stiffness and damping characteristics of a deep groove ball bearing. Mech Syst Signal Pr 42:335–350. https://doi.org/10.1016/j.ymssp.2013.07.018

    Article  Google Scholar 

  50. Dhupia JS, Ulsoy AG, Katz R, Powalka B (2008) Experimental identification of the nonlinear parameters of an industrial translational guide for machine performance evaluation. J Vib Control 14:645–668. https://doi.org/10.1177/1077546307081325

    Article  Google Scholar 

  51. Brecher C, Fey M, Bäumler S (2012) Identification method for damping parameters of roller linear guides. Prod Eng 6:505–512. https://doi.org/10.1007/s11740-012-0400-z

    Article  Google Scholar 

  52. Cheng X, Shi JF, Zhang S (1994) A study on dynamic characteristics of the joint surfaces of ball screw assembly. Chin Mech Eng

  53. Chen Y, Tang W (2014) Dynamic contact stiffness analysis of a double-nut ball screw based on a quasi-static method. Mech Mach Theory 73:76–90. https://doi.org/10.1016/j.mechmachtheory.2013.10.008

    Article  Google Scholar 

  54. Weck M, Teipel K (1977) Dynamisches Verhalten spanender Werkzeugmaschinen: Einflußgrößen, Beurteilungsverfahren. Springer, Meßtechnik

    Book  Google Scholar 

  55. Kamalzadeh A (2009) Precision control of high speed ball screw drives. University of Waterloo, Dissertation

    Google Scholar 

  56. Casquero A, Hecker R, Vicente D, Flores G (2010) Parameter identification of a feed drive for high speed machine tools. ABCM Symposium Series in Mechatronics

  57. Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49:947–957. https://doi.org/10.1016/j.ijmachtools.2009.06.010

    Article  Google Scholar 

  58. Verboven P, Guillaume P, Cauberghe B, Parloo E, Vanlanduit S (2004) Frequency-domain generalized total least-squares identification for modal analysis. J Sound Vib 278:21–38. https://doi.org/10.1016/j.jsv.2003.09.058

    Article  Google Scholar 

  59. Verboven P, Cauberghe B, Guillaume P (2005) Improved total least squares estimators for modal analysis. Comput Struct 83:2077–2085. https://doi.org/10.1016/j.compstruc.2005.03.008

    Article  Google Scholar 

  60. Reynders E, Roeck GD (2008) Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis. Mech Syst Signal Pr 22:617–637. https://doi.org/10.1016/j.ymssp.2007.09.004

    Article  Google Scholar 

  61. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Pr 13:855–878. https://doi.org/10.1006/mssp.1999.1249

    Article  Google Scholar 

  62. Ta M, Lardiès J (2006) Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform. J Sound Vib 293:16–37. https://doi.org/10.1016/j.jsv.2005.09.021

    Article  Google Scholar 

  63. Huang NE (2014) Hilbert-Huang transform and its applications. World Scientific

  64. Liu D, Mei XS, Feng B, Zhang DS (2011) Frequency response identification for ballscrew servo driven system based on symlets wavelet. Chin J Mech Eng 47:153–159

    Article  Google Scholar 

  65. Sepasi D, Nagamune R, Sassani F (2012) Tracking control of flexible ball screw drives with runout effect and mass variation. Ieee T Ind Electron 59:1248–1256. https://doi.org/10.1109/TIE.2011.2158042

    Article  Google Scholar 

  66. Shamma JS (1988) Analysis and design of gain scheduled control systems. Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  67. Marcos A, Balas GJ (2004) Development of linear-parameter-varying models for aircraft. J Guid Control Dyn 27:218–228. https://doi.org/10.2514/1.9165

    Article  Google Scholar 

  68. Balas G, Shin J-Y, Kaya A (2013) Blending approach of linear parameter varying control synthesis for F-16 aircraft. https://doi.org/10.2514/6.2001-4040

  69. Shin J-Y, Belcastro C (2012) Quasi-linear parameter varying representation over non-trim region. https://doi.org/10.2514/6.2004-5423

  70. Paraiso Salah El-Dine C, Hashemi SM, Werner H (2012) Black-box versus grey-box LPV identification to control a mechanical system. Proc IEEE Conf Decis Control:5152–5157. https://doi.org/10.1109/CDC.2012.6426536

  71. Knoblach A, Saupe F (2012) LPV gray box identification of industrial robots for control. Proc IEEE Int Conf Control Appl:831–836. https://doi.org/10.1109/CCA.2012.6402440

  72. Bamieh B, Giarré L (2002) Identification of linear parameter varying models. Int J Robust Nonlin 12:841–853. https://doi.org/10.1002/rnc.706

    Article  MathSciNet  MATH  Google Scholar 

  73. Paijmans B, Symens W, Van Brussel H, Swevers J (2008) Identification of interpolating affine LPV models for mechatronic systems with one varying parameter. Eur J Control 14:16–29. https://doi.org/10.3166/ejc.14.16-29

    Article  MathSciNet  MATH  Google Scholar 

  74. De Caigny J, Camino JF, Swevers J (2011) Interpolation-based modeling of MIMO LPV systems. Ieee T Contr Syst T 19:46–63. https://doi.org/10.1109/TCST.2010.2078509

    Article  Google Scholar 

  75. Hastie T, Stuetzle W (1989) Principal curves. J Am Stat Assoc 84:502–516. https://doi.org/10.1080/01621459.1989.10478797

    Article  MathSciNet  MATH  Google Scholar 

  76. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  77. Cho JU, Le QN, Jeon JW (2009) An FPGA-based multiple-axis motion control chip. Ieee T Ind Electron 56:856–870. https://doi.org/10.1109/TIE.2008.2004671

    Article  Google Scholar 

  78. Wai R, Lee J, Chuang K (2011) Real-time PID control strategy for maglev transportation system via particle swarm optimization. Ieee T Ind Electron 58:629–646. https://doi.org/10.1109/TIE.2010.2046004

    Article  Google Scholar 

  79. Pritschow G (1998) A comparison of linear and conventional electromechanical dives. CIRP Ann Manuf Technol 47:541–548. https://doi.org/10.1016/S0007-8506(07)63241-7

    Article  Google Scholar 

  80. Smith DA (1999) Wide bandwidth control of high-speed milling machine feed drives. University of Florida, Dissertation

    Google Scholar 

  81. Li B, Zhang X, Mills JK, et al (2009) Vibration suppression of a 3-PRR flexible parallel manipulator using input shaping. 2009 IEEE Int Conf Mechatronics Autom ICMA 2009 3539–3544. https://doi.org/10.1109/ICMA.2009.5246204

  82. Hyde JM, Seering WP (2002) Using input command pre-shaping to suppress multiple mode vibration 2604–2609. https://doi.org/10.1109/robot.1991.132020

  83. Jones SD, Ulsoy AG (1999) An approach to control input shaping with application to coordinate measuring machines. J Dyn Syst Meas Control 121:242. https://doi.org/10.1115/1.2802461

    Article  Google Scholar 

  84. Smith OJM (1958) Feedback control systems. McGraw-Hill, New York

    Google Scholar 

  85. Hillsley KL, Yurkovich S (1993) Vibration control of a two-link flexible robot arm. Dyn Control 3:261–280. https://doi.org/10.1007/BF01972699

    Article  MathSciNet  MATH  Google Scholar 

  86. Tung ED, Tomizuka M (2008) Feedforward tracking controller design based on the identification of low frequency dynamics. J Dyn Syst Meas Control 115:348. https://doi.org/10.1115/1.2899109

    Article  MATH  Google Scholar 

  87. Weck M, Ye G (1990) Sharp corner tracking using the IKF control strategy. CIRP Ann 39:437–441. https://doi.org/10.1016/S0007-8506(07)61091-9

    Article  Google Scholar 

  88. Pritschow G, Philipp W (1992) Research on the efficiency of feedforward controllers in M direct drives. CIRP Ann - Manuf Technol 41:411–415. https://doi.org/10.1016/S0007-8506(07)61233-5

    Article  Google Scholar 

  89. Chen Y, Tlusty J (1995) Effect of low-friction guideways and Lead-screw flexibility on dynamics of high-speed machines. CIRP Ann Manuf Technol 44:353–356. https://doi.org/10.1016/S0007-8506(07)62341-5

    Article  Google Scholar 

  90. Chung B, Smith S, Tlusty J (1997) Active damping of structural modes in high-speed machine tools. J Vib Control 3:279–295. https://doi.org/10.1177/107754639700300303

    Article  Google Scholar 

  91. Altintas Y, Khoshdarregi MR (2012) Contour error control of CNC machine tools with vibration avoidance. CIRP Ann 61:335–338. https://doi.org/10.1016/j.cirp.2012.03.132

    Article  Google Scholar 

  92. Gordon DJ, Erkorkmaz K (2013) Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter. Precis Eng 37:308–322. https://doi.org/10.1016/j.precisioneng.2012.09.009

    Article  Google Scholar 

  93. Erkorkmaz K, Hosseinkhani Y (2013) Control of ball screw drives based on disturbance response optimization. CIRP Ann 62:387–390. https://doi.org/10.1016/j.cirp.2013.03.138

    Article  Google Scholar 

  94. Tsai M, Yen C, Yau H (2013) Integration of an empirical mode decomposition algorithm with iterative learning control for high-precision machining. IEEE/ASME Transactions on Mechatronics 18:878–886. https://doi.org/10.1109/TMECH.2012.2194162

    Article  Google Scholar 

  95. Hu C, Yao B, Wang Q (2010) Coordinated adaptive robust contouring control of an industrial biaxial precision gantry with cogging force compensations. Ieee T Ind Electron 57:1746–1754. https://doi.org/10.1109/TIE.2009.2030769

    Article  Google Scholar 

  96. Dumur D, Boucher P, Ramond G (2000) Direct adaptive generalized predictive control. Application to motor drives with flexible modes. CIRP Ann Manuf Technol 49:271–274. https://doi.org/10.1016/S0007-8506(07)62944-8

    Article  Google Scholar 

  97. Kamalzadeh A, Erkorkmaz K (2007) Compensation of axial vibrations in ball screw drives. CIRP Ann 56:373–378. https://doi.org/10.1016/j.cirp.2007.05.087

    Article  Google Scholar 

  98. Symens W, van Brussel H, Swevers J (2004) Gain-scheduling control of machine tools with varying structural flexibility. CIRP Ann Manuf Technol 53:321–324. https://doi.org/10.1016/S0007-8506(07)60707-0

    Article  Google Scholar 

  99. Da Silva MM, Brüls O, Swevers J, Desmet W, Brussel HV (2009) Computer-aided integrated design for machines with varying dynamics. Mech Mach Theory 44:1733–1745. https://doi.org/10.1016/j.mechmachtheory.2009.02.006

    Article  MATH  Google Scholar 

  100. Van de Wal M, Van Baars G, Sperling F, Bosgra O (2002) Multivariable H∞/μ feedback control design for high-precision wafer stage motion. Control Eng Pract 10:739–755. https://doi.org/10.1016/S0967-0661(01)00166-6

    Article  Google Scholar 

  101. Paijmans B (2007) Interpolating gain-scheduling control for mechatronic systems with parameter-dependent dynamics. University of Leuven, Dissertation

    Google Scholar 

  102. Da Silva MM, Desmet W, Brussel HV (2008) Design of mechatronic systems with configuration-dependent dynamics: simulation and optimization. IEEE/ASME Transactions on Mechatronics 13:638–646. https://doi.org/10.1109/TMECH.2008.2003957

    Article  Google Scholar 

  103. Da Silva MM, Brüls O, Desmet W, Van Brussel H (2009) Integrated structure and control design for mechatronic systems with configuration-dependent dynamics. Mechatronics 19:1016–1025. https://doi.org/10.1016/j.mechatronics.2009.06.006

    Article  Google Scholar 

  104. Okwudire C, Altintas Y (2009) Minimum tracking error control of flexible ball screw drives using a discrete-time sliding mode controller. J Dyn Syst Meas Control 131:051006. https://doi.org/10.1115/1.3155005

    Article  Google Scholar 

  105. Apkarian P, Adams RJ (1998) Advanced gain-scheduling techniques for uncertain systems. IEEE Trans Control Syst Technol 6:21–32. https://doi.org/10.1109/87.654874

    Article  MATH  Google Scholar 

  106. Fan S, Fan D, Hong H, Zhang Z (2012) Robust tracking control for micro machine tools with load uncertainties. J Cent South Univ 19:117–127. https://doi.org/10.1007/s11771-012-0980-y

    Article  Google Scholar 

  107. Hanifzadegan M, Nagamune R (2015) Tracking and structural vibration control of flexible ball–screw drives with dynamic variations. IEEE/ASME Transactions on Mechatronics 20:133–142. https://doi.org/10.1109/TMECH.2014.2298241

    Article  Google Scholar 

  108. Hanifzadegan M, Nagamune R (2013) Switching gain-scheduled control design for flexible ball-screw drives. J Dyn Syst Meas Control 136:014503. https://doi.org/10.1115/1.4025154

    Article  Google Scholar 

  109. Hanifzadegan M, Nagamune R (2014) Smooth switching LPV controller design for LPV systems. Automatica 50:1481–1488. https://doi.org/10.1016/j.automatica.2014.03.014

    Article  MathSciNet  MATH  Google Scholar 

  110. Zhao P, Nagamune R (2018) Switching linear parameter-varying control with improved local performance and optimized switching surfaces. Int J Robust Nonlin 28:3403–3421. https://doi.org/10.1002/rnc.4088

    Article  MathSciNet  MATH  Google Scholar 

  111. Zhao P, Nagamune R (2018) Discrete-time state-feedback switching LPV control with separate Lyapunov functions for stability and local performance. Proc Am Control Conf 2018-June:2023–2028. https://doi.org/10.23919/ACC.2018.8431377

  112. Sencer B, Ishizaki K, Shamoto E (2015) High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP Ann 64:369–372. https://doi.org/10.1016/j.cirp.2015.04.102

    Article  Google Scholar 

  113. Yang J, Yuen A (2017) An analytical local corner smoothing algorithm for five-axis CNC machining. Int J Mach Tools Manuf 123:22–35. https://doi.org/10.1016/j.ijmachtools.2017.07.007

    Article  Google Scholar 

  114. Yuen A, Zhang K, Altintas Y (2013) Smooth trajectory generation for five-axis machine tools. Int J Mach Tools Manuf 71:11–19. https://doi.org/10.1016/j.ijmachtools.2013.04.002

    Article  Google Scholar 

  115. Tulsyan S, Altintas Y (2015) Local toolpath smoothing for five-axis machine tools. Int J Mach Tools Manuf 96:15–26. https://doi.org/10.1016/j.ijmachtools.2015.04.014

    Article  Google Scholar 

  116. Mori K, Akita K, Abe Y (2007) Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press. Int J Mach Tools Manuf 47:321–325. https://doi.org/10.1016/j.ijmachtools.2006.03.013

    Article  Google Scholar 

  117. Halicioglu R, Dulger LC, Bozdana AT (2015) Mechanisms, classifications, and applications of servo presses: a review with comparisons. Proc Inst Mech Eng B J Eng Manuf 230:1177–1194. https://doi.org/10.1177/0954405415600013

    Article  Google Scholar 

  118. Xu T, Xia Q, Long X, Buffa G (2017) Vibration control of a high-speed precision servo numerically controlled punching press: multidomain simulation and experiments. Shock Vib 2017:1–17. https://doi.org/10.1155/2017/4593546

    Article  Google Scholar 

  119. Otsu M, Yamagata C, Osakada K (2003) Reduction of blanking noise by controlling press motion. CIRP Ann 52:245–248. https://doi.org/10.1016/S0007-8506(07)60576-9

    Article  Google Scholar 

  120. Halicioglu R, Dulger LC, Bozdana AT (2018) Improvement of metal forming quality by motion design. Robot Cim-Int Manuf 51:112–120. https://doi.org/10.1016/j.rcim.2017.11.010

    Article  Google Scholar 

  121. Liang J, Zhao S, Zhao Y, Zhu M (2015) Hybrid-loop servo control system of double toggle mechanical press for flexible forming process based on sliding mode control and neural network techniques. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 230:35–45. https://doi.org/10.1177/0959651815610272

    Article  Google Scholar 

  122. Halicioglu R, Dulger LC, Bozdana AT (2017) An automation system for data processing and motion generation. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, pp 1-9. https://doi.org/10.1109/IDAP.2017.8090294

  123. Dulger LC, Das MT, Halicioglu R et al (2016) Robotics and servo press control applications : experimental implementations. Int Conf Control Decis Inf Technol 2016:102–107. https://doi.org/10.1109/CoDIT.2016.7593543

    Article  Google Scholar 

  124. Halıcıoğlu R, Dülger LC, Bozdana AT (2015) Sezgisel algoritmalarla hareket denetimi servo pres uygulaması. Uluslararası Katılımlı 17:14–17

    Google Scholar 

  125. Öksüz M, Dülger LC, Halıcıoğlu R (2016) Servo pres İçin bulanık mantık yaklaşımı ile PID denetleyici tasarımı design of a Fuzzy-PID controller for a servo press. mH 1: 30

Download references

Funding

The study is supported by National Natural Science Foundation for Young Scientists of China (No. 51705289), National Natural Science Foundation of China (No. 51875325, 51775309), Key Research & Development Program of Shandong Province (No.2019GGX104101, No.2015GGX103036), Natural Science Foundation of Shandong Province (No. ZR2017PEE005), and Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxin Du.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, Z., Zhang, T. et al. A review on vibration analysis and control of machine tool feed drive systems. Int J Adv Manuf Technol 107, 503–525 (2020). https://doi.org/10.1007/s00170-020-05041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05041-2

Keywords

Navigation